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Abstract

We will present case studies in the fusion of different
sensory types on arm and mobile robots. We will first
present a system in which an infrared heat sensor and
ultrasonic sensors mounted on a mobile robot are used
together to detect human intruders. In this case, mul-
tisensor fusion is necessitated by the fact that each
sensor by itself 1s inadequate for the mission. The
signals from the different sensors are fed into a neural
network that makes the intruder/no-intruder decision.
Our second case study concerns the use of multiple
sensors in a robotic workcell for the purpose of recog-
nizing and localizing complex objects using the small-
est number of look angles. Our final case study will
discuss a 3D vision system for fast object recognition
in which range and color are fused in a manner that
results in highly computationally efficient algorithms
for object recognition.

1 Introduction

It i1s now clear that there exist many situations in
sensor-based robotics in which the use of multiple sen-
sors is unavoidable. Reasons for this are not hard
to understand. Any given sensor yields information
about only one of the many attributes of the envi-
ronment and oftentimes information must be gleaned
simultaneously about more than one attribute so that
a robot can make sense of what it is looking at.

Once a decision is made to employ multiple sen-
sors, the issue then becomes one of how to integrate
the information. This issue can be more difficult than
it sounds, especially when the sensors are disparate,
as 1s often the case. In some cases, this issue of sen-
sor integration is further complicated by the fact that
objects in a robot’s environment may need to be ex-
amined from different viewpoints. It would obviously
be foolish to use all the available disparate sensors
from all the possible viewpoints. The question then

becomes one of how to decide what sensor to invoke
from which viewpoint in order to most quickly decide
the identity and the pose of an object in the robot’s
environment. And even after this problem is solved,
there remains the more mundane problem of how best
to account for the differences in the coordinate frames
of the sensors when each examines the scene from a
different viewpoint.

Even when a single viewpoint suffices for recogniz-
ing and localizing objects, one must come to grips with
the algorithmic details of how to combine information
from disparate sensors. When a sensor is used to mea-
sure a particular attribute of a scene, decision thresh-
olds must be applied to the raw sensor output in order
to determine the strength of the attribute. When mul-
tiple sensors are used, it is not clear whether or not
there should be a relationship between the thresholds
for the different sensors.

Another problem concerns how to combine the out-
put of sensors that produce what could be referred to
as the qualitative measures of some attribute of a scene
with the output of sensors that produce quantitative
information. For example, consider a sensor that tells
us whether an object surface is planar, cylindrical, or
spherical. Now consider another sensor that yields in-
formation on the albedo of each surface. The question
then becomes one of how to best combine these two
different types of sensor outputs into a single algo-
rithm. One could perhaps treat the shape categories
as discrete points along some attribute axis. But it is
not clear if that is the best way to go.

Last but not the least, there 1s the problem of decid-
ing whether the sensors should compete or cooperate
with one another or work in some other negotiation
mode in order to resolve expeditiously the hypotheses
about the content of a scene.

These then are the main problems associated with
sensor fusion in the context of sensor-based robotics.
In what follows, we will discuss three case studies. We
will first discuss briefly a system for detecting human



intruders. In this system, we had to combine the out-
puts of ultrasonic and infrared sensors for unequivocal
recognition of humans and for the system to not get
confused by air-conditioning ducts, walls, etc. In the
next case study, we will discuss a system that takes
into account viewpoints for deciding what sensor to
invoke from which direction for recognizing and local-
izing an object in the least amount of time. Finally,
we will talk about our latest system in which we have
combined range and color information for recognizing
and localizing 3D objects for robotic bin-picking.

2 Fusion of Ultrasonic and

Thermal Signals

One of the applications for mobile robots is for security
patrol, especially under after-hours conditions, often
at night. Such robots must be able to detect human
intruders reliably. Using vision for such an applica-
tion is evidently not feasible. Alternative sensors that
could be deployed include ultrasound, passive infrared
heat sensors, microwave Doppler, etc. Each of these
sensors has its own advantages and disadvantages if
used only by itself. For example, ultrasound would
pick up any object capable of returning an echo, and
that would include both intruders and other station-
ary or not so stationary obstacles. So all by itself,
ultrasound would not suffice. Infrared sensors would
pick up a human intruder, but would be subject to
false alarms caused by such ambient heat sources as
heating vents, radiators, steam pipes, and other heat-
emitting objects. Therefore, thermal sensors by them-
selves cannot do the job. Microwave Doppler sensors
could be used but are extremely sensitive to the mo-
tion of the robot, since any such motions distort the
Doppler signals returned by objects.

