
 

 

 

  

Abstract— This paper describes an approach to solve the bin 

picking problem. In many industrial processes, product parts, 

which have to be assembled, are delivered scrambled in boxes. 

Usually these parts have to be picked out of the box manually to 

feed them into an automated process. Using an industrial robot 

for this task is very difficult. This problem is not solved in 

general up to now. Our flexible approach uses knowledge about 

the form of the objects to find them in range data. We compare 

the 2.5D-appearance of simulated object poses with the real 

range data in two different steps, and find the best matching 

pose of the object. This approach can handle many different 

kinds of objects and takes features of range sensors into 

consideration to improve the accuracy and robustness of the 

object localization.    

I. INTRODUCTION 

HINKING about the task to pick an object out of a bin 

every human is able to learn this in the first years of his 

life. Imaging a 2-years-old baby taking his favorite toy car 

out of a box full of toy cars of different shapes, sizes, and 

colors; everyone can agree with this: This is an easy task for 

the baby. At first glance, everyone takes this for granted.  

So why is this task so difficult for a robot? Taking 

unknown objects out of a bin is still an unsolved problem in 

the field of robotic automation. Independent from the field of 

research, most of known solutions to solve this problem are 

limited often to shape based or single objects[1],[2],[3]; 

sometimes to a few simple kinds of objects[4],[5].Due to the 

fact, that every object differs in form, position, and 

orientation, a general solution of bin picking problem is hard 
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to find. To understand the main targets of the problem we 

have to separate the whole task into different process steps.  

The Fig. 1 depicts common steps of a bin picking 

automation process in industrial applications. First of all a 

visual capture device takes a picture of an industrial scene. 

The most important component of the bin picking problem is 

the algorithm to localize an object in the scene. In order to 

pick up the object with the gripper, the robot has to know the 

exact position of the object. Therefore, an adequate grasp 

point must be defined. After that the system has to detect 

possible collision points with the surrounding environment 

and find a way to guide the robot to the target position, 

where the object has to be placed. This process is repeated 

for each object in the bin.  

The approach in this paper focuses on the object 

localization step, which is the most challenging step in the 

whole process. Object recognition and object localization 

has a long history in two dimensional image 

processing[6],[7]. Due to the lack of the third dimension in 

an image the position of an object in the scene can not be 

fully determined. By using range data the distance to the 

camera is known, so our approach is able to use this 

information to find objects in a 3-dimensional scene with 

high accuracy. In the approach from [8], 3D-Models are 

projected in the image plane and compared to the image of 

the scene in order to estimate a possible pose. The proposed 

work in this paper extends this approach to range images. 

We introduce a simulation of a full laser scanning process. 

Industrial laser range sensors are modeled to transfer a cad 

aided design (CAD) model to a 2.5D range data 

representation. This virtual range data is compared to the 

real range data of the scene. 

Our main contribution is to handle nearly all kind of 

objects without restrictions. We compare the appearance of a 

single object in a simulated scene with the real scene. 

Therefore we simulate a laser range sensor with all its 

features. This leads to a better accuracy and robustness of the 

whole system. Our second contribution is the definition of a 

flexible coarse-to-fine algorithm. Depending on the needed 

position accuracy, we can adjust the process time of the 

system by changing a threshold between the coarse pose 

estimation and the refinement process.  

After the overview in section 2 the coarse pose estimation 

is introduced in section 3 to reject most of the impossible 

poses of the object in the scene. In the refinement step we 

use a modified Iterative Closest Point (ICP) algorithm to 

derive optimal solution with high accuracy. We conclude 

with upcoming extensions of our approach. 
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Fig. 1.  The iterative robotic bin picking process starts with data 

acquisition. After this it follows the object localization which is the 

most important and complex step in this process. When the object 

position is known, the robot picks up the object and transports it to 

the target position. 
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II. SYSTEM OVERVIEW 

An overview of the proposed object localization system is 

shown in the Fig. 2. The object localization is separated into 

pose estimation and refinement. Because the refinement 

process has high computational cost, we introduce the pose 

estimation to reduce the number of possible poses.  This 

hierarchical object localization is related to hypotheses and 

verification approaches[5] or a two step Coarse-to-fine 

algorithm [9]. 

Looking at the pose estimation, the input data from range 

sensors is compared to simulated range data. Therefore a 

simulated sensor delivers a virtual range image of the pose of 

an object representation. The result of the pose estimation is 

used to define the start positions for the pose refinement. The 

refinement step uses a modified registration algorithm to 

increase the accuracy. The components of our system are 

introduced in detail in the following chapters. 

