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Matched Filters for Bin Picking
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Abstract—Currently, a major difficulty for the widespread use of ro-
bots in assembly and material handling comes from the necessity of
feeding accurately positioned workpieces to robots. “Bin picking”
techniques help reduce this constraint.

This paper presents the application of matched filters for enabling ro-
bots with vision to acquire workpieces randomly stored in bins. This
approach complements heuristic methods already reported.

The concept of matched filter is an old one. Here, however, it is re-
defined to take into account robot end-effector features, in terms of
geometry and mechanics. In particular, the proposed filters match local
workpiece structures where the robot end-effector is likely to grasp
successfully and hold workpieces. The local nature of the holdsites is
very important as computation costs are shown to vary with the fifth
power of structure size. In addition, the proposed filters tend to have
a narrow angular bandwid th.

An example, which features a parallel-jaw hand is developed in detail,
using both statistical and Fourier models. Both approaches concur in
requiring a very small number of filters (typically four), even if a good
orientation accuracy is expected (two degrees).

Success rates of about 90 percent in three or fewer attempts have been
experimentally obtained on a system which includes a small minicom-
puter, a 128 X 128 pixel solid-state camera, a prototype Cartesian robot,
and a “‘universal” parallel-jaw hand.

Index Terms— Artificial intelligence, bin picking, robot control, robot
vision, scene analysis.

[. INTRODUCTION

ODAY, fully automated assembly lines are working in

many industrial systems. In most cases, however, the
assembly line requires components to be initially palletized or
stacked in some kind of magazine. Off-line, magazines are
usually loaded by workers. This paper addresses the prob-
lem of feeding a buffer, an assembly line, a machine, or, gen-
erally speaking, a goal site from bins that store randomly ori-
ented workpieces.

The problem of feeding parts from bins is usually considered
very difficult to solve because the assumption is made that a
workpiece needs to be identified and located precisely in space
before being grasped. This paper explores the inadequacies of
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that assumption, and, at the same time, discusses the bin picking
problem in detail.

Several methods to acquire randomly stored workpieces are
examined, and their respective advantages and limitations de-
scribed in Section II. The solution introduced here, the matched
filter one, is then thoroughly delineated. In Section III,
matched filters are defined in general terms. Section IV con-
siders various properties of the bin picking problem which al-
low a reduction of the computational load associated with
matched filters. Section V introduces the design of matched
filters for workpiece acquisition, and an example is extensively
developed in Section VI. Finally, some extensions of the pre-
sented methods are suggested in the Conclusion, Section VII.

II. CURRENT METHODS FOR BIN PicKING

Traditionally, workpieces have been fed to machines from
bins by specialized equipment or human labor. There, however,
is a large class of situations where a robot should bring cost-
effective solutions. Our study addresses the latter technique.

In the simplest case, robots without vision can pick workpieces
from bins. “Blindly,” the end-effector mechanically scans a
bin until an object is acquired. Magnetic [1],one-fingered [2],
two-fingered [3], and vacuum cup [4] hands have been used
for such a purpose. While simplicity is an obvious advantage
of these techniques, they become increasingly inadequate as
the probability of meeting potential holdsites along the (blind)
end-effector path decreases. This problem is exacerbated by
the realtively long time constants associated with mechanical
motions.

Proximity sensors may increase the active range of the hand,
thereby improving the probability of detecting holdsites, but
they do not remove the fundamental speed limit imposed by
arm motions. By contrast, (remote) vision can drastically re-
duce the impact of that limit, replacing most mechanical mo-
tions by electronic scanning.

The tremendous bandwidth of existing vision sensors (tube
sensors may deliver information at a rate in excess of 107 bits/s)
contributes to the possibility of recognizing and locating parts
randomly piled in bins. Limitations, however, are still associated
with vision data processing. While not intractable, the problem
of recognizing and locating parts in bins requires a lot of com-
putation, and existing computers do not provide a practical
solution.

Machine vision allows workpiece pose estimation with algo-
rithms of various complexity and success, according to applica-
tion [5]. Isolated workpieces that rest on a planar background
can generally be represented by binary images. In most cases,
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these workpieces have a small number of stable states. It is
relatively easy to identify the silhouette of each state and to
estimate accurately the corresponding pose in the background
plane (two translations and one rotation).

When the number of states is infinite (four or five continuous
degrees of freedom), the problem becomes much more difficult
to handle. Moreover, if parts overlap, scene analysis becomes
less reliable (hidden components cannot guide analysis). Under
restricted conditions, as when workpieces are relatively flat, it
is possible to attack the three degrees of freedom problem with
partial occlusion [6], [7]. In general, however, overlapping
leads to uncertainties in a six-dimensional space (three trans-
lations and three rotations). This is a typical situation when
parts are stored in bins. As of today, no viable solutions for
pose estimation in such a context have been discovered.

