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Abstract

Vision-based bin-picking is increasingly more diffi-
cult as the complexity of target objects increases. We
propose an effictent solution where complexr objects are
sufficiently represented by simple fealures/cues; thus
mvartance to object complexity is established. The re-
gion extraction algorithm utilized in our approach s
capable of providing the focus of attention to the simple
cues as a trigger toward recognition and pose estima-
tion. Successful bin-picking experiments of industrial
objects using stereo vision tools are presented.

1 Introduction

The objective of this research i1s to develop a vi-
sion algorithm that provides sufficient information for
a bin-picking robot to manipulate complex industrial
objects. Typical stereo views of a workspace are shown
in Fig. 1, where alternator covers are the target ob-
jects to be manipulated. In this paper, we present an
algorithm that is capable of identifying such complex
objects as well as estimating their 3-D pose by stereo
vision technique. A sample result of the algorithm is
shown in Fig. 2, where the pose-estimated manipula-
tion landmarks (i.e. the large bearing holes and their
adjacent four screw holes) are reprojected onto the
original images.

For many years now, researchers have proposed var-
ious techniques for vision-based bin-picking. While
there are many possible rationales to explain this cir-
cumstance, particularly in industrial applications, the
facts attributed to the difficulty of implementing such
systems are: a) the complexity of industrial objects;
b) the lighting reflections generated by the common
metallic colors on industrial objects; and c) the clut-
tered nature of object placements that generate mu-

tual occlusions. At the simplest form, recognition

Figure 1: Stereo views of the workspace.

and pose estimation of objects that are fully visible
(without occlusion) can be done by some analysis on
a proper binary-thresholded image [6, 14]. However,
the same method will not work for randomly clut-
tered/stacked objects, as the setting shown in Fig. 1.
An immense increase in complexity is added to the
problem due to the distortion of object appearance by
occlusions and exposed background features. More-
over, binary thresholding is very sensitive to lighting
conditions especially on metallic colored objects. Cer-
tainly there are successful systems with more complex
approaches in both 3-D and 2-D vision as the examples
discussed in the following paragraphs.

Bolles and Horaud [3] developed a recognition and
pose-estimation system (3DPO) for industrial parts
with smooth/simple surfaces using the 3-D range
finder. In their work, the surface feature grouping
technique was employed to generate and verify the hy-
potheses of object location. Wang, Kak, et al. [15] uti-
lized a 3-D range finder to directly compute the depth
and shape of articulated objects, and demonstrated



Figure 2:  The result of recognition and pose-
estimation on both left (a) and right (b) images. The
estimated 3-D pose of the manipulation landmarks are
reprojected as the dotted ellipses to verify the accuracy
of pose-estimation.

actual bin-picking manipulations with such objects.
We understand, however, that it is not easy to recon-
struct the shape and surface model of complex shaped
objects such as the alternator covers due to low resolu-
tion of the 3-D range finder, as well as discontinuities
caused by occluded regions in the depth map.

Grimson [8] and Bolles and Cain [2] employed 2-D
local features to recognize and localize cluttered ob-
jects in the scene; however their methods are limited to
the case where the objects are located on a flat work-
table and therefore the appearance distortion from 3-D
rotations 1s not admissible.

Onda, et al. [11] employed stereo vision and edge
feature matching technique to recognize and pose-
estimate complex industrial objects. Unfortunately,
due to the high computational complexity of edge-
based feature interpretation and establishment of cor-
rect correspondences between stereo images, the sys-
tem is constrained to smooth/linear curved objects
and to limited number of objects. Obviously 1t is ad-
visable for edge-based techniques not to be employed
for processing complex scenes such as in Fig. 1.

In this paper, we propose a robust and efficient
architecture that utilizes simple visual cues as trig-
gers toward recognition and pose-estimation of com-
plex objects. In the following sections, the introduc-
tion to our strategy is first presented. Next, we briefly
discuss the region extraction algorithm we use, and
describe how it is utilized for fast extraction of sim-
ple visual cues. We then present the recognition and
pose-estimation processes of complex objects, and fi-
nally show our experimental results with real indus-
trial objects.

2 Overall Strategy

From inspection of the alternator covers shown in
Fig. 1, it is clear that even objects with such high
shape complexity possess simple entities such as cir-
cular and polygonal parts. Among all the information
in the image about the objects, those simple features
are the most appropriate for geometric reasoning and
potentially useful as landmark features. Furthermore,
invariance to the shape complexity of the objects is es-
tablished, once target objects are represented by their
simplified version. We therefore define the recogni-
tion and pose-estimation of target objects as those of
their simplistic landmark features — landmark features
are powerful triggers for recognition as well as pose-
estimation of the targets.

