
International Journal of Computer Vision, 145-165 (1987) 
© 1987 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands 

Generating an Interpretation Tree from a CAD Model for 3D-Object 
Recognition in Bin-Picking Tasks 

KATSUSHI IKEUCHI 
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA 

This article describes a method to generate 3D-object recognition algorithms from a geometrical model 
for bin-picking tasks. Given a 3D solid model of an object, we first generate apparent shapes of an object 
under various viewer directions. Those apparent shapes are then classified into groups (representative 
attitudes) based on dominant visible faces and other features. Based on the grouping, recognition algor- 
ithms are generated in the form of an interpretation tree. The interpretation tree consists of two parts: the 
first part for classifying a target region in an image into one of the shape groups, and the second part for 
determining the precise attitude of the object within that group. We have developed a set of rules to find 
out what appropriate features are to be used in what order to generate an efficient and reliable interpreta- 
tion tree. Features used in the interpretation tree include inertia of a region, relationship to the neighbor- 
ing regions, position and orientation of edges, and extended Gaussian images. 

This method has been applied in a task for bin-picking objects that include both planar and cylindrical 
surfaces. As sensory data, we have used surface orientations from photometric stereo, depth from 
binocular stereo using oriented-region matching, and edges from an intensity image. 

1 Introduction 

Sensory capabilities will extend the functional 
range of robots. Without sensing the outer world, 
robots can only repeat preprogrammed tasks. 
Thus, the task is very rigid; such a system cannot 
overcome any small disturbance. Therefore, sen- 
sory capability is an essential component of a flex- 
ible robot. 

Vision could be the most important type of 
robotic sensor. Since a vision sensor is a noncon- 
tact sensor, information can be obtained without 
disturbing the environment. Also, vision can ac- 
quire global information about a scene; this is not 
the case for a tactile sensor. 

There are basically three tasks where the vision 
feedback can play an essential role: 

1. Finding the target object and determining the 
grasping points. 

2. Bringing the object from its initial point to a 
destination point while avoiding collision with 
other objects. 

3. Assembling something using the object. 

This article describes a method for visual gui- 
dance of a manipulator in the first task domain: 
finding an object. A manipulator without vision 
can only pick up an object whose position and 
attitude are predetermined. Such a system needs 
the help of another machine or a human for feed- 
ing objects at a predetermined place in a pre- 
determined attitude. Since this feeding job is 
tedious, it is quite unsuitable for a human being. 
Traditional mechanical feeding methods rely on a 
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known-part geometry to orient the part by forcing 
it through a sequence of gates, rails, and stops. 
Besides being inflexible and capable of dealing 
with a very limited number of part types, these 
methods, including vibration, may cause defects 
in the objects due to collision. 

Historically, bin-picking tasks have been 
attacked by detecting brightness changes [1-10]. 
Detecting brightness changes gives boundaries 
between regions corresponding to the objects. 
The boundaries obtained are compared with in- 
ternal models to determine the attitude of the ob- 
ject. These edge-based approaches work particu- 
larly well with isolated objects lying on a uniform 
background, provided the objects only rotate in 
the plane of support. In other words, these algo- 
rithms work well on binary images. However, 
such methods have difficulty extracting the con- 
tour of a three-dimensional (3D) object from the 
image of a set of overlapping objects, which is 
typical in bin-picking. 

Birk and others [11] highlight scenes to seg- 
ment and determine the position and the orienta- 
tion of an object in a bin. This system is limited-to 
cylindrical workpieces with a metallic surface. 
Also, their vision system only determines two de- 
grees out of three degrees of freedom in attitude. 

We have presented techniques for using photo- 
metric stereo and an extended Gaussian image to 
determine object attitude [12-14]. The photomet- 
ric stereo determines surface orientations from 
the images under three different illumination con- 
ditions. A brightness triple at each point deter- 
mines the surface orientation there. Distortions in 
brightness values due to mutual illumination or 
shadowing between neighboring objects are de- 
tected by the method as uninterpretable bright- 
ness triples. The locations of these triples are used 
to segment the visual scene into isolated regions 
corresponding to different objects. The distri- 
bution of surface orientations--an orientation 
histogram--measured over one of these isolated 
regions is used to identify the shape from a cata- 
logue of known shapes. The object's attitude in 
space is also obtained as a by-product of the 
matching process. This system can pick up such a 
simple object as a doughnut successfully. This 
method, however, has three problems: 

1. It is often difficult to express a complicated 

object such as a machine part with a mathe- 
matical function from which the extended 
Gaussian image is derived. 

2. The extended Gaussian image is sometimes 
not powerful enough to determine the attitude 
of a machine part due to self occlusion, nar- 
rowness of observable areas, or scatter of 
observable regions of the object due to self 
shadows. 

3. The previous system lacks a general repre- 
sentation of the outer world from which a 
planner can easily make a grasp plan. The pur- 
pose of robot vision is to provide the outer 
world information to task-achieving parts. The 
representation can serve as the starting point 
to the task-achieving module. Thus, the repre- 
sentation should be somehow a copy of the 
outer world and be in a convenient form to 
operate with it. 

This report resolves these problems using a 
geometrical modeler. This system has the follow- 
ing characteristics: 

1. An interpretation tree is precompiled from an 
object model so as to determine attitude by us- 
ing the optimal features at each determining 
process. 

2. The interpretation tree classifies a target re- 
gion into a representative attitude, and then 
determines the attitude more precisely over 
the attitude range of the representative atti- 
tude. 

3. The attitude and the position obtained are 
represented in the world in a geometrical 
modeler. 

2 Deriving the Interpretation Tree 

A 3D object varies its apparent shape depending 
on the viewer direction and rotation. Two classes 
of shape changes exist among these possible 
shape changes of a 3D object: a nonlinear shape 
change and a linear shape change. Figure la 
shows an example of a nonlinear shape change. 
Between these two shapes, two sets of visible 
faces are different. In this nonlinear shape change, 
topological relationships between faces are differ- 
ent from each other. Figure lb shows an example 
of a linear shape change. Between these two 
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NON-LINEAR 
SHAPE CHANGE b 

Fig. la. An example of nonlinear shape change. 