A system approach to the bin picking problem suggests the
exploitation of the gripper-related knowledge in order to de-
crease the burden of scene analysis otherwise left to vision.
In order to improve the performances of techniques mentioned
above, the essential requirement is to replace the mechanical
motions of the gripper searching for accessible parts by elec-
tronic scanning of the sensor. Our goal is then modest—to
detect potential holdsites in images—and leaves part recognition
and pose estimation for a latter stage, if required at all.

In a first stage, sensor data indicate a potential holdsite; that
is, a place in the bin where the robot hand is likely to grasp
something (yet unknown). Then the workpiece can usually be
grasped (this should be acknowledged by simple sensors in the
hand), isolated, brought against any suitable background, and
even constrained in degrees of freedom (e.g., dropped on a
planar surface).

Several ad hoc methods have proved effective for removing
various classes of workpieces from bins with a robot (e.g., [8]).
Their performances (processing time, accuracy, cost) are com-
patible with industrial constraints. They have set milestones
on the wdy towards a general bin picking station. This paper
will now explore a new solution, perhaps more versatile, and
present an example in some detail. This solution relies heavily
on matched filters.

III. MATCHED FILTER DEFINITION

Matched filters have been well known for many years in signal
processing. However, template matching is more popular pro-
cessing. Matched filtering differs basically from template
matching (e.g., [9]) in taking noise components into account
(e.g., [10]). Basically, image analysis is inhibited in frequency
bands where noise power is large.

Several key ideas must be added to the basic matched filter
concept in order to reach industrial applicability. First, only
local properties which are noise-, workpiece-, and hand-depen-
dent need to be matched. Second, a large number of filters
corresponding to different workpiece pitch, yaw,and roll values
can often be replaced by a much smaller set of orthogonal
filters (“‘eigenfilters”). Third, provided that normalization is
not required, the high frequency band which will eventually
be rejected by matched filters can be cut out in a very early
stage of the processing, allowing a low-rate resampling and
thereby reducing the computational load. Actually, this can
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be achieved easily by adequately defocusing the sensor, and
then sampling at coarser resolution.

The classical definition of matched filters can be explained
as follows. Consider a digital image f(i, j) and a pattern to be
detected p(i, j) defined on a domain D. Conceptually, a simple
solution to detecting the pattern would call for a filter A(i,J).
When applied to f, A(i,j) would give peaks in the output image
g(i, j) at locations where the pattern is present. The convolu-
tion product, typical of a filtering operation is the following:

> h(m,n)-f(i-m,j-n). 1)

m,nin D

g, =

Differences between a picture f and a pattern p can be locally
modelled in various ways. The most common and theoretically
appealing representation relies on Euclidian distance:

E= V 2 [(fG+m,j+n)-pim,n)*. ()
m,nin D
Therefore,
E = ¥ fXi+m,j+n)
m,nin D
+p?(m,n) - 2f(i + m,j +n) - p(m,n). 3)

The first term represents the energy of the input image in a
domain D. It generally varies with the position of D in the
image, but does not depend on the pattern. The second term
represents the energy of the pattern and is constant. The third
term is really interesting, because that is where a similarity be-
tween pattern and image may actually appear. It is defined as
the cross correlation between p and f.

Equations (1) and (3) lead to the well-known result that the
filter should basically perform the correlation between the
pattern to be detected and the analyzed image:

h(i,j) = p(-i, ). “4)
A convolution in the space domain corresponds to a product
in the Fourier domain. Changing the sign of the independent

variable leads to the complex conjugate of the transform;there-
fore, we have the following equations:

G(u,v)=H(u,v) - F(u, )
G(u,v) =P*(u,v) - F(u,v)

®)
©)

where F, G, H, P, are the Fourier transform of g, f, h, p, re-
spectively. P*(u, v) is the conjugate of P(u, v)and corresponds
to p(-i, -j).

As introduced so far, the matched filter is rather simple. It
is important, however, to see how it is defined when noise is
present in the system. In this case, the following definition
applies:

P*(u,v)
W(u, v)

where W is the Fourier transform of the noise and k is a con-
stant (to be discussed later). Note in (7) that the frequency
bands where the noise is large tend to be attenuated. On the
other hand, if the noise is white, the matched filter is essentially
the same as if there were no noise at all (6). In industrial situa-
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tions where bin picking must be performed, low (spatial) fre-
quency variation of the illumination and workpiece reflec-
tance variations are the main noise sources.

Template matching can be reduced to cross correlation in
(2) if the energy of the image is relatively uniform every-
where. If not, the first term in (2) must be taken into account,
and this leads, in particular, to the following normalized cross
correlation:

S plmn)fG+m,j+n)

m,nin D

2 fHi+tm,j+n)

m,nin D

8G. 1) = ®

Operating on images, the normalized cross correlation detects
patterns which have the same shape as the template, even though
they possibly have a different amplitude. The constant kin (7)
can serve the same purpose. Although it appears as a constant
in (7), k usually varies with the space coordinates of the picture
when normalization is performed. To make this explicit, we
can write

1
S fAG-mj-n)

m,nin D

k@, 1) = ©)

Normalized matching is sometimes necessary, although in prac-
tice, it is often ignored in order to save computation time.