To carry out this concept, we require a process
that segments the desired landmark features from the
remaining irrelevant data from the image. For this
purpose, we have derived a region extraction algo-



rithm [13] that is based on the Split and Merge [9]
framework; this 1s discussed in a more detailed man-
ner in Section 4. In a nutshell, this algorithm pre-
vents us from having to use a conventional computer
vision approach (i.e. edge interpretation). Never-
theless, landmark extraction is not straightforward,
since there is a possibility that landmark appearance
gets deformed/distorted from the following effects: 1)
occlusion from other targets; 2) rotations involving
more than just the 2-D rotations on the worktable; 3)
exposed background features when the target object
bears openings/holes on its surface as the alternator
covers shown in Fig. 1. But since the task at hand
is to develop bin-picking systems, we are only con-
cerned about the two latter sources of appearance dis-
tortion, i.e. only targets at the upper portions of the
jumble can be picked up by the robot. Thus the land-
mark extraction process must accommodate this antic-
ipated appearance distortions to extract landmarks of
interest in spite of the occurrence of rotations, and to
provide focus of attention to image areas where land-
mark existence is highly probable. The latter design
constraint is possible because in each area where land-
mark existence is highly probable, there exists a region
of interest that possesses a similar shape as the land-
mark of interest. To verify the hypothesis of landmark
existence, popular methods of geometric reasoning can
then be performed within some restricted breadth in
the vicinity of the extracted regions of interest.

Now we introduce the concept of seed/supporting
features as shown in the past literature by Besl [1] and
Chen and Mulgaonkar [5] in 3-D and 2-D vision, re-
spectively. In this paper, we define landmark features
that are unique and easily identifiable as sced features;
and define some other features which would be useful
for both identification and pose-estimation as support-
ing features. Note that a group of multiple landmark
features may constitute as a seed/supporting feature.
Supporting features are needed since seed features by
themselves may not provide accurate pose-estimation
of the objects. This is due to the limitations of optical
devices, photoelectronic/thermal noises, and digitiza-
tion error that generate noisy image formation. In our
experiment, for every alternator cover, the large bear-
ing hole is defined as the seed feature and the set of
four small screw holes at the perimeter of the bearing
hole is defined as the supporting features as presented
in the next section.

Fig. 3 shows the architecture of our solution, and
the overall algorithm flow can be summarized as the
following:

1. Left and right stereo views are supplied to the
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Figure 3: System Architecture.

system.

2. Feature Detector/Predictor (FDP) module gives
initial estimate of visual cues by extracting re-
gions in the images that are highly probable to
be the seed and supporting features as prescribed
by the Object Modeling and Parameter Tuning
(OMPT) module.

3. In conjunction with OMPT module, Feature Ver-
ification (FV) module tests and decides to accept
or reject each given estimate by evaluating its 2-
D appearance. If the 2-D appearance of an esti-
mate is distorted (possibly due to exposed back-
ground features, e.g. the level apparatus shown
in Fig. 1), this module will then make an attempt
to compensate the distortion and re-evaluate the
result.

4. The Stereo Correspondence and Pose Estimation
(SCPE) module matches the estimates from both
views and determines their pose.

5. For each identification and pose estimation pair
result, the Manipulator Interface (MI) module
generates the appropriate motion commands to
be supplied to the manipulator.

The following sections present more detailed descrip-
tions of each module.

3 Object Modeling and Parameter

Tuning (OMPT) Module
As presented briefly at the end of Section 2, this
module assists FDP and FV modules in extracting
seed and supporting features. Clearly a proper train-
ing is required to enable this module to perform the
desired task. The following two subsections describe
how this can be done.



3.1 Object Modeling Submodule

Assisted by human operator, the Object Model-
ing Submodule generates the model of target objects
from a set of seed and supporting features in terms
of 3-D geometry. It also analyzes the 2-D region ap-
pearance characteristics extracted by the Feature De-
tector/Predictor module and selects regions that are
potential to be the prescribed seed/supporting fea-
tures. Analysis is based on 2-D shape complexity
and some other parametric feature descriptions (e.g.
mean/standard deviation gray-scale value, etc.) as far
as the task require.