III. OBJECT POSE ESTIMATION  

The purpose of the object pose estimation is to find 

adequate coarse positions of an object in the scene. This pre-

selection is made to decrease the number of candidates for 

the refinement process. Because of this, the acquired data 

from the range sensor is compared to a simulated scene.  

A. Data acquisition 

One of our contributions is that we take features of real 

range sensors into consideration to adapt the simulated range 

sensor to real range sensors. Therefore this chapter will 

shortly introduce the data acquisition with industrial range 

sensors.  

The most common data sources for industrial applications 

are still passive camera systems. Cameras provide a 2-

dimensional projection of a scene, so no depth information 

can be obtained without any further processing [10]. With 

the help of stereo cameras or the solution of structured light 

sensors distance values can be determined[11]. 

Unfortunately many camera based solutions to get range data 

are having problems with their robustness and sensitivity on 

lightning conditions[5]. In [12] non- contact industrial laser 

range sensors are introduced. At the moment these active 

sensors are superior to other industrial measurement methods 

regarding their accuracy, costs and robustness beside stereo 

camera systems[5],[12]. For active laser distance measuring 

two major principles –the triangulation and time-of-flight 

(TOF)– are used in industrial applications. More or less TOF 

and phase measurement methods are long range technologies 

(over 1.0 meter) and triangulation based methods belong to 

close range methods. Most of these industrial sensors deliver 

a two-dimensional distance contour. In order to get a whole 

2.5D scene representation as shown in Fig. 4(b) this sensor 

has to be moved over the real scene preferably in a linear 

way [13]. The distance axis of the sensors is directed 

towards the objects in the bin as shown in Fig. 4(a). The 

sensor moves from the start point to the end point with 

specific incremented steps. The step width is connected with 

the scan frequency of the sensor. A range image made with 

this setup is shown in Fig 5.  

 

B. Object pose simulation 

The object pose simulation creates a virtual range image 

(VRI) with help of a simulated sensor and a virtual scene. 

The components of the object pose estimation are shown in 

Fig. 3. 

An object model is placed in a virtual scene. In most 

industrial applications CAD-models of the objects already 

exist. If not, the object model can be created manually. So in 

this work we assume the object is known as CAD-model. A 

common format to store CAD-models relies on triangulated 

points. This triangle mesh is stored in the often used and 

very common STL (Structured Triangle List) file format. A 

big advantage of a triangulated mesh representation is the 

simplified calculation in the sensor simulation. The CAD-

based object model is used to generate virtual range images 

with the help of the simulated range sensor. The sensor 

models adopt all properties of the real sensors. Like 

mentioned above, range sensors deliver a contour so a linear 

movement is also necessary for the sensor simulation to get a 

full 2.5D range image. To compare the results from 

simulation to the real image the resolution of the data in 

moving direction should be similar. Therefore, the properties 

of the scanning process of the objects in the scene must be 

known. This includes the distance between ground and 

sensor (in Z) and the direction of scanning (in Y). Moreover, 

all parameters and properties of the sensors must be known.  

 
Fig. 2.  Our object localization is divided into two different steps. The 

pose estimation delivers approximate positions of the objects. These 

candidates are verified in the refinement step. 

 
Fig. 3.  A virtual range image(VRI) is generated from the CAD- 

model of the object and the model of the used sensor in the real 

scene. The database of the virtually scanned CAD- models is 

generated offline to increase the performance.   
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Time-of-flight (TOF) laser distance sensors measure the 

distance between the object and the light source along a light 

beam. This beam is moved incrementally with a 

parameterized angle step width in the orientation of x. The 

result is a radial distance. For each angle, a distance value is 

measured. To ensure the comparability between different 

sensor data these values are converted into Cartesian 

coordinates, but this is not necessary in many cases. The 

simulated light beams start in the origin of the sensor 

coordinate system and the distance values are calculated 

between this point and the closest point to the object. The 

angle steps of the light beam can be found in the rotation of 

the Y-axis (Ry). 

Triangulation based laser sheet of light sensors consist of 

a stripe projector to emit a laser line to the object. A camera 

grabs the projected line and with the help of the geometric 

configuration the distance can be acquired. More details can 

be found in [12].  

We have to separate the sensor simulation for TOF laser 

distance sensors and the triangulation based laser sensors, 

because both measurement principles deliver different range 

images even if they are observing the same scene. The 

characteristic of triangulation based laser distance sensors is 

the fact, that their receiving device is not placed in the same 

position like the laser, which sends a laser line to the scene. 