IV. CoMPUTATION REDUCTION

Applied naively in order to detect each workpiece in the pic-
ture of a bin, the matched filter is very time consuming. Con-
sider a workpiece represented by M X M picture elements
(pixels). For each value of pitch, yaw, and roll, a different
filter is defined. The angular resolution may be considered to
increase linearly with M (for example, the resolution for pitch
is best along the window perimeter). This leads to about M3
filters, each requiring approximately M 2N ? operations (multi-
plication and addition) per picture of size N X N.

The computation load can be expressed as follows:

L=cM5N? (10)

where c is constant.

The computation load can be reduced when workpieces are
matched locally, which affects M and its exponent, and when
the bandwidth of the filter output is considered, which affects
both M and V.

A. Matching Local Structures

Consider our specific problem, bin picking. Generally, the
pattern to be matched may be drastically reduced, if the goal
of detecting the workpiece type and pose is postponed, and
the more practical subgoal of picking “something” out of the
bin is selected. Vision algorithms must then detect potential
holdsites, i.e., places where a robot end-effector is likely to
grasp a workpiece. Potential holdsites appear in images as local
structures that reflect both workpiece and end-effector char-
acteristics. Indeed, even for the same object, holdsites are
usually located differently when different types of end effectors
are used (e.g., vacuum cup versus paralleljaw hand).
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Fig. 1. Dashed circles enclose two potential holdsites. In each case,
the segment of interest is much smaller and presents more symmetries
than the workpiece as a whole.
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Fig. 2. Workpiece pose need not be completely known for a good
grasping. The gripper in (a) allows a random orientation in one plane,
while the vacuum cap in (b) can accommodate rotation about two
axes.

For rigid and semirigid workpieces, holdsites can be small in
respect to overall object size. Therefore, M decreases, and the
pattern to detect leads to much less computation (Fig. 1).
Notice in (10) that the computation load increases with the
fifth power of the pattern size.

Additional benefits appear when the robot hand is taken into
account. First, the end-effector may be applied without re-
quiring knowledge of all workpiece translations and rotations.
For example, assume that a paralleljaw hand is used in order
to pick an object [Fig. 2(a)]. A rotation of the object in the
symmetry plane between the jaws usually does not affect grasp-
ing. Similarly, if a compliant vacuum cup is used, small rota-
tions about two axes can be ignored [Fig. 2(b)].

Another benefit derives from the property that, considered
locally, workpiece components are much more likely to present
symmetries than when viewed as a whole (see Fig. 1). For in-
stance, it would probably be inacceptable to consider an entire
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connecting rod as cylindrical. However, the approximation is
much more valid for the central shaft and any segment of it
than for the whole object. The larger ring of a connecting rod
has a similar circular symmetry about another axis. Both prop-
erties affect the dimensionality of the computational load, re-
ducing it to a dependence in M*, M3, or even less for some
workpieces. Notice also that images are essentially orthographic
in our applications. Distance between camera and bin is large
with respect to bin depth. Thus, distorsions due to perspective
viewing can be neglected.

B. Slow-Rate Resampling or “Eigenfilters”

Intuitively, it seems that the matched filter technique requires
a large number of filters in order to detect the actual orienta-
tion of a holdsite. However, both the traditional signal pro-
cessing theory and vector space considerations point here to a
reasonably small number of filters.

The point spread functions of matched filters for bin picking
tend to be defined on domains much larger than one pixel (e.g.,
[11]). When viewed in the Fourier domain, matched filters
often appear as relatively narrow passbands.

By examining this matched filter bandwidth, the minimum
sampling rate for images can be estimated and the corresponding
de-aliasing can be simply achieved by defocusing the camera
lens. Essentially, this means that images can often be coarsely
sampled before matched filtering. If a higher resolution were
provided, the additional information would be rejected by the
matched filter, leading to the same result at a higher computa-
tional cost.

In the previous section, matched filtering has been defined
for one and two dimensions. This is not adequate when signals
are of dimension three or more. Translationsin the image plane
can be expressed in a two-dimensional space; the most common
third dimension corresponds to the rotation in the image plane
of local structures to detect. The same analysis as above should
be conducted in a polar coordinate system in order to identify
the minimum angular sampling rate.

A practical way of assessing the angular bandwidth of a
matched filter consists in monitoring its output when applied
to a white (pseudo) noise image. This directly defines the mini-
mum number of samples required, i.e., the minimum number
of filters (each at a different orientation) that should be applied
to images in order to detect local structures of a given type.
The example of Section VI typically calls for four filters, if a
signal to aliasing noise ratio better than 10 is chosen.

The model used above is the classic Fourier, which basically
expresses a signal as a sum of sinewaves. An alternative is
possible where a space is generated by vectors corresponding
to a set of filters which differ by a certain orientation angle.
For example, a filter corresponding to a parallel-jaw gripper is
copied 360 times with one degree of rotation in order that the
resulting set of filters covers all the hand rotation possibilities.
These filters, and thus their corresponding vectors, are usually
not independent, and when the space is orthogonalized, the
actual space dimension, and thereby the minimum number of
(eigen) filters, may be found.