LINEAR 
SHAPE CHANGE It 

Fig. lb. An example of linear shape change. 

shapes, two sets of visible faces are the same. 
Only the shape of each face is skewed. 

Different features are appropriate for resolv- 
ing nonlinear shape changes and linear shape 
changes. Also the features necessary to resolve 
shape changes are different, depending on the 
class of shapes. Thus, it is desirable to precom- 
pile a geometrical model into an interpretation 
tree so that the most appropriate features among 
available features at each determination stage are 
used to resolve the nonlinear and linear shape 
changes. 

Since there are two classes of shape changes, 
the interpretation tree also consists of two parts: 
resolving the nonlinear shape changes and resolv- 
ing the linear shape changes. In order to derive 
the interpretation tree, we will follow the next 
four steps: the first three steps for the nonlinear 
shape change and the last step for the linear shape 
change: 

1. Extract all possible types of nonlinear shape 
changes. 

2. Derive classification branches of the nonlinear 
shape changes. 

3. Determine features to be used at the branch- 
ing nodes of the tree. 

4. Determine features to be used to determine 
linear shape change. 

2.1 Resolving Nonlinear Shape Change 

2.1.1 Representative Attitude (Classification of 

Nonlinear Shape Change). The nonlinear shape 
changes can be categorized with various clues. 
Some researchers explore this categorization with 
visible lines [20-22]; others explore this with visi- 
ble vertices [23]. Occluding boundaries are also 
explored [24, 25]. 

This article explores this categorization using 
faces observable by photometric stereo [35, 41], 
because they are stable and contain rich geomet- 
rical properties. Photometric stereo can deter- 
mine the surface orientation at the place where 
the three light sources project their light directly. 
This article categorizes the nonlinear shape 
changes based on this observable faces by photo- 
metric stereo. 

In the following discussion, we use the term 
visible for the sake of simplicity. If we treat the 
term visible as detectable with photometric 
stereo, we can apply the same discussion to de- 
tectable relationship between the viewer direction 
and the surface orientation. Since the geometry 
between TV camera and the light sources is fixed 
in photometric stereo, the detectability of one 
face is determined by the relationship between 
the surface orientation of the face and the line of 
sight of the TV camera. Thus, we can regard the 
detectability of one face as the same as the visibil- 
ity of the face, provided that detectable directions 
of one face become a cone whose center is the 
surface orientation, while visible directions of one 
face become a hemisphere. 

The object attitude and the viewer configura- 
tion have three degrees of freedom. Note that we 
use the terms object attitude and viewer configura- 
tion interchangeably. Two degrees of freedom 
exist in the viewer direction--the direction of 
the line of sight has two degrees of freedom with 
respect to the object. The remaining freedom 
exists in the rotation around the line of sight. 

Among these three degrees of freedom, some 
of the changes of the viewer direction cause the 
nonlinear shape change. On the other hand, 
changes of the viewer rotation around the line of 
the sight do not cause the nonlinear shape 
change; they only cause a linear shape change. 
Thus, categorization of nonlinear shape changes 
requires only exploring apparent shapes under 
possible viewer directions. 

Each viewer direction can be characterized by 
those faces visible from that direction. Let us sup- 
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pose that 

0 face i is visible 
Xi = face i is not visible 

(X1,)(2 . . . . .  Am) denotes one label of an ap- 
parent shape based on the visible faces. Here, 
one face corresponds either to a planar surface or 
to a curved surface. Each viewer direction can 
be characterized with this label, which will be re- 
ferred to as a shape label. 

The set of viewer directions that have the same 
shape label becomes an attitude group, which is 
one equivalent class among nonlinear shape 
changes of the object. There are two ways to 
generate attitude groups: an analytic method and 
an exhaustive method. If the target object is a 
convex polyhedron, then the analytic method is 
easy. The face visibility is determined by the rela- 
tionship between the viewer direction and the sur- 
face orientation of the face. Viewer directions 
have two degrees of freedom and can be de- 
scribed as a point on the Gaussian sphere at 
whose center a target object is located. In the 
meantime, surface orientations can be also repre- 
sented as a point on the same Gaussian sphere. 
Then, the visible viewer directions of a face are 
limited by a circle on the Gaussian sphere. The 
circle center corresponds to the surface orienta- 
tion of the face, and the radius of the circle is z'/2. 
The inside area of the circle corresponds to the 
viewer directions which can observe the face. 
Drawing these visible circles on the Gaussian 
sphere, attitude groups can be determined from 
the combination of the circle covers on the 
sphere. 

If the target object is nonconvex, then the visi- 
ble circle is distorted due to self-occlusion and the 
analytic method becomes difficult. A curved sur- 
face also makes the analytic method difficult. 
Thus, in the general case, the exhaustive method 
is preferable. Essentially, the exhaustive method 
generates various apparent shapes of the object 
under various viewer directions, and then ex- 
amines shape labels of the generated shapes in 
order to get the attitude groups. 

The first task is to sample the Gaussian sphere 
evenly; a geodesic dome is used to tessellate the 
Gaussian sphere evenly [26]. Each tessellated 
triangle corresponds to a particular viewer direc- 

tion. These sampled viewer directions exist even- 
ly over the Gaussian sphere, and cover the whole 
sphere surface. 

At each sampled viewer direction, an apparent 
shape of the object is generated using a geomet- 
rical modeler. Then, we can sample all possible 
apparent shapes evenly under all possible viewer 
directions. One observable shape gives one shape 
label X1, Xz,. • . ,  An. After obtaining all shape 
labels of all generated shapes, attitude groups are 
generated based on these shape labels so that 
shapes at each attitude group share the same 
shape label. 