Given the shortcomings associated with each of the
sensors if used individually, we initially decided to
use all three of them in a cooperative neural-network
based framework. Unfortunately, the sensitivity of the
microwave Doppler sensor to the motion of the robot
turned to be so great as to render this sensor useless.
(We could have used this sensor at those instances
when the robot was stationary, but we did not pursue
that avenue of research as it ran counter to our goals.)
So we ended up integrating just the two remaining sen-
sors, but, fortunately, the end results were resounding
successful, although limited by the maximum distance
of 8 feet between the robot and the intruder.

While the details are provided in [1], we will reca-
pitulate here some of the salient features of the inte-

gration of the infrared sensor and the sonar sensor for
intruder detection. Shown in Fig. 1 (a) is a photo
of the mobile robot, while the schematic in Fig. 1 (b)
shows the various systems mounted on the robot. The
infrared pyroelectric sensor and the ultrasonic sensor
used for intruder detection experiments are mounted
on the side as shown. Note that the ultrasonic sen-
sor paired up with the infrared sensor is separate from
such sensors in the semi-ring of ultrasonic sensors that
is used by the robot for obstacle avoidance during rou-
tine navigation. The infrared sensor is a dual element
pyroelectric detector, on the front of which is mounted
is Fresnel lens that results in a narrow horizontal and
tall vertical beam. This beam intersects all objects in
the vicinity of the robot on its left as the robot passes
the objects.
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Figure 1: (a) Photograph of the mobile robot. (b)
Schematic drawing of the mobile robot.

The energy output by the two sensors 1s integrated
and fed into the two input nodes of a 3-layer feed-
forward neural network trained by the backpropaga-
tion learning algorithm. The network structure, de-
termined empirically, consists of two input units, two
hidden layers each consisting of 6 hidden units, and
one output unit in the output layer. In addition, three
bias units [1, 4] are included in the network to repre-
sent the internal thresholds of the units in the hidden
and output layers as shown in Fig. 2. The output
unit going high corresponds to the detection of a hu-
man intruder.

The backpropagation learning algorithm is a gradi-
ent descent error-correction algorithm that minimizes
the errors between the desired outputs and the ac-
tual computed outputs by modifying the connection
strengths, or weights, between the units in the net-
work [7, 8, 9]. The actual training process of the neu-
ral classifier involved 60 training patterns, on which
30 represented patterns corresponding the presence of
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Figure 2: The network diagram of the neural classifier.

an intruder and 30 when no intruder was present.

As long as the maximum distance between the
robot and the intruder was no greater than 8 feet,
the system worked with 100% accuracy in detecting
human intruders and 0% false-alarm rate.

3 Multi-sensor Fusion 1in a
Robotic Assembly Cell

We will now discuss how sensory integration can be
achieved in a robotic workeell if the goal is to recognize
and localize 3-D objects in such a way that all available
sensors and all available viewpoints are used optimally.
The details are provided in [3].

The basic problem addressed in this section 1s this:
Let’s say we are provided a library of model objects
that can be arbitrary but stable poses on a platform
in a robotic workcell. Let’s say it is not possible
to discriminate between many them from any single
viewpoint using any of the available sensors. In other
words, no matter what sensor is used, the view yielded
from any viewpoint is such that, for many of the ob-
jects in the library, we could form multiple hypothe-
ses about object 1dentity and pose. So given the data
observed from any viewpoint, how do we optimally
choose the next viewpoint and the next sensor so that
all the currently held hypotheses are maximally dis-
ambiguated. So, in order to be more precise, this is
more an exercise in sensory cooperation than in sen-
sor fusion in the usual sense. Although the former is
subsumed by the latter, the latter 1s more evocative
of a simultaneous utilization of the information be-
ing produced by all the sensors, as was the case for

the intruder detection system discussed previously. In
the robotic workcell case under discussion, the sen-
sors are invoked one at a time; at each given time and
for each given viewpoint, the sensor that maximally
disambiguates the hypotheses is selected.

Since the system must reason about viewpoints,
that evidently raises the question of how to represent
all the available viewpoints efficiently and compactly.
What comes to rescue here the aspect graph represen-
tation of solid objects, as promulgated by Koenderink
and Van Doorn [6]. Each node of an aspect graph is a
topologically distinct ”stable view” of the object and
each arc represents a transition between such views.
For illustration, shown in Fig. 3 (a) is the aspect graph
of the 2-D object shown in Fig. 3 (b).

Figure 3: (a) Aspect graph of the rightmost object of
Fig. 5. (b) Regions which view the different aspects of
the rightmost object of Fig. 5.