In our experiment, each alternator cover is suffi-
ciently modeled/represented by the five circular re-
gions as shown in Fig. 4(a). The large circular bearing
hole at the center is defined as the seed feature and
the remaining four small screw holes on the perime-
ter of the bearing hole are defined as the supporting
features. The relative location of a screw hole to the
bearing hole and the relative position of a screw hole
to another screw hole are defined in 3-D geometry. We
define the center of the seed feature p as the object
origin and the normal vector n perpendicular to the
plane of the seed feature (or the plane created by the
supporting features) as the object orientation. The
system estimates the object pose as the position of
the center of the seed feature p = (ps, py, p-) and the
normal vector m = (ng,ny,n,) with respect to the
world coordinate frame [X,,, Yy, Zy].

camera

i dsupport
(b)

Figure 4: (a) The sufficient 3-D model/representation
of the alternator cover. (b) The 2-D appearance anal-
ysis of a seed feature and its relative position to a sup-
porting feature.

In a bin-picking scenario, a manipulator can only
grasp objects with stable pose; thus the system must
be able to identify objects with such states. For alter-
nator covers, the range of stable poses 1s parameterized
by the angle # between n and Z,,, and was empirically
determined as # € [0°,45°]. The OMPT module uti-

lizes this assumption to analyze the 2-D appearance
of seed features.

3.2 Parameter Tuning Submodule

During training, Parameter Tuning Submodule
consults a human operator in adjusting parametric de-
scriptions necessary for the FDP module in extracting
regions. This interaction is carried out by having the
human operator select and eliminate candidate regions
from the initial results of the FDP module in conjunc-
tion with the supplied information from the Object
Modeling submodule.

At this stage, the human operator must also set an
appropriate tolerance to accommodate the distortion
of landmark appearance. Note that on our target ob-
jects, distorted 2-D appearance of the seed feature due
to rotations can be approximated by an ellipse. Tak-
ing into account of this approximation and the toler-
ance to accommodate the appearance distortion from
exposed background features, this module adjusts the
required parameters used by the FDP module. Train-
ing stage for the system is completed when the system
has obtained an approximation of optimal set of pa-
rameters for the FDP module. Sample results of this
parameter adjustments can be seen in Figs. 5(e) and
(f) where the FDP module successfully extracted sev-
eral seed feature candidates and also several regions
from the distortion tolerance.

For the type of seed features we used, several neces-
sary parameters about ellipses were also obtained, and
they are based on the facts about ellipses. Let p be
the center of a seed feature C' having the normal vector
n with radius r, D be the projection of seed feature
C onto the camera image plane, qp be the centroid of
region 1), and q be all the points on the boundary of
region D). Let the moment of inertia M of the region
D be computed with respect to the centroid of D [14].
The distance of qp to each point q normalized by its
moment of inertia is computed as

d= \/(q_QO)TM_l(q_QO)' (1)

As shown in Fig. 4(b), if the region D is an ellipse,
then d should be constant over all perimeter points
q. In our experiment, to accept a region as an ellipse,
the standard deviation o4 of the distances from qq
to all q is computed, and then tested as in Eq. (2).
Tihreshold 18 obtained through simulations and trials of
various centroid locations p and normal vector n angle
rotations in the workspace.

04 < Othreshold (2)



Empirically, it 1s found that the test otpreshorq < 0.1
unit performs satisfactorily. Furthermore, we also ob-
tained the analysis of the locations of supporting fea-
tures relative to the centroid of their associated seed
feature. Eq. (1) is also used to compute the nor-
malized distance dgyppor: of the centroid of support-
ing features from the centroid of their corresponding
seed feature. An acceptable supporting feature must
satisfy the following inequalities:

dmin S dsupport S dmaxa (3)

where the constant bounds d,,;, and d,,. were also
obtained through the simulations and trials as done
for the determination of oipreshoid-

4 Feature Detector/Predictor (FDP)
Module

This module extracts image regions that are po-
tential to be the seed and supporting features from
the remaining irrelevant background. These extracted
features must satisfy the parametric descriptions gen-
erated by the OMPT module. This task is a natural
problem to be solved by an image segmentation algo-
rithm. From the available algorithms, numerous ap-
pealing solutions were given as our choices. As a sum-
mary, approaches to image segmentation that are il-
luminating and have inspired numerous research work
are Thresholding [12], Split and Merge [9], Snakes [10],
and Markov Random Fields (MRF’s) [7]. Our system
requires

e good localization and shape preservation of seed
features, since they affect the accuracy of pose-
estimation;

e fast processing time, to make this system a feasi-
ble solution in industrial settings.