One representative attitude will be selected 
from each attitude group and each attitude group 
is represented by its representative attitude; that 
is, the viewer directions over one particular range 
are represented by one representative attitude. 
Usually, the viewer direction that gives the largest 
sectional area within the group is selected as the 
viewer direction for the representative attitude. 
The viewer rotation for the representative atti- 
tude is determined so that the maximum inertia 
direction agrees with the x-axis on the image 
plane. 

Figure 2 shows an example of this process. 
Figure 2a is a picture of an object. Figure 2b is 
a model synthesized using a geometrical modeler 
[15-19]. The Gaussian sphere to represent the 
possible viewer directions is tessellated into small 
triangles using the one-frequency dodecahedron 
shown in figure 2c. Apparent shapes are gener- 
ated at the viewer directions corresponding to the 
centers of the triangles. Since the one-frequency 
dodecahedral geodesic dome has 60 triangles, 60 
different shapes are generated as shown in figure 
2d, where the faces enclosed with bold lines 
are observable by the photometric stereo. The 
observable face is the face where the three light 
sources project light directly. Note that, even 
though some faces are visible to humans, they 
cannot be detected by the photometric stereo be- 
cause of the geometry of the light sources. Such 
faces are enclosed with thin lines. Figure 2e shows 
the larger eight faces used for the shape label 
among 12 component faces of the object. Note 
that face 1 and face 2 in figure 2e are treated as 
one continuous surface even though they are di- 
vided into small patches approximating cylindri- 
cal surfaces. The shapes in figure 2e are combined 



Fig. 2a. An object. 
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Fig. 2b. A synthesized model of the object in SOLVER [15]. 

Fig. 2c. One-~equency dodecahedron. 
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into seven attitude groups as shown in figure 2f. 
Smaller regions under a certain threshold are re- 
garded as nondetectable. Numbers of the visible 
faces as well as shape labels are printed under the 
group number in figure 2f. For example, in group 
1, face 1, face 2, and face 3 are observable. Thus, 
the shape label of group 1 becomes 11100000. For 
face group 1 to group 5, five representative atti- 
tudes are generated as shown in figure 2g. Group 
6 corresponds to a hole region of the object and 
such a steep convex area cannot be detected by 
photometric stereo. Group 7 has too small a visi- 
ble area. Thus, no representative attitudes are 
generated from the groups 6 and 7. 

2.1.2 Classifying into Representative Attitude. The 
previous section gives the final stage in shape clas- 
sification: the deepest leaf of the interpretation 
tree. Yet we have not determined the branches of 
the interpretation tree from the root to the leaves. 
Therefore ,  the next step is to generate branches 
from the root to the attitude groups. Branches are 
generated using the shape label. The leaves of the 
tree correspond to the attitude groups, while the 
root corresponds to the unclassified stage. 

The attitude group depends on the face groups 
that generate the shape label. At first we will put 
faces of an object in area order: f l ,  f2 . . . . . . .  fn. 
Then,  we will consider the subsets of the face 

groups gl = {fl}, g2 = {fl, f2} . . . . .  gn = {f,,  
f2 . . . . .  f ,} .  The sequence of attitude groups 
given by this sequence of face groups generates a 
tree that contains only the representative attitude 
as the leaves. 

Note that only valid attitude groups are gener- 
ated among possible combinations of shape label 
at each face group. These valid attitude groups 
and valid shape labels are obtained from a 
geometrical modeler using the same method as 
generating the representative attitude described 
in the previous section. If we follow a brute-force 
method to generate a tree whose branches corre- 
spond to conditions, whether faces of the object 
are visible or not, without considering validity of 
each shape label, the method generates the tree 
of 2 ~ leaves. On the other hand, since our method 
generates only a vaild shape label of each face 
group based on the object, the method generates 
only leaves corresponding to the representative 
attitudes. 
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Fig. 2d. Sixty apparent shapes of the object. 
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Fig. 2e. Eight identifying faces. 
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Group 7 
00000000 
nil 

Group 6 
00010000 
(4) 

Group 5 
00001100 
(5)(6) 

Group 4 
ii000001 
(1) (2) (8)  

Group 3 
ii000010 
(1)(2)(7) 

Group 2 
11000000 
(1)(2) 

Group 1 
iii00000 
(1)(2)(3) 

Fig. 2f. Seven attitude groups. 
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The fact that the sequence of attitude groups 
generates a tree that contains only the representa- 
tive attitudes at the leaves can be proved induc- 
tively: 

Proof." (Step 0) gl is a subset that consists of 
only one face f l ,  which is the largest among the 
faces of the object. This subset generates a 
shape label xl. Using this label, the general atti- 
tude space is divided into two subattitude 
groups. Under  any attitude in the attitude 
group that has Xl = 1, the photometric  stereo 
can observe the largest face 1; under any atti- 
tude in the attitude group that has Xl = 0, the 
photometr ic  stereo cannot observe the largest 
face 1. 

(Step n) Next we will consider the rela- 
tionship between the attitude group from gi and 
the attitude group from gi-~. The attitude 
group of gi is obtained by dividing the attitude 
group of gi- 1 based on the visibility of the face, 
f~. Thus, if the number  of attitude group in- 
creases from i - 1 to i, new attitude groups at i 
come from only division of attitude groups at i; 
no new attitude groups at i come from combin- 
ing one part of one attitude group at i - 1 and 
one part  of the other attitude group at i - 1. 

Fig. 2g. Five representative attitudes. This division sequence generates a tree structure 
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that gradually reaches the final attitude groups. 
Since the representative attitudes are generated 
using the shape label of g~, there is always one 
and only one leaf corresponding to one repre- 
sentative attitude in the final tree. This tree struc- 
ture will be used as the structure of the interpreta- 
tion tree. 