The second major issue that this kind of a system
must address is the representation of uncertainty as-
sociated with an object and pose hypothesis. The
sources of uncertainty are many. Given the usual
noise in sensory information and the artifacts asso-
clated with the extraction of features from data, mid-
level groupings extracted from the sensory data might
match with more than one feature on more than one
object. To illustrate with a simple example, suppose
from viewpoint V'1 shown in Fig. 4, we are able to ex-
tract two edges S1 and 52 shown there and suppose
the model library contains just two 2D objects shown
in Fig. 5 whose boundary edges are labeled 1 through
4 for one of the objects and a through f for the other.
Now even without any noise in the sensory informa-
tion, the two sensed lines S1 and S2 will match two
object edges in four different ways, as shown in Fig.
6, resulting in four different object and pose hypothe-
ses. As should be obvious, in the presence of noise
and artifacts, this number of hypotheses could be even
larger. For example, considering that the lengths of
the equally-long object edges 2, 4, b, ¢, d, and f are
not that different from the lengths of the equally-long
object edges 1, a, and e, it would not be incorrect



to assume that the sensed feature S1, although cor-
responding strictly only to one of the set {1, a, e}
would with high probability also match any of the set
{2, 4, b, ¢, d, f}. How to represent these proba-
bilities and then how to update the resulting object
and pose hypotheses as further sensed information be-
comes available are major issues unto themselves. In
[3], we have shown how Dempster-Shafer theory can
be used for this purpose. The theory allows a com-
putationally efficient approach to the calculation of a
belief value for each object hypothesis.
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Figure 4: Two edges, as observed from viewpoint V1.

Figure 5: Two 2-D object models.

After object hypotheses and their associated belief
values have been calculated from the sensed data from
some given viewpoint, one must determine what view-
point and what sensor to use next. To illustrate what
goes into the reasoning required for this, we will invoke
the same example we used above. Say that after the
viewpoint V1, we next use the viewpoint V2 shown
in Fig. 7 for the purpose of disambiguating between
the four hypotheses shown in Fig. 6. For three of
the hypotheses, as shown in Fig. 7, this new view-
point should reveal a new object feature, namely S3.
It is clear from the figure that the appearance of this
new feature does not help us disambiguate between the
third and the fourth hypotheses. On the other hand,
if we were to use the viewpoint V2 shown in Fig. 8§,
we can uniquely distinguish between the four hypothe-
ses. In [3], we have explained how a Dempster-Shafer
based formalism, together with a search space consist-
ing of the viewpoint nodes of an aspect graph, can be
used to carry out this kind of an optimal selection of
the next viewpoint and the next sensor to use.
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Figure 6: Edges visible from viewpoint V1, and corre-
sponding hypotheses.
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4 Fusion of Color and Range
for Fast Object Recognition

Our last case study is about our latest 3D vision
system for robotic bin picking. This system, called
MULTI-HASH for reasons that will be clear presently,
is able to quickly recognize and localize individual ob-
jects in bins of the sort shown in Fig. 9. The details
on MULTI-HASH are provided in [2].

Figure 9: A pile of objects for robotic bin picking.
Some of these objects are colored. These colors may or
may not be seen depending on whether the Proceedings
will allow for color material at all.

Any model-based computer vision system that uses
color presents an interesting challenge: How to de-
scribe object colors to the system? It is well known
that humans are not very objective at discriminating
between the different shades of the same hue. Often,
humans do not even possess correct labels for some of
the shades of a given hue. In MULTI-HASH this prob-
lem was resolved by incorporating into the system a
learning module that allows the system to figure out
for itself the color of an object surface, thus relieving
the human of a task that is almost impossible. During
the learning phase, objects are shown to the system in
different poses (by placing them in a sandbox). The
system analyzes the data for the visible surfaces of
the object and the segmented regions are displayed
on a workstation. At the same time, the correspond-
ing model object is also displayed in another window
on the workstation. Through mouse-clicks and key-
strokes, the rendered image of the model object is ro-
tated until it corresponds roughly to the pose of the
sensed object. Then, again through mouse-clicks, the
human establishes the correspondences between the
model object surfaces and the sensed object surfaces.

Fig. 10 shows in the lower left part a sensed image
of a object placed in the sandbox during the learn-
ing phase. Shown on the right at the same level is
a segmented 1mage. In the row above are the model
objects. The human clicks on the model object that
corresponds to the sensed object and then through
key-strokes rotates it in the manner described above.
Finally, as just described, the human establishes cor-
respondences the segmented surfaces and the model-
object surfaces.

Figure 10: A screen dump from an SGI machine
displaying how interactive training takes place n
MULTI-HASH. On the left in the main window is a
color structured light image of the training scene and
on the right is the segmented image. As with the pre-
vious figure, the colors in the structured light image
may or may not be seen by the reader.

A special color structured-light sensor was built by
Lynne Grewe in our laboratory for simultaneously col-
lecting both the range and the color data. As in
a conventional structured-light scanner, the scene is
scanned with a laser stripe that yields the range data.
Each projection of the laser stripe is followed by illumi-
nating the scene with a broad white-light stripe. The
part of the scene that is illuminated by the white-light
stripe 1s sampled by a color camera at only those pix-
els that were originally illuminated by the laser stripe.
In this manner, registered color and range images are
collected in MULTI-HASH. Shown in Fig. 11 (a) is
a typical color structured-light scan of a scene and
shown in (b) is a segmentation obtained. We believe
the reader would be impressed with the quality of the
segmentation.