In addition, the system only deals with images that are
taken from a controlled environment; in other words,
images do not get much degraded. None of those seg-
mentation algorithm match exactly to our design con-
straints; instead, our choice of segmentation method
is a region extraction algorithm that greatly utilizes
the convenience of edge detection.

It is known that an edge/boundary detection par-
titions an image into regions of smooth intensity sur-
faces. While in general segmentation algorithm do not
give such solutions (e.g. texture segmentation), seg-
mentation by edge-detection is a sufficient approxima-
tion to produce the required task of segmenting seed
and supporting feature candidates. A clear advan-
tage of this approach 1s that the shape of regions are

well-preserved, especially on the surface boundaries; a
useful characteristic for shape recognition.

We developed a region extraction algorithm [13]
that is based on the Split and Merge [9] algorithm.
The outline of this algorithm can be described as fol-
lows:

1. Canny edge detector [4] that has been proven to
be superb in preserving localization of edges is
applied to segment the image.

2. To close all edge contours, an edge linking rou-
tine is applied to extend dangling edge contours
(especially near T-junctions) that are the effect
of the uniqueness of response criteria of Canny
operator.

3. To extract regions with closed edge-contours, per-
form splitting and merging based on the predicate
that a region is homogeneous if edge pixel do not
exist within its interior.

The product of this algorithm are regions with their
complete description given by the convenient quadtree
structure and the required parametric measures. To
extract regions of interest, a simple comparison test
between region specifications as prescribed by the
OMPT module and the parametric description struc-
ture of each region is performed. Currently, we em-
ploy three parametric measures of region characteris-
tics that are

: 2
__ perimeter
y=r—

e shape complexit pr

® region area

e gray scale mean value.

A human operator interacts with the OMPT module
to provide upper and lower bounds of each of the char-
acteristic measures. Figs. b show a sample result of
the region extraction algorithm applied to stereo im-
ages shown in Figs. 1. Intermediate results are shown
in Figs. 5(a) and 5(b) as the result of Canny edge
detection; Figs. 5(c) and 5(d) as the segmentation
results; and Figs. 5(d) and 5(e) as the result of the
extraction of seed feature candidates. Note that in
Figs. 5 (¢), (d), (e), and (f) different regions are col-
ored differently to enhance the neighboring regions.
It can be seen that the effect of the tolerance to ac-
commodate appearance distortions as the number of
extracted candidates are more than the true desired
seed features.



Figure b: Result of FDP module. (a), (b) Results of
Canny edge detection applied to the stereo pair images
shown in Fig. 1. (c), (d) Results of region extraction,
by taking into account extracted edges shown in (a)
and (b). (e), (f) Seed feature candidates are extracted
from the segmented regions shown in (¢) and (d), by
uttlizing the parametric constraints of the simplified
object model.

5 Feature Verification (FV) Module

After seed and supporting feature candidates are
extracted by FDP module, FV module is responsible
for accepting/rejecting those candidates as FDP mod-
ule generally produce more candidates than the true
desired features. This module verify the 2-D appear-
ance of the candidates with the help of OMPT and
FDP modules.

A candidate region is verified as a 2-D projected
seed feature with possible occurrence of 3-D rotations.
In our experiment, where seed features are circular re-
gions, we verify candidates by the following Ellipse
Verification Test.

Ellipse Verification Test (EVT)

1. From the moment of inertia computation, the
lengths of the principal axes of a candidate re-
gions should be within some specific range.

2. The standard deviation o4 in Eq. (2) of the dis-
tances from the centroid qq of a seed feature can-
didate to 1ts boundary points must be less than
some threshold o4ppeshord, as shown in Fig. 6(a).

extracted convex
seed feature  edge contour
candidate

(a) (b)
Figure 6: (a) Feature verification by EVT; (b) Region
growing assisted by the edge contour that surrounds
the seed feature candidate.

A seed feature candidate is accepted if it satisfies EVT.

Otherwise, with the help of OMPT module, FV
module examines the proximity of the candidate and
looks for possible region patches that might trans-
form the appearance of the candidate to be closer
to a 2-D projection of a seed feature when they are
fused. Then by the abovementioned verification test,
the transformed candidate is either accepted or re-
jected. With the alternator covers, due to the na-
ture of holes/openings on each object, a seed feature
candidate might not satisfy EVT caused by exposed
background regions that may correspond to some sec-
tional parts of other objects. The process to possibly
transform a seed feature candidate is a region growing



process that is described as the following steps and

Fig. 6(b).