Figure 3 shows the branches obtained from the 
object shown in figure 2. In the application, it 
often occurs that two faces have the same area. 
Since our method of tree generation is based on 
the area size of each face, the method becomes 
unstable at that branch. In this case, at the first 
step, we will divide the attitude groups into sub- 
attitude groups; any one of the faces are observ- 
able (xx), and none of the faces are observable 
(00). Then, (xx) attitude groups are divided on 
the visibility of the faces. This is because we will 
divide the resembling attitudes at the later stage. 
The B0 branch corresponds to the two cylindrical 

surfaces, B1 corresponds to the wide planar sur- 
face, B2 corresponds to the hole region, B3 cor- 
responds to the two circular surfaces, and B4 and 
B5 correspond to the side planar surfaces. These 
branches divide the attitude groups into seven 
attitude groups. 

2.1.3 Work Models. The work models consist of 
physical face information. Work models will be 
used to classify one target region into a repre- 
sentative attitude, and to determine the attitude 
of an object observed as the target region. These 
work models are derived from a geometrical mod- 
eler in the modeling process, and are derived 
from needle maps and/or edge maps in the deter- 
mining process. 

The work models are generated at each repre- 
sentative attitude. Since the surface orientation is 
available at each region from the needle map, the 
original face information can be recovered from 
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Fig. 3. Branches based on shape label. 
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the observed region information using an affine 
transform, where we assume the camera model as 
the orthographic projection. For example, when 
the surface orientation, the affine matrix, and the 
observed region shape are known, the original 
face shapes can be recovered from the skewed re- 
gion shape with the affine transform. Information 
for only one attitude is necessary at each attitude 
group in which detectable faces are the same and 
they are reachable from each other by the affine 
transformation. The work models are thus gener- 
ated at each representative attitude that repre- 
sents one attitude group. 

Let (p, q) be the surface orientation of one 
face. 

T = [ I + P  2 ( P q ) / ( l + p 2 ) ]  
0 (l + p2 + q2)/(l + p2) 

gives the affine matrix to recover the original face 
information from the observed face information. 
Thus, given (p, q) from photometric stereo can 
derive T and transform apparent features to 
original features. 

Our work models consist of original face 
inertia, original face relationship, original face 
shape, original edge relationship, extended Gaus- 
sian image, and surface characteristic distribu- 
tion. 

Original face inertia: The inertia moments of 
one face in the directions of least and most inertia 
direction. These inertia moments give the rough 
shape information of the face. See the appendix 
for more details. 

Original face relationship: A nonconvex object 
often appears as multiple isolated regions under 
the photometric stereo. In this case, the rela- 
tionships between regions are used as a work 
model. For each region, the relative position of 
other regions are stored. The relative position is 
described by a vector whose length corresponds 
to the distance between the mass centers of the 
two regions and whose direction indicates the 
direction from the mass center of the region to the 
other mass center based on the maximum inertia 
direction and the surface orientation of the re- 
gion. If the region has no unique inertia direction, 
for example, a circular region, only the distance is 
stored. 

Original face shape: The face shape is described 

as the distance from the mass center of the face to 
the boundary of the face as a function of the angle 
round the mass center, d -- d(O). The rotation 
angle 0 is calculated with respect to the maximum 
inertia direction. This is a two-dimensional well- 
tessellated surface representation of the shape 
[26]. 

Original edge relationship: Some of the promi- 
nent edge information is also used. In some cases, 
the needle map from the photometric stereo can- 
not determine the object attitude uniquely. In this 
case, some of the prominent edge information is 
used to reduce this ambiguity. Thus, some of the 
edge information is stored if necessary. The edge 
information is described by the starting position 
and the ending position. These positions are de- 
noted relative to the mass center of the face and 
the maximum inertia direction. In application, a 
position is converted into the position on the 
image plane using the affine matrix. Then, the 
connecting place between the converted starting 
position and the converted ending position will be 
searched on the edge map to determine whether 
there is an edge or not. 

Extended Gaussian image: Roughly speaking, 
the extended Gaussian image of an object is a 
spatial histogram of its surface orientation dis- 
tribution [28-32]. Let us assume that there is a 
fixed number of surface patches per unit surface 
area, and that a unit normal is elected on each 
patch. These normals can be moved so that their 
"tails" are at a common point and their "heads" 
lie on the surface of a unit sphere. This mapping is 
called the Gauss map; the unit sphere is called the 
Gaussian sphere. If we attach a unit mass to each 
end point, we will observe a distribution of mass 
over the Gaussian sphere. The resulting distribu- 
tion of mass is called the extended Gaussian im- 
age (EGI) of the object. The EGI has the follow- 
ing properties: (1) Neither the surface normal nor 
the Gauss map depend on the position of the ori- 
gin. Thus, the resulting EGI is not affected by 
translation of the object. (2) When an object 
rotates, its EGI also rotates. However, the EGI 
rotates in the same manner as the object. In 
other words, this rotation does not effect the rel- 
ative EGI mass distribution over the sphere. 

Surface characteristic distribution. The surface 
characteristic distribution is available from the 
surface orientation distribution. A surface patch 
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has a characteristic such as planar, cylindrical, 
elliptic, or hyperbolic. The first and the second 
fundamental forms can be obtained from the sur- 
face orientation and its derivatives, and from 
these the Gaussian curvature and the mean curva- 
ture are obtained [33, 34]. The characteristics, de- 
fined in terms of the Gaussian curvature and the 
mean curvature, are independent of the viewer 
direction and the rotation. Distribution of the 
characteristics are used as work models. See the 
appendix for more details. 

2.1 .4  Classification Rules. This section gives rules 
to generate the classification part of the inter- 
pretation tree. At each branch, we examine 
whether one of the rules can discriminate be- 
tween the attitude groups. If one of the rules can 
discriminate, the rule is registered at that branch. 

The decision of whether the rule can divide them 
or not is made by humans at present. 

LI: Comparison based on the original face in- 
ertia. 