In the example discussed in Section VI, four (eigen) filters
prove sufficient for a two degree angular resolution, and two
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of them already yield a practically useful similarity measure
for holdsite detection. In the former case, the structure orienta-
tion angle is related to the phase of the processed image, and
in the latter case, the similarity is estimated by its magnitude.

V. DESIGN OF MATCHED FILTERS FOR
WORKPIECE ACQUISITION

Workpieces and robot end-effectors must be known in geo-
metric terms so that a potential holdsite can be detected. For
instance, a paralleljaw gripper would securely hold opposing
parallel edges or opposed concave corners (“Y{” pattern), (e.g.,
[12]).

During part of the training phase, the geometric representa-
tion of potential holdsites must be transformed into light in-
tensity maps similar to the one perceived by vision sensors.
This mapping operation is often done in graphics (e.g. [13]),
but is fully deterministic in that context. In particular, on
every visible workpiece surface element, there are fixed amounts
of incident light and effective shadowing. In our context, a
slightly different formulation is necessary, essentially in order
to take into account the stochastic nature of shadowing.

Image sensors perceive the light intensity reflected by scenes.
The light intensity is related to geometric properties by two
laws:

(1)
(12)

The first law is deterministic and states that the reflected
light intensity I, from a workpiece surface element varies with
the incident light ; on that element, with the angle a of the
local surface normal in respect to the sensor axis, and with the
surface reflectance constant ¢. This law is valid for diffuse re-
flection. When reflection is specular (mirror-like), the amount
of reflected light decreases much faster than cos?.

The second law addresses a stochastic phenomenon and states
that the average amount of light incident on a surface element
I; decreases as a function of the depth d of a surface element
below the top layer of a bin of parts. We propose it as a result
of empirical considerations. v

Assuming diffuse illumination above the bin, the amount of
light falling on a surface element decreases with depth, because
of the partial shadowing of higher workpiece layers. Indirect
illumination is exponentially attenuated by losses in consecutive
reflections. In the model of (12), the constant ¢,, corresponds
to a shadow and reflectance factor and is workpiece dependent.
It can be physically interpreted as the depth of the deepest part
below top layer, which can be observed in a typical bin of parts.
(Z; on that deepest visible part amounts to less than 5 percent
of I io .)

In principle, the signal to detect P is now identified. Prop-
erties of the noise W should be evaluated. W is defined on the
same domain as P. Most noticeably, noise includes slow (spa-
tial) variations in illumination both on top of the bin, where it
is not perfectly uniform, and as a function of depth, when var-
ious layers are processed. Therefore, the very low (spatial)
frequency component should be rejected.

There is another noise component which is scene dependent.

I =I;-c-cos’a

L=y - (1-eYwy,

Lambert’s Law
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This noise component appears as potential holdsites (in the
sense of a good similarity with P), which correspond to sites
where the robot hand cannot acquire the object. (An attempt
can be physically made, or training can be assisted by an opera-
tor.) Perhaps the most adequate method to extract it relies on
an iterative technique, applied during a training phase. [See
(14)-(17).]

Mathematically the technique can be described as follows,
for one matched filter:

P
H™ =(1-K)H" D +k 13
(1 -k 1+8(0,0)+ W™ )
w1 if no potential holdsite is detected
or if a potential holdsite is detected
) and proven successful 14)
(1 - &) W=D + g B if a potential
holdsite is detected and proven
impractical
P
we=0:HO)= — 15
1+8(0,0) (1)
B=F[pD] (16)
and a potential holdsite is detected if
y*-U>E (17)

The subscript (#) or (n - 1) indicates the iteration number.
8(0,0) is a Dirac function, corresponding to the average illumi-
nation; y is the output of the filter when an image is processed.
Typically, the image represents a bin full of workpieces, and
E is a threshold above which the image is found locally very
similar to the pattern to detect. In (16), 5/ is defined as
the image in the domain D centered on a potential holdsite as
defined by (17). F[x] denotes the Fourier transform of x.

VI. PARALLEL-JAW FILTER: AN EXPERIMENT

The matched filter presented in this section can be said to be
applicable to those parts that can be picked by a parallel-jaw
gripper (see Fig. 3). Experiments have been performed which
illustrate the use of the matched filter technique in a practical
context.

A. Filter Definition

The pattern to be matched, in order to allow a parallel-jaw
gripper to pick up a part, can be roughly described as two dark
regions surrounding a bright region [see (11) and (12)]. This
pattern can be seen in Fig. 4. The bright region represents the
part; the dark regions represent places where the gripper can
be placed, i.e., where the part does not touch adjacent pieces.

The dimensions of the window are both gripper and piece
dependent; the size of the dark regions has to be large enough
to “hold” the jaws of the gripper; the size of the bright region
should match a typical structure of the part. The filter was
computed as the differences in the average pixel intensity in the
light region and in the dark region, each pixel with a weighting
factor of one. The average weight of the whole filter is zero,
thereby rejecting illumination variation.