1. Given a seed feature candidate, the reduced
search space for region patches is defined as a cir-
cular area with radius dy,qp (3) from the centroid
of the candidate.

2. Within the search space, find a convex enclosure
of edge-pixel traces that are connected to the seed
feature candidate, to grow/transform it into an
approximate ellipse. Note that this edge-pixel
traces can be connected as a closed contour, or
broken into several contours when edge-detection

failed.

3. Accept/reject the transformed candidate by
EVT.

This process is iterated for all seed feature candidates.

Potential supporting features are also selected for
each accepted seed feature candidate. Selection is
done by examining the proximity of the seed feature
where supporting features should be located. The de-
termination of this examination area is also precom-
piled by the simulation analysis done by OMPT mod-
ule as described in subsection 3.2. The result of fea-
ture verification on the images of Fig. 1 is shown in
Fig. 7, where dotted ellipses are the accepted seed fea-
tures (both extracted by FDP and transformed candi-
dates). Supporting feature candidates that are in the
valid vicinity of each seed feature are also highlighted
with crosses.

6 Stereo Correspondence Search and
Pose Estimation (SCPE) Module

The 3-D pose of a given object can be estimated
from its 3-D model. However the estimation is not
reliable when the workspace is relatively far from the
camera such as the setting shown in Fig. 1. To gener-
ate better estimates of the 3-D pose of the objects, we
incorporated a stereo vision tool. This SCPE module
is responsible for generating pose-estimates of all rec-
ognizable targets from stereo correspondences of seed
and possibly supporting features.

This SCPE module first looks for correct corre-
spondences between the available seed features from
left and right images using the epipolar and geomet-
ric/locational constraints. That is for each pair of left
and right seed features, say s'*/* and s"9"* | the epipo-
lar line constraint and the geometric/locational con-
straint are examined as follows:

1. Examine the epipolar line constraint for the each
centroid of s'/* and s"%9"*. If the constraint is

Figure 7: The result of F'V module for the left view-
point (a) and right viewpoint (b). Dotted ellipses are
the accepted seed features. Potential supporting fea-
tures for each associated seed feature candidates are
highlighted with the crosses.



consistent, go to step 2. If not, start with a new
pair.

2. Compute the 3-D position of the centroid p from
sleft and sright.

3. If the 3-D location of p i1s within the workspace,
accept this pair of seed features as a correct cor-
respondence.

Then for each accepted pair of seed features, SCPE
module needs to find the associated supporting fea-
ture.

As shown in Fig. 7, each chosen seed feature has
a large number of supporting feature candidates; thus
establishing one-to-one correspondence through epipo-
lar and geometric constraint is difficult. Rather than
using the same method as the seed features, the corre-
spondence of supporting features is found by optimiz-
ing an objective function that is a measure of best-fit
based on the 3-D geometry of the model. The defini-
tion of the objective function is as follows:
For each set A of four pairs of supporting features, say,

A = {((hleft, qlright)’ (qzleft’ (h”ght),
(Q3l€ft, (ISMght), (q4left’ q4rzght)}

compute the 3-D positions of the centroids of these
supporting features. Let p; be the 3-D positions of
the centroid of the supporting feature estimated from
q;'¢"t and q;7"9"*. The objective function to be mini-
mized for a set A is

> (Ilpi—lel - Cz'j)z (4)

i5=1,2,3,4

Fq =

where Cj; is the 3-D distance between the centroids of
two supporting features ¢ and j which is obtained from
the 3-D model of the object (e.g. in Fig. 4(a), Cy; is
either ﬂrsuppon or 27syupport), and Fy4 is bounded by
some value Fj,q.. This bound is derived empirically
and is highly specific to the physical system. To find
an optimal correspondence, the algorithm performs an
exhaustive search over all sets of possible correspon-
dences.

Finally, after the optimal correspondence is estab-
lished, the algorithm estimates the pose of the object
with respect to seed features and supporting features.
If the supporting features are optimized with the ob-
jective function case of Fq < Fipgr over both image
frames, then the 3-D position of the supporting fea-
tures are estimated. The 3-D object center p and the
normal vector n with respect to the world frame are
also estimated. If no supported features are matched
(i.e. Fa > Finaz), substitutes for supporting features

are generated by appropriately choosing four evenly-
spaced points along the seed feature’s ellipse bound-
ary. This substitute is then used to compute the pose
of the object (i.e. vectors p and n). The result of this
module is shown in Fig. 2, where the accuracy of the
pose estimation is shown by reprojecting the seed and
supporting features onto the original images.