L2: Comparison based on the original face 
shape. 

L3" Comparison based on the extended Gaus- 
sian image. 

L4: Comparison based on the surface charac- 
teristic distribution. 

LS: Comparison based on the edge distribution. 
L6: Comparison based on the region distribu- 

tion. 
L7: Comparison based on the relationship be- 

tween a particular edge and a particular 
surface characteristic distribution. 
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Fig. 4. T h e  i n t e r p r e t a t i o n  tree .  
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If the observed shape of an object cannot be clas- 
sified into a representative attitude with these 
rules, it means that the object is observed with the 
same number of regions whose area sizes, inertia 
moments, edge distributions, and surface charac- 
teristic distributions are identical in two different 
attitudes. Such objects are beyond the scope of 
our technique. 

2.1.5 Deriving the Classification Part of the Tree. 
The classification part of the interpretation tree, 
figure 4, is generated for the object shown in 
figure 2a. At the B0 branch, the rule L1 (original 
face inertia) can divide all the attitude groups into 
two attitude groups. At the B1 branch, rule L1 
can divide the attitude groups. Both B2 and B3 
have branches at which the attitude groups are 
not visible. Thus, these branches are pruned. 

At branch B4, none of L1 (inertia), L2 (shape), 
L3 (EGI), L4 (characteristic), or L5 (edge) can 
divide the attitude groups. L6 (topology) can 
divide the branch. L7 (edge-region) can discrim- 
inate the attitude groups at the branch. 

Thus, B0-L1, B1-L1, B2-pruned, B3-pruned, 
B4-L6, and B5-L7 are adopted into the inter- 
pretation tree. Since B0 and B1 branches have the 
same rule and they are consecutive, they are 
joined into a three-branch node. 

2.2 Resolving Linear Shape Change 

2.2.1 Determination Rules. This section gives the 
rules to generate the part of the interpretation 
tree that determines the viewer direction and the 
rotation. Each rule that can reduce some of re- 
maining freedom in the viewer direction and rota- 
tion will be adopted into the tree. The decision of 
whether the rule can reduce the freedom or not is 
made by humans at present. 

AI: Using the mass center of EGI mass dis- 
tribution. 

A2: Using the extended Gaussian image. 
A3: Using the position of observable areas dis- 

tribution. 
A4: Using the inertia direction of original face. 
AS: Using the rotation of original face shape. 
A6: Using the position of the surface character- 

istics distribution. 

AT: Using the position of the edges. 
AS: Using the position of the edges with respect 

to the position of the surface characteristics 
distribution. 

If we cannot determine the viewer direction and 
the rotation with these rules, it means that the ob- 
ject is observed with the same number of regions 
whose area sizes, inertia moments, edge distribu- 
tions, and the surface characteristic distributions 
are identical in two different attitudes. Such ob- 
jects are beyond the scope of our technique. 

The viewer direction and rotation are deter- 
mined at each representative attitude using the 
most effective feature at each step. The most 
powerful rule for determining the viewer direc- 
tion and rotation depends on the representative 
attitude and the stage of the determining process. 
Thus, we will discuss which rule will be used for 
generating the determination part of the inter- 
pretation tree at each representative attitude. 

2.2.2 Representative Attitude S1. The main visible 
part of this representative attitude is a planar sur- 
face. A1 (EGI mass center) can determine the 
viewer direction, while viewer rotation can be 
constrained with neither A1 nor A2. More pre- 
cisely, since the observable region of representa- 
tive attitude $1 is a planar surface, both the EGI 
and the EGI mass center position [29] can deter- 
mine the viewer direction uniquely. However, 
neither the EGI distribution nor EGI mass center 
over the planar surface can constrain the viewer 
rotation around the viewer direction. Thus, the 
other rules should be applied to determine the 
viewer rotation. 

Since the representative attitude has only one 
observable region, A3 (region distribution) can- 
not be applied to this S1 representative attitude. 
A4 (inertia direction) can constrain the viewer 
rotation up to two directions. Between the two 
directions, A5 (original face shape) can deter- 
mine the viewer rotation uniquely. Thus, A1 
(EGI mass center), A4 (inertia direction), and A5 
(original face shape) are adopted into the tree to 
determine the viewer direction and the rotation at 
representative attitude $1. 

2.2.3 Representative Attitude $2. This represen- 
tative attitude has two observable regions of 
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cylindrical surfaces. A1 (EGI mass center) can 
determine viewer direction, while the viewer 
rotation cannot be constrained with A1. 

Theoretically, the EGI distribution can deter- 
mine the viewer direction and the rotation 
unqiuely in this representative attitude. However, 
the determined rotation is very noisy. Thus, we 
will use the other features to determine the view- 
er rotation. 

Since this representative attitude has two 
observable regions, A3 (region distribution) is ap- 
plicable and can constrain the viewer rotation up 
to two directions. None of A4 (inertia direction), 
A5 (original face shape), nor A6 (surface charac- 
teristic) can constrain the remaining freedom of 
the viewer rotation. A7 (edge distribution) can 
determine the viewer rotation uniquely. Thus, A1 
(EGI mass center), A3 (region distribution), and 
A7 (edge distribution) are adopted into the tree. 

2.2.4 Representative Attitude $3. Representative 
attitude $3 has one observable region that mainly 
consists of three parts: a planar surface patch and 
two cylindrical surface patches. A1 (EGI mass 
center) can determine the viewer direction, while 
the viewer rotation is difficult to determine in 
practice due to the same reason as with repre- 
sentative attitude $2. 

A3 (region distribution) cannot be applied to 
this representative attitude due to the single 
observable region. A4 (inertia direction) can con- 
strain the viewer rotation up to two directions. 
Neither A5 (original face shape) nor A6 (surface 
characteristic) can constrain the remaining free- 
dom. A7 (edge distribution) can determine the 
viewer rotation uniquely. Thus, A1 (EGI mass 
center), A4 (inertia direction), and A7 (edge dis- 
tribution) are adopted into the tree. 