The recognition strategy that is built up by
MULTI-HASH during the learning phase first con-
structs a decision tree from all the data collected and
then translates the decision tree into a hash table for
fast object recognition and pose calculation. To ex-
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Figure 11: (a) Composite color structured light image
of a typical test scene. (b) The segmentation map.

plain why a decision tree is used, we must first ex-
plain the motivating reasons for using a hash table for
object recognition. This we will do next.

Note that an important goal here is to divide up
the attribute space in which objects and their dif-
ferent unique poses are represented into disjoint re-
gions, each region corresponding to a different pose
for a different object. (It is important to bear in mind
that while a 3-D object possesses an infinite number
of poses, it 1s sufficient to consider, as in the case of as-
pect graphs, a set of topologically distinct poses, each
pose characterized by a set of, say, object surfaces and
a vertex.) Consider, for illustration, the simple case
of two object/pose classes shown in a 2-D attribute
space in Fig. 12. The circles and crosses shown in
the two regions are the points corresponding to the
objects/poses shown during the learning phase. Note
that all the circles correspond to the case of the same

attribute 2

attribute 1

Figure 12: The crosses represent the samples collected
during the learning phase when a given type of object is
shown to the sensor a number of times such that the
same surfaces are visible to the sensor. The circles
shown are either for a different object or for the same
object but with a different set of surfaces made visible
to the sensor. When the two regions shown are non-
overlapping, as illustrated here, it is not too difficult
to come up with the bins of a hash table so that each
bin will point to a single pose class. This is the case
for the siz bins shown.

object surfaces being made visible to the sensor; each
circle corresponds to the object being in a different
pose even though the sensor is seeing the same sur-
faces, or a different object although of the same type.
So the spread represented by the presence of many
circles 18 owing to the fluctuations introduced by the
dependence of many of the attributes on the slant an-
gle between the sensor and the surface. This point is
described in detail in [2]. The same is true for the
crosses. Both the regions shown in Fig. 12 can be
represented by density functions estimated from the
points shown. Now, when the two regions are overlap-
ping, the ideal decision boundary between the two re-
gions shown will be some curve (a hypersurface, more
generally speaking) whose precise form will depend
on the criterion chosen for minimizing the probability
of misclassification. However, for fast object recogni-
tion, it is best to approximate this decision boundary
by lines (planar surfaces for the general case) orthog-
onal to the attribute axes, as in Fig. 13 (a). When
we extend these lines (surfaces) to span the entire at-
tribute space, we end up with a hash table, as shown
in Fig. 13 (b). In each box of such a hash table is
deposited a pointer to the corresponding object pose
and identity. So when the relevant attributes are mea-
sured for a scene object, the location in the attribute
space of the point derived from the scene data imme-
diately tells us as what object identity and pose class



the scene object belongs. The precise pose of the ob-
ject can subsequently be calculated by using, say, the
approach outlined the appendix of [5].

Now that the reader understands our reasons for
why we wish to divide up the attribute space formed
by color and range attributes into bins whose walls are
orthogonal to the attribute axes, the question then be-
comes one of how to go about doing so. As discussed in
[2], ideally one would want an optimal hash table, one
in which the bins are as pure as possible and that con-
tains the fewest number of bins. (The fewer the num-
ber of object classes straddled by a bin, the purer it
is.) Unfortunately, constructing optimal hash tables is
exponentially complex and, therefore, not practically
feasible for model object libraries of even moderate
size. The alternative is to construct what turn out to
be good hash tables through the tool of decision trees.
For details, the reader is referred to [2] where we have
discussed the performance of the system.

attribute 2

attribute 2

attribute 1
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Figure 13: (a) The bold curve shows the decision
boundary for the case where the two class regions are
overlapping. The dashed line indicates the approzima-
tion of the decision boundary by lines orthogonal to the
attribute aves. (b) A hash table is generated by extend-
ing the dashed lines shown in (a). In each box of such
a hash table 1s deposited a pointer to the corresponding
object pose and identity.

attribute 1

5 Concluding Remarks

Looking at the history of science and technology, since
the arrow of automation has never pointed down-
wards, it 1s obvious that robots will only get smarter
in the years to come. While it is anyone’s guess how
fast robotic intelligence will evolve and when it will
reach a level so that autonomous robots will play a
truly useful role in our societies, there is no disput-
ing the fact that the knowledge we already possess

can be deployed to make the current breed of robots
much more intelligent and autonomous than what one
sees in the factories of today. In this paper, we have
reviewed three contributions from our laboratory that
demonstrate how sensor fusion can be used to enhance
the level of autonomy and intelligence of robots.
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