The result of the 3-D pose estimation is then passed
to the Manipulator Interface Module (MI) as in Fig. 3
where motion-path-plans are generated for grasping.

7 Experimental Results

In our experiments, several types of alternator cov-
ers that share the common model shown in Fig. 4 were
used as target objects. The objects were randomly
cluttered, with possibility of being upside down. The
radius of the bearing hole is 15.0mm and the distance
between the origin of the bearing hole to each neigh-
boring screw hole is 22.5mm (i.e. r and 7suppors as in
Fig. 4(a)).

As a testbed we used a gripper-mounted camera
on a PUMA 700 manipulator. Two gripper/camera
positions were chosen as the left and right viewpoints
with a distance of 243.5mm and vergence angle of 20°.
The approximate distance from the camera locations
to the objects is 350.0mm.

For each trial, stereo-pair images of 512 x 480 pix-
els are digitized, and processed individually up to the
SCPE module as shown in Fig. 3. On our SUN Sparc
1000 server, the average processing time (i.e. until
completion of pose-estimations) is approximately 1.5
minutes. Of course we realized that a lot of improve-
ments still can be done.

To verify the accuracy of pose-estimation, instead
of actually grasping the recognized objects, we drive
the gripper-mounted camera along the estimated nor-
mal vector n on all recognized targets. Figs. 8 and
9 show the results of the pose-estimation where three
images were taken from the approaching camera at es-
timated distances of (a) 300.0mm, (b) 150.0mm and
(¢) 100.0mm away from the center of the bearing hole
p. In these figures, the white cross hair indicates the
estimated location of the image where the object cen-
ter p should be. The white dotted circles depict the
estimated perimeter where the screw holes should be.
The discrepancy in these figures, shows the error of
the pose estimation. Note that the images are nor-
malized by correcting the aspect ratio so that white
dots form regular circles. These sets of images depict
a typical pose-estimation error in our system.

We performed 35 experiments with an average of six
objects 1n the workspace. The typical 3-D positional
and orientational errors are less than 7 mm and less



Figure 8: Typical error of the pose estimation. These
images were taken at the estimated distances of (a,d)
300.0mumn, (be) 150.0mm and (c,f) 100.0mm away
from the estimated centroid p of the object, as the cam-
era was driven along the estimated normal vector n of
the seed feature of the object.

Figure 9: Worst case of the pose estimation. As op-
posed to the previous figures, the estimation error is
relatively large. Our algorithm, however, estimates the
3-D object pose accurately enough for the manipulator
to grasp the object.

than 10° respectively. We classify the success rates of
our system into the following four categories:

o successful estimation, where recognition was suc-
cessful and the cross hair is within the bearing
hole.

Class rate: 91.3 %

e unsuccessful estimation, where recognition was
successful and the cross hair fell outside the bear-
ing hole.

Class rate: 0.0 %

e incomplete identification, where identification was
unsuccessful even though the seed feature was
fully visible. This occurred mostly when the bear-
ing hole appearance is distorted by other exposed
background features.

Class rate: 8.7 %

e false identification, where the algorithm incor-
rectly identified some arbitrary object as a target
object.

Class rate: 0.0 %

Another fact that we should state is that, by vary-
ing the window length of Canny detector (i.e. its stan-
dard deviation parameter), we can approximately se-
lect the desired types of edge features that should be
extracted. For example, if a target object bears a
textured surfaces, we can eliminate textural edges by
using a larger standard deviation parameter. On the
alternator covers, we use the default value of Canny’s
o parameter, i.e. 0 = 1.0.

8 Conclusion

We presented a vision-based bin-picking algorithm
for complex objects, where the computational com-
plexity can be greatly reduced by using simple object
features. Our experimental results have demonstrated
the robustness of this approach with real industrial ob-
jects. At the moment, we have not experimented with
actual grasping of objects, but the conducted experi-
ments has proven that the method of recognition and
pose-estimation of target objects is sufficient to be ex-
tended for actual grasping. However we understand
that in order to make our system a feasible solution
for a given task, it requires a great deal of human as-
sistance to build the plausible choice of object model.
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