2.2.5 Representative Attitude $4. The features 
used to determine the viewer direction and the 
rotation are the same as those of the representa- 
tive attitude A3. 

2.2.6 Representative Attitude $5. Representative 
attitude $5 has two regions observed separately 
that come from two planar surfaces. Thus, A1 
(EGI mass center) can determine viewer direc- 
tion, while the viewer rotation is difficult to con- 
strain with A1 for the same reason as with repre- 

sentative attitude S1. Since this representative 
attitude has two observable regions, A3 (region 
distribution) is applicable and can constrain the 
viewer rotation up to two directions. None of A4 
(inertia direction), A5 (original face shape), nor 
A6 (surface characteristic) can constrain the re- 
maining freedom of the viewer rotation. A7 (edge 
distribution) can determine the viewer rotation 
uniquely. Thus, A1 (extended Gaussian image), 
A3 (region distribution), and A7 (edge distribu- 
tion) are adopted into the tree. Figure 4 shows the 
interpretation tree obtained. 

3 Applying the Interpretation Tree 

3.1 Attitude Determination by the Interpretation 
Tree 

The system can use three kinds of maps: edge 
maps, needle maps, and one depth map. Three 
edge maps can be obtained by differentiating 
three intensity maps also to be used for the photo- 
metric stereo. A needle map can be obtained by 
the photometric stereo system. A depth map can 
be obtained by comparing a pair of needle maps 
that are generated by a dual photometric stereo 
system [35]. The edge maps, the needle map, and 
the depth map are represented in the same coor- 
dinate system; that is, all pixels having the same 
x-y  coordinates correspond to the same physical 
point. 

The highest region is determined from the 
depth map. This highest region will be sent to the 
interpretation tree as the target region. The inter- 
pretation tree extracts necessary features from 
the region. These features will be transformed 
according to the procedures defined in the inter- 
pretation tree. These transformed features will be 
compared with features in the work models de- 
fined in the interpretation tree. Following this 
procedure, the target region will be classified into 
one of the attitude groups, and then the precise 
attitude and position determined. 

3.2 Case 1: Attitude Group 1 

Figure 5 shows one of the input scenes, where the 
white arrow indicates the highest region. From 
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Fig. 5a. Input scene. The white arrow indicates the highest 
region. 

Fig. 5b. The edge map obtained from the scene. 

Fig,. 5c. The needle map obtained by the photometric stere() system. 
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Fig. 5d. The depth map obtained by the dual photometric stereo system [35].  

this scene, the edge map shown in figure 5b is 
obtained. The photometric stereo system gives 
the needle map shown in figure 5c. Further, the 
depth map shown in figure 5d is obtained by the 
dual photometric stereo system. 

This highest region will be given to the inter- 
pretation tree. The interpretation tree calculates 
the inertia moment of the original face observed 

as the region (L1). The mass center and the re- 
gion distribution can be obtained over the binary 
map that has been converted from the needle map 
to have 1 at the places where the surface orienta- 
tion is determined, and to have 0 at the places 

Fig. 6b. The original face shape recovered by the affine trans- 
formation. The shape is represented using 2 D  W T S .  
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Fig. 6a. The target region and the original face inertia. Fig. 6c. The decision path in the interpretation tree. 
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Fig. 6d. The obtained position, the obtained attitude, and the 
neighboring regions. 

Fig. 6f. Scene description. 

/ 
/ 

3 / ! 
/ / 
/ 

Fig. 6e. Two collision-free configurations. 

where the surface orientation is not determined. 
Then, the affine matrix is obtained from the sur- 
face orientation distribution over the region. 
Finally, the interpretation tree can determine the 
inertia moment of the original face using the 
affine matrix and the region distribution. Figure 
6a shows the region distribution and the square 
that is displayed by the interpretation tree. The 
square has the same inertia and direction as the 
original face. The interpretation tree determines 
that this region belongs to the representative atti- 

tude S1 based on the inertia value. 
The interpretation tree uses the EGI mass cen- 

ter to determine the viewer direction (A1). This 
EGI mass center is obtained from the surface 
orientation distribution over the target region by 
the interpretation tree. 

The interpretation tree determines the viewer 
rotation up to two directions using the inertia 
direction (A4). Branch A5 in the interpretation 
tree requires the original face shape to determine 
the viewer rotation uniquely. Figure 6b shows the 
original face shape obtained from the target re- 
gion. In this case, however, the interpretation 
does not measure the difference between the 
observed shape and the shape from the models in 
all directions, but only checks the crack direction 
of the observed region with respect to the inertia 
direction under the two possible rotations. Since 
the viewer rotation is constrained up to the two 
directions, the interpretation tree determines the 
object attitude in the space by this comparison. 
Figure 6c shows the decision flow on the inter- 
pretation tree. 

A geometrical modeler represents the object in 
the world model using the object position and the 
attitude obtained by the interpretation tree. The 
object position can be obtained from the depth 
map. Around the target region, there are a few 
regions that have not been processed by the inter- 
pretation tree at this time. These neighboring re- 
gions are expressed as dodecahedral prisms in the 
world model. The height of a prism agrees with 
the height of the corresponding region, and the 
cross section of the prism is an approximation of 
the region shape by the dodecagon. These dode- 
cahedral prisms are also represented in the world 
model in a geometrical modeler as shown in figure 
6d. By using this representation, we can calculate 
collision-free configurations as shown in figure 6e. 
In the meantime, if we repeat the recognition- 
and-representation loop, the system finally 
obtains the representation shown in figure 6f. 

3.3 Case 2: Atttitude Group 2 

Figure 7a shows a second example. The white 
arrow in the picture indicates the highest region. 
The interpretation tree calculates the original face 
inertia of the region from the binary map con- 
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Fig. 7a. Input scene. The white arrow indicates the highest 
region. 