Presented like this, the filter exhibits dimensionality reduc-
tion by discarding two of the three angles that specify the pose
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Fig. 3. A paralleljaw (PJ) gripper.

__I_

Gripper Piece Gripper

Fig. 4. Paralleljaw (PJ) filter. Correspondence between geometrical
and reflectance properties is illustrated here. The “+” area corresponds

to a bright zone where a workpiece is visible, while the “-*" area corre-

sponds to deep locations in the bin, where the gripper jaws should
not encounter obstructions.

of the part, specifically those that correspond to rotations
within the jaws, and by using a much smaller pattern than the
one that would be necessary to match a full piece. One problem
remains, though, which is the rotation in the image plane, and
which, if not taken into account, will make the filter unpracti-
cal for most purposes.

To overcome this problem the first thing to be noticed is the
fact that the jaws are assumed symmetric, thus the angular
domain to be sampled is reduced to a range of 180 degrees.

Second, the gripper could accommodate a certain margin of
error for direction estimation within the plane, say 9°. This
would require an 18° sampling interval, leading to a total of
10 filters, which is still quite large.

1) Rotational Sampling: Experiments have been performed
where the paralleljaw (PJ) filter described above is applied to
a (pseudo) white-noise image. The bandwidth of the output
was observed. The results are discussed here which support
the considerations of Section IV-B.

As the image consists of white noise, the output of the filter
is stochastic. The experiment was repeated many times in order
to estimate the average power specturm.

The test image was divided into 36 nonoverlapping regions.
In each region the PJ filter was applied 180 times, at a 1° rota-
tion interval. The Fourier transform of the output was evalu-
ated, leading to a power spectrum.

Referring to Fig. 5, using an ideal white noise image as the
input, the output will be exactly the transfer function of the
matched filter. Hence, by analyzing the Fourier transform of
the output, we can get a very good idea about the cutoff fre-
quency of a particular filter. Then, according to the Shannon
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WHITE NOISE TRANSFER FUNCTION
L H#‘

f f
Fig. 5. Estimation of matched filter transfer function through the use
of white noise.

MATCHED
FILTER

TABLE 1
CoLLisioN FRONT Success RATE. Two HUNDRED CASTINGS WERE
REMOVED. BiNs WERE LOADED TEN TIMES WITH 20 CASTINGS.

Filter Dimersion BW90 Power ratio DC comporert
(W, Lm, Lp) (cutoff freg.) (%) (magnitude)
(9.4.9) 1 92.9 868.67
(7.4.9) 2 96.8 1304.50
(5.4.9) 2 98.5 1615.56
(3.4.9) 2 95.9 1864.83
(9.3.7) 1 90.1 1362.03
(7.3.7) 1 94.1 1932.03
(5.3.7) 1 91.9 2281.69
(3.3.7) 2 96.7 2551.58
(9.2.5) 2 97.5 1382.42
(7.2.5) 2 98.4 1685.67
(5.2.5) 2 98.1 1553.97
(3.2.5) 2 93.6 1510.25
(9.5.5) 1 95.0 751.42
(7.5.9) 2 98.0 1185.47
(5.5.9) 2 98.3 1484.50
(3.5.9) 2 93.6 1730.42
(9.4.7) 1 90.2 1299.50
(7.4.7) 1 95.3 1778.64
(5.4.7) 1 92.1 2034,17
(3.4.7) 2 96.8 2258.31
(9.3.5) 2 98.1 1538.92
(7.3.5) 1 97.0 1995.28
(5.3.5) 1 97.8 2025.13
(3.5.5) 2 98.2 2056.11

theorem, the maximimum number of samples (i.e., filters at
different orientation) needed can be determined.

Practically, the procedures are the following: create a pseudo-
white noise image. Apply the particular matched filter of in-
terest to the image with 512 rotations in the range (0, m);
the rotations are made with regular coordinate transformation
and bilinear approximation. The range (w, 2) is omitted be-
cause of symmetry. Then take the fast Fourier transform
(power spectrum) of the output. To avoid the bias due to
nonideal whiteness of the image, we repeat the above steps at
36 independent (nonoverlapping area) points, and take their
average as a good estimate of the ideal power spectrum. Then
set 90 percent of the total power as the criterion for band-
width (BW). We obtain the results shown in Table I.

Some typical results in linear-log scale are shown in Fig.
6(a)-(d). They correspond to filters having dimensions (7,4,9),
(7,5,9), 9, 3,7), and (9, 4, 7), where the first value is the
width W, the second is the length of the jaw region L,, ,and the
last, Lp, is the length of the center area in Fig. 4. As expected,
those filters are low pass and very narrowly band-limited.
Another interesting point is that, in general, the filters with
square central region appear to have the most narrow passbands
among the PJ filters.