: : . : ! .  : 

! : ! ~ :  • 

Fig. 7b. The target region and its brother region found by the 
algorithm. 

verted from the needle map and the affine matrix 
obtained from the needle map over the target 
region. Figure 7b shows the square that has the 
same inertia direction and inertia value as the 
obtained inertia moment. The interpretation tree 
determines this region to belong to the group of 
the representative attitude ($2, $3, $4) from the 
inertia value (L1). 

The interpretation tree makes the distinction 
between the representative attitude ($2) and the 
group ($3, $4) by determining whether a brother 

i '~ili!i !i!!ii!~; ! i~, ,/.,..~.,.:i'.i:Jl ~::I i. t 
Fig. 7c. Obtained edges. The interpretation tree only ex- 
amines the existence of the edge distribution whose direction 
agrees with the edge direction under one of the two possible 
rotations, at the place where one of the two rotations is sup- 
posed to make the edge distribution. The dotted lines indicate 
the distribution of edges over the target region and the broken 
lines indicate the search areas for the edge distributions. The 
solid lines indicate the edges found to have the supposed direc- 
tions at the supposed places under two possible rotations of 
the object. 
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Fig. 7d. The decision flow on the interpretation tree. 

Fig. 7e. Obtained description. 



region exists having the same inertia direction and 
the inertia value around the target region. The 
interpretation tree tries to find such a brother 
region; it succeeds, as shown in figure 7b, where 
the target region and the brother region are con- 
nected with a solid line. From this evidence, the 
interpretation tree determines that the target re- 
gion and the brother region come from the same 
object and belong to representative attitude $2 
(L6). 

The interpretation tree makes an EGI-mass 
center comparison to determine the viewer direc- 
tion (A1). From the direction of the brother re- 
gion, the viewer rotation is determined up to the 
two directions (A3). 

The edge distribution is necessary to determine 
the viewer rotation uniquely (A7). The inter- 
pretation tree only examines the existence of the 
edge distribution whose direction agrees with the 
edge direction under one of the two possible rota- 
tions, at the place where one of the two rotations 
is supposed to make the edge distribution. This 
predicted place and the predicted direction can be 
obtained by applying the affine transform to the 
edge representation in the work models. In figure 
7c, the dotted lines indicate the distribution of 
edges over the target region and the broken lines 
indicate the search areas for the edge distribu- 
tions. The solid lines in figure 7c indicate the 
edges found to have the supposed directions at 
the supposed places under two possible rotations 
of the object. One of the two rotations is deter- 
mined by the comparison of the edge distribu- 
tions. The interpretation tree determines the ob- 
ject attitude in the space uniquely up to this point. 
The decision flow on the interpretation tree is 
expressed as the bold line in figure 7d. Figure 
7e shows the object attitude obtained by this 
process. 

3.4 Case 3: Attitude Group 4 

Figure 8a shows the third example classified into 
attitude group 4. The white arrow indicates the 
highest region. The interpretation tree deter- 
mines that the target region belongs to the group 
of the representative attitude ($2, $3, $4) based 
on the original face inertia. Figure 8b shows the 
target region and the obtained moment-com- 
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Fig. 8a. Input scene. The white arrow indicates the highest 
region. 

Fig. 8b. The target region and its original face inertia. 

' 

Fig. 8c. The edge distribution. The dotted lines indicate out- 
put from an edge operator. The broken lines indicate search 
areas predicted from the model. The solid lines indicates the 
edges that corresponds to the model. 
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Fig. 8d. No surface characteristic distribution agree with the 
distributions of the representative attitude 3. 

Fig. 8g. Obtained description. 

Fig. 8e. The characteristic distribution that agrees with repre- 
sentative attitude 4, The target region has the cylindrical sur- 
face at the left region and the planar surface at the right region 
relative to the edge distribution. This distribution corresponds 
to the representative attitude 4. 
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Fig. 8f. T h e  dec i s ion  flow o n  the  i n t e r p r e t a t i o n  t ree .  

patible square of the original face. 
The interpretation tree makes the distinction 

between the representative attitude $2 and the 
group ($3, $4) based on the existence of a brother 
region (L6). Since there are no brother regions 
around this target region, the region is deter- 
mined to belong to the group ($3, $4). 

The surface characteristic distribution with re- 
spect to the edge distribution resolves the ambi- 
guity between $3 and $4 (L7). The interpretation 
tree examines which attitude has the more consis- 

tent surface characteristic distribution. First, the 
interpretation tree searches the existence of the 
edge distribution at the supposed places at the 
supposed directions from the inertia direction as 
in the $2 case. Figure 8c indicates the edge dis- 
tribution found as the solid lines. Second, the in- 
terpretation tree generates both the surface char- 
acteristic distribution of $3 and that of $4 based 
on the inertia direction and the edge distribution. 

Representative attitude $3 has the planar sur- 
face at the left region and the cylindrical surface 
at the right region with respect to the edge dis- 
tribution shown in figure 8c. Figure 8d shows the 
surface characteristic distribution that agrees with 
the distribution of the representative attitude $3. 
Note that, since no distributions agree with the 
observed distributions, the result figure shows 
white space. On the other hand, if the target re- 
gion is assumed to belong to representative atti- 
tude $4, the region should have the cylindrical 
surface at the left region and the planar surface at 
the right region relative to the edge distribution. 
Figure 8e shows the characteristic distribution 
that agrees with representative attitude $4. The 
interpretation tree determines that the target re- 
gion belongs to the $4 representative attitude. 

The interpretation tree determines the viewer 
direction from the EGI mass center (A1). The 
viewer rotation is determined up to the two direc- 
tions from the inertia direction (A4). To deter- 
mine the viewer rotation uniquely, the edge dis- 
tribution is necessary (A7); it had been obtained 
when the system used rule L7. The interpretation 



tree determines the object attitude from these 
comparisons, while the object position is obtained 
from the depth map. Figure 8f shows the decision 
flow on the interpretation tree. Using the object 
position and attitude, the object is represented in 
the world model in a geometrical modeler shown 
in Figure 8g. 