Notice that for certain PJ filter sites the bandwidth varies,
but is limited for practical values to the range 1-2 cycles per
360°. Intuitively speaking, the filter output swings twice be-
tween low and high values as the filter makes a 360° rotation
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(@)

(b)

©

@

Fig. 6. Power spectrum at the output of various (width, Ly, Lp) filters:
(7, 4, 9) filter in (a), (7, 5, 9) filter in (b), (9, 3, 7) filter in (c), and
(9, 4, 7) filter in (d). All spectra have been estimated in 36 different
nonoverlapping areas of a white noise image and averaged.
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Fig. 7. Angular ranges corresponding to various widths.

on an image region. The size parameters of the PJ filter for
our application where connecting rods and yokes are acquired
lead to a bandwidth of two cycles per revolution. The Nyquist
theorem therefore calls for no more than four angular samples,
i.e., four filters at regular angle interval.

Once the filter is defined, according to the gripper and the
workpiece being considered, its angular spectrum can be ana-
lyzed and the number of necessary filters is easily obtained.
The approach described above is fully automatic while the ad
hoc solution given in the sequel requires human operator
ingenuity.

2) Using “Eigenfilters”: The previous approach defines the
minimum number of filters by considering aliasing and signal
to noise ratio. It would be preferable to have it directly re-
lated to holdsite detection or orientation estimation error.
The latter strategy is adopted here, as the number of basic
filters is increased until experimental data match the desired
performances.

The ideal situation would be the achievement of an “eigen-
filter” situation where the use of a very small number (e.g.,
two) of orthogonal (or at least independent) filters, would
yield acceptable performances. Depending on the spanning
angle of the filter, i.e., the angular sector that it occupies, more
or less overlapping will be obtained between successive rotated
filters (see Fig. 7). Even filters that are 45° out of phase would
contain some common information about the pattern to be
matched. The spanning angle corresponds here to an angular
averaging, which in effect is a low-pass (angular) filtering.

A test was designed where filters of varying widths were passed
over an operator-selected holdsite on a bin of connecting rods,
for half a rotation. Two examples are shown in Fig. 8(a) and
(b). The response curve suggested that the larger the width,
the lower the resolution of the filter, as demonstrated by a
flatter peak response of smaller amplitude.

The test also suggested that for a sufficiently wide filter, a
cosine square dependency was being obtained with angle.
(Applying the Nyquist theorem, we would then need only two
filters, 90° apart, the output to other filters being obtained by
interpolation.) With one such filter, another test was performed,
where a synthetic image was created consisting of a perfect hold-
site, corresponding to the filter in dimensions. The filter was
applied twice, with a 90° interval. This is equivalent to applying
two filters which are 90° out of phase. We shall refer to them
as the vertical or the horizontal filter. Assuming a sine square,
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()

Fig. 8. PJ filter response versus angle for various widths. The filter is
applied at the point addressed by a cursor. In (a), width = 9, length
minus = 4, length plus=11. In (b), width =3, length minus =4,
length plus = 11. Refer to Fig. 4 for the definition of variables.

cosine square variation for the filters’ responses,

H=M-sin? a

V=M:-cos® a. (18)
The peak magnitude and angle were estimated as
M=H+V
a=+/- tan™! (H/V)'/?. (19)

The sign ambiguity in the angle determination was eliminated
with the use of another pair of filters 45° out of phase, i.e., at
45 and 135°.

The errors on magnitude and angle determination can be seen
in Fig. 9. Estimation can be considered good over the entire
range. For the angle determination they are even lower if we
combine the most accurate range of each filter pair. The re-
sulting maximum error in orientation estimation is about 2°
for the entire range. In the magnitude estimation there is also
some gain, but not as large. The new error plot can be seen in
Fig. 10.

This result suggested the following procedure to apply the
filter. First use only two filters, the horizontal and vertical
for simplicity of computation; with the output images estimate
the magnitude of the response; find the maxima in the response

Authorized licensed use limited to: UNIVERSIDADE DE AVEIRO. Downloaded on March 10,2010 at 06:35:26 EST from IEEE Xplore. Restrictions apply.



DESSIMOZ et al.: MATCHED FILTERS FOR BIN PICKING

Fig. 10. Error plots for test 2 (4 filter estimation).

and select a fixed number of holdsites; for those, and only
those, apply the filter at 45 and 135°; use one pair to estimate
the direction, the other to resolve symmetry ambiguity. The
pair to be used for direction estimation is the one that has
more balanced response, i.e., the one for which the ratio of the
larger response to the smaller is closer to unity. The rationale
for this choice can be understood by analyzing the error plots
just presented, as within the best estimating range of a filter
pair, both filters yield closer responses than outside it.

B. Detection of Potential Holdsites

Matched filtering is only one component of the overall algo-
rithm which allows a robot with vision to acquire workpieces
from bins.

The breakdown of the different phases of the paralleljaw
filter algorithm can be seen in Fig. 11. A brief description of
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Image acquistion

Horizontal and vertical filtering

Magnitude estimationand peak detection

Angle estimation and
Symmetry ambiguity elimination
(45° and 135° degree filtering)

Fig. 11. Main steps for potential holdsite detection.

each of the phases follows, with explanation of the several
parameters involved in each. This algorithm has been pro-
grammed in a mixture of assembler and Fortran to run on a mini-
computer. The procedures that form the core of the algorithm
have then been translated in Pascal for documentation and
transportability purposes.

1) Image Acquisition: A gray scale image of the bin was
acquired and stored in memory as a two dimensional array G,

0<G(,j)<MAX; 1<i, j<N (20)

where MAX is the maximum intensity level and N the size of
the image. For notation convenience assume that this is already
the reduced resolution image desired.

The two filtered images are obtained using a recursive com-
putation. Only the vertical filtering computation is described
as the procedure was similar for the horizontal filter. The fil-
tering is only computed where the window fits completely
within the image.

Assume a window of width W, and length of the dark or minus
regions, equal to Ly and of the bright or plus region, L,. As-
sume also that both W and L, are odd integers.

A buffer B is created containing the sum of W pixels along
the image columns. The recursive computation of B is

Bi(j)=Bi-1(j) - GG - w,j)) + G - 1 +w,])

j=1,++.,N
i=w+t+l,--- ,N+1-w
w=(W-1)2 e2))
with starting conditions
By()= 3, Gl 7=1,7+.N. @2)

i=1

For each occurrence of B, two buffers, M and P, are recur-
sively computed, holding the sums of the pixels in the minus
and plus zones of the filter as

ML +j)=M{(L +j - 1) - B{(j)
- Bi(j+Lp +Lm)
+Bi(j+Lm)

+B(jtLp+2Ly) (23)
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P(L+j)=P(L+j-1)-By(j+Ly)
+By(j+Lp t+L,,)
j=1,--+- N+1-2L

i=w, ,N+1-w

L=(Lp+1)2+Lp (24)
with starting conditions

Ly

MiL)= 3" Bik)+Byk +Lp +Ly,) (25)
k=1
Lp

PL)= 3" Bk +Lp). (26)
k=1

The vertical image V is obtained from the buffers P and M as

V(i,j)= /W) [(Pi(G)/Lp) - M(7)/(2 Lm))] 27
if>0
=0, otherwise. 27

The two filtered images are then summed to estimate the
magnitude response. The S largest local maxima are chosen as
the selected holdsites if their magnitudes are above a minimum
threshold 7. In case all peaks are below that threshold the bin
is considered empty.

The local maxima are obtained in the following way. An
ordered list of peaks is created with length S. When a new mag-
nitude is computed it is compared against the list of entries.
If its magnitude is smaller than the smallest entry it is rejected.
If the entry is found somewhere within the list the distance to
all entries above it is computed. If it differs by less than a mini-
mum distance D from one of those entries it is rejected, other-
wise it is inserted in the list; all entries below it that are closer
to it by less than D are then removed from the list.

Two filtering windows identical to the ones used for vertical
and horizontal filtering, rotated 45° from those ones, are passed
over the image in a brute force way, i.e.,as a double summation
of pixel values, their coordinates being computed using standard
plane rotation.

Direction of the holdsite is then computed following the cri-
terion explained above.

Sometimes the algorithms detect false holdsites, i.e., regions
in images which do not correspond to sites where workpieces
can be grasped. An example of such a situation might be a
spurious reflectance pattern in an empty bin. The false hold-
sites lead to failures because the robot gripper makes a motion
but cannot acquire any workpiece. In order to avoid deadlocks,
some bookkeeping must be made of past failures. Essentially,
subsequent holdsite detection should be inhibited where failures
have occurred.

C. Experimental Results

Fig. 12 (a)-(c) shows the result of applying the paralleljaw
filter algorithm to different pieces, the connecting rod and yoke
castings, and titanium cylinders. Shown are the input gray scale
image, the horizontal and vertical filters output images, and
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(a)

©)

Fig. 12. PJ filter applied to various workpieces: in (a), connecting rod
castings; in (b), yoke castings; in (c), large titanium cylinders.
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Fig. 13. Schematic of the dual bin execution cycle, with key poses
labeled.

the holdsites selected. Notice that the filter output has only
half of the resolution of the input images, as the coarser sampling
is made possible by the passband effect of the matched filters.

Following potential holdsite detection, robots with vision
have to physically acquire workpieces. For our experiments,
the system architecture included a robot MARK IV, a Cartesian
robot developed at URI, a pair of bins, two overhead cameras
(GE TN 2000) looking down in two bins, and two receiving
sites for the acquired parts. The supply bins had a flat bottom
area the same size of the field of view. To provide collision-
free access to all the pieces, the sides of the bin were slanted.
The alignment of the two cameras in relation to the robot’s
coordinate frame was done in a semiautomatic way, generating
a camera model which is described in [13]. This model pro-
vided relatively free position of the cameras which were placed
in an almost vertical orientation above the bins.