4 Concluding Remarks 

This article describe a vision system to localize an 
object by an interpretation tree. This system has 
the following characteristics: 

1. Representative attitudes are derived from a 
geometrical modeler, automatically. 

2. The interpretation tree controls the localiza- 
tion process to use the most appropriate fea- 
tures at each stage of the localization. 

3. The obtained attitude and position are repre- 
sented in the world model in a geometrical 
modeler for further use. 

This article assumes that the low-level operations 
are reliable, and does not emphasize backtrack- 
ing. This assumption works well in our situation 
because 

1. The interpretation tree only analyzes the high- 
est region, which is usually not occluded and 
exhibits all information necessary to be recog- 
nized. 

2. The interpretation tree only uses the most reli- 
able features at each matching stage. 

3. The interpretation tree also contains some of 
the verification process and returns the target 
region as unrecognized. Thus, if the inter- 
pretation failed to verify the target region, the 
region is discarded and the second highest 
region is given to the interpretation tree by 
a higher-level flow controller. This iteration 
is repeated until one of the regions passes the 
examination. 

However, an active backtracking schema would 
be necessary to apply this method to the analysis 
of occluded objects and to increase the efficiency 
of the interpretation process. Certainly, the next 
step is to explore how to include backtracking 
control in the interpretation tree. 

This article develops a flexible interpretation by 
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an interpretation tree using multiple sensory in- 
puts. Recent work in image understanding has led 
to techniques for computing surface orientation 
or surface depth. We can take various sensory in- 
puts from the same scene by these methods. Since 
each technique has some merits and faults, we 
have to select one appropriate feature among 
many available features in each processing stage. 
This article proposes using the interpretation tree 
for this purpose. This flexible interpretation 
matching should be further explored. Right now, 
the choice of discriminators used at nodes of the 
interpretation tree is made by "hand." In order to 
choose discriminators automatically, it is neces- 
sary to measure the uncertainty of each discrimi- 
nator at each stage. This direction should be 
explored. 

A geometrical modeler is used for the recogni- 
tion problem. Models from a geometrical model- 
er possess rich geometrical features. Unfortunate- 
ly, however, the distance between the rich in- 
formation and the information from the observed 
data is great. This article uses the work models 
and the representative attitude to interface them. 
Effort is required to explore more convenient 
forms and methods to connect them. 

The task of a vision system is to generate a de- 
scription of the outer world. Some of the repre- 
sentations are symbolic; others use mathematic 
representations such as extended Gaussian im- 
ages and generalized cylinders [36-38]. However, 
since the representation is needed for manipula- 
tion by other modules such as planning and 
navigation, the representation must be easy to 
manipulate [39]. This article proposes represent- 
ing the outer world in the CAD model, because a 
CAD representation is an easy basis for achieving 
further tasks. Certainly there are many path- 
finding programs that start from the polyhedral 
representations [40]. How to express the outer 
world in such a representation should be explored 
more. 

5 Appendix: Work Model 

5.1 Original Face Inertia 

One work model is the original face inertia. The 
original face inertia gives the rough shape in- 



164 lkeuchi 

format ion of  a face. In order  to obtain  the inertia, 
we have to convert  a needle map  into a binary 
map.  Here ,  the binary map has 1 at each pixel 
where the surface or ientat ion can be obtained,  
and 0 at each pixel where  the surface or ientat ion 
cannot  be obtained.  The  obta ined  binary map is 
represented as m(x, y). F r o m  this m(x, y) and the 
affine matrix T, 

Ixx = f m(x', y ')dx'dx'  
J 

= [ m ( x ' ,  y ')dx'dy'  lxy 

= f m ( x ' ,  y')dy'dy' Iyy 

where 

(y:) 
and (~, Y) is the observed  mass center  of  the face. 
F rom these Ixx, I~y, lyy, we can determine the 
maximum inertia/max and the direction a as fol- 
lows: 

/max = (l~x + Iyy 4- 
~/(Ixx + I y y )  2 - -  4(Ixxlyy -- Ixylxy) )/2 

a = (tan -l{(2I~y)/(Ixx -- Iyy)})/2 

5.2 Surface Characteristic Distribution 

Let  us denote  surface or ienta t ion as (p, q), where 
p = Zx and q = Zy. Then ,  the first fundamenta l  
forms E, F, G are 

E = (1 + p2) 

F = pq 

G = (1 + q2) 

The second fundamenta l  forms e, f, g are 

e = px/~/1 + p2 + q2 

f = py/~k/1 + p2 + q2 

g = qy/X/1 + p2 + q2 

These coefficients give the Gaussian curvature  K 
and the mean  curvature  H of  the surface as fol- 
lows: 

K = (eg - f z ) / ( E G  - F 2) 

(lg)((eG - 2fF + gE)/(EG - F2)) H 
Z. 

Gaussian curvature  K and mean  curvature  H 
determine the surface characteristic as follows: 

1. K -- 0 and H -- 0 then planar  surface 
2. K -- 0 and H 4= 0 then cylindrical surface 
3. K > 0 and H > 0 then convex elliptic surface 
4. K > 0 and H < 0 then concave elliptic surface 
5. K < 0 then hyperbolic  surface 

The  surface characteristic distribution is s tored 
at each representat ive attitude. A subregion is 
genera ted  based on a surface characteristic, and 
described by the surface characteristic and the 
rectangular  existence area whose vertices are ref- 
e renced  to the coordinate  of  the mass center  and 
the maximum inertia direction. In application, 
the vertex positions are conver ted  to image plane 
coordinates  using the affine matrix. Then ,  the 
corresponding area is examined to determine 
whether  surface patches having the characteristic 
exist or  not.  
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