The software ran on a minicomputer (Control Automation
LSI-2). To speed up execution, acquisition was performed in
parallel from two bins. Two tasks (see Fig. 13) were run simul-
taneously by the real-time executive. One of the tasks per-
formed the image analysis on one of the bins while the other
performed the acquisition on the other. The acquisition task
had priority over the image analysis task, which was only
allowed to take control of the CPU during arm motions.

Cycle Times: If the image analysis task was run alone, an
execution time for the paralleljaw filter algorithm of about 5 s
was achieved. Image complexity slightly affects the computa-
tion time.

With the system architecture used, paralleling the image anal-
ysis with an acquisition attempt, the overall cycle took about

TABLE II
Removed on first attempt (pl1) .. ... ... .. ............ 57 %
Removed on second attempt (p2) ........ ... ........... 24 %
Removed on third attempt (p3) ....................... 6 %
Not removed in three attempts (new picture taken) ... 13 %

9 s/piece. This time was generally dominated by arm motions
in the sense that, even if the image analysis was performed in
no time at all, the reduction in cycle time would be negligible.

It is difficult to assess the success rate of vision algorithms
for bin picking. Ultimately, it is only by trying a detected hold-
site with an actual end-effector that the success or failure can
be observed. Thus, the algorithms require a complete system
in order to be tested.

System performances will be effected by many factors which
are totally unrelated to vision, for example, the size of a vacuum
cup. Even when the chance is taken to assess the success rate
for a certain algorithm and system, the results are of limited
value. What would be far more interesting, if possible, would
be to assess the performances for a large class of objects or
even, for all existing objects. The practical limitations for such
an assessment are obvious and the best achievable rating would
be restricted to a “standard workpiece set,” yet to be defined.

Some informal and formal statistics were collected observing
several runs of the system. They are all based on allowing three
holdsite selections per bin at most. The second selection would
be considered only in case the first attempt was a failure, and
the third in case the second was also a failure. In the case all
sites resulted in failures, a new image was taken and analyzed.

A test run was made for the “collision fronts™ algorithm and
the connecting rods castings. Results are show in Table II
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(a) (b)

Fig. 14. Nonlinear filters seem necessary, when very small structures
make grasping difficult. In (a), small holes must be detected, if a
vacuum cup hand is used, to avoid leaks. In (b), narrow fins might
break if a paralleljaw hand is not carefully positioned.

and indicate a probability p, larger than 50 percent for coming
out of the bin with one part at first trial and of almost 90 per-
cent not to come out empty. Considering that this piece was
once considered the “difficult” problem for bin picking, the
results are very good. Notice in Table II that experimental re-
sults agree rather well with the statistical predictions that define
the probability p, of being successful in exactly two trials as
p:1 - pi,and similarly, p; asp, - 2p? +p3.

For the paralleljaw filter algorithm no formal results were
obtained as at that point in time the Robot Laboratory was in
the process of changing from the MARK IV robot to an indus-
trial robot, a Unimation PUMA 600, from the original PJ gripper
to a new model, PJ II, to a more powerful computer, a TI
990/12, and also making an effort to write all programs in
Pascal to facilitate technology transfer. For the period of time
where the old system was still running, the parallel-jaw filter
algorithm seemed to outperform the former collison fronts
algorithm for the two workpiece types of our experiments, con-
necting rod and yoke casting. The numbers presented in Table
II can then be thought of as a lower limit on performance of
the paralleljaw filter algorithm.

VII. CONCLUSION

The paper has introduced a new technique for the acquisition
of randomly piled workpieces by a robot with vision. It com-
plements past algorithms especially for situations where scene
representation by binary images is not adequate. Although it
appears to allow the automatic acquisition of a significant class
of workpieces, it is not universal. Topics related to the described
technique and where research is presently needed include the
following ones:

1) Definition of nonlinear “matched” filters for applications
where a small structure would prevent the successful acquisition
of workpieces. For example, even a relatively small hole in a
workpiece would prevent a vacuum cup from acquiring it, or
thin fins along a handle would prevent a paralleljaw from
acquiring an object (see Fig. 14). In both cases, however, a
linear filter would probably not perceive these small contribu-
tions or they would be dominated by other sources, e.g., work-
piece illumination variations.

2) Automatic definition of matched filters, from solid mod-
eling representations of workpiece and robot end-effectors.
Consider the selection of potential holdsites of a workpiece by
a given robot end-effector during training phase for a new work-
piece type. At present, an operator estimates and possibly
manually tries locations where the workpiece can be securely
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held. In the future, geometric modeling should allow the sim-
ulation of the same operation, thereby leading to the automatic
definition of holdsites.

3) Hierarchical approach where matched filters would not
directly detect holdsites but rather extract holdsite components.
Filter output could be interpreted at a higher level—or undergo
additional iteration.

4) Acquisition of randomly piled workpieces requires com-
plex systems. In particular, components nonrelated to vision
have an influence on performances. Therefore, additional re-
search is especially needed in end-effector design, for aspects
related to kinematics (e.g., how many fingers), geometry (e.g.,
what finger shape), and sensory capabilities (e.g., artificial
skin).
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