Because of this displacement most depth images of 

triangulation based laser distance sensors suffer from 

occlusions coming from their measurement setup. So in most 

of our application scanning TOF laser distance sensors are 

used. 

With its simulated geometric configuration the sensor 

model determines the distance between the object and the 

laser source in the same way. The distance is calculated for 

every maximum value in the camera row index. This results 

in a distance vector for every projected and acquired laser 

line. By virtually moving the simulated sensor this simulation 

results in an equidistance depth map of the scene. The sensor 

models for industrial TOF- and triangulation based sensors 

produce a distance vector per scanning step. These distance 

vectors can be interpreted as rows of a 2.5D range image. 

The sensor model virtually scans the object and produces a 

range image in the same way like the real scene.  

If a CAD-model is put in the measurement range of this 

virtual sensor and the virtual sensor is moved over this 

model in parameterized steps, a virtual 2.5D range image is 

produced in this virtual scanning process. This virtual range 

image contains one surface of the 3D-Model. This VRI 

shows this surface of the model, which surface normals are 

orientated towards the sensor. Such a virtual 2.5D scan is 

shown in Fig 4(b).  

For every possible position and orientation of the object 

model a VRI is produced. This VRI is indexed with a known 

position and orientation of the model in the sensor 

measurement space and stored to a database. The process of 

virtual scanning is very time consuming. Therefore, it is 

necessary to generate all range images offline. This is called 

the VRI database. The database contains scanned models in 

the form of range images for defined positions and 

orientations. Depending on the application, the positions and 

orientations we need exorbitant space to store these range 

images. In most cases we set limits to the degrees-of-freedom 

and store only VRI of defined step widths. But in general 

this process must be done for all needed positions and 

orientations for every kind of object. A VRI is generated for 

every position of every object in scene. These positions 

differ only in a few millimeters steps depending on the 

resolution of the real sensor and the size of the real object 

and the scene. For every position exist 3 possible rotations 

for the object. Due to the limit of computer power and 

storage, the proposed simulation is limited to “coarse” or 

“rough” poses. The number of the coarse poses in the 

database mainly depends on the needed accuracy, the needed 

robustness, the sensor resolution and the resources of the 

system. Using this VRI database the model based approach 

changed to a view centered approach.  

 

C. Comparison 

 

The aim of coarse pose estimation is the reduction of 

possible solutions which will be found in the pose 

refinement.  

The position and orientation of the object is estimated by 

range data comparison. Every VRI is compared to the real 

range image (RRI) with the following error function:  
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The error is defined as the mean of the difference between 

every distance value Z1 of the simulated object and the 

distance value Z2 of the scene. The error depends mainly on 

the position X, Y, Z and the rotation around the axis Rx, Ry, 

 
Fig. 4.  (a) This figure shows the scanning process of a virtual TOF 

sensor. The sensor is moved along the y-axis.  

(b) The result of the virtual scan is the shown VRI. This distance z is 

converted to the color space in this image.  
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Rz of the simulated object and the limits of degrees-of-

freedom of the object. Different VRI’s for different kind of 

objects are compared to the RRI in the same way. So the 

object classification is integrated in the step of object 

localization. In this step of coarse pose estimation we used a 

fixed increment of ∆X, ∆Y, ∆Z, which depends mainly on a-

priori knowledge of the object position in the scene. For 

example, in the case of the door joints in Fig. 5 we assumed 

that the distance Z do not have to be changed in major steps, 

because all door joints laying on the bottom of the box. The 

VRI consisting of the surfaces representation of the 3D 

model is compared to the real range image (RRI) of the 

scene made by the sensor which is shown in Fig. 5. 

One advantage of this pre-selection of matching positions 

is the fact, that all VRI can be calculated offline and stored 

in a database. So the process for our coarse pose estimation 

can be summarized in that way: 

- the RRI is delivered by the sensor 

- all VRI in the database (one for each possible pose) 

are compared to the RRI 

- the best VRI candidates are selected for pose 

refinement  

The here used error function returns an error value. If the 

error value is low the VRI matches with the RRI. Because of 

the fact, that all VRI are compared to the RRI, each VRI gets 

an error value. The VRI candidates with the lowest error 

values are selected for pose refinement. The number of best 

matching VRI’s can be limited by an error-threshold or a 

fixed number of VRI candidates. We decide to use a 

combination of both: Assuming we know the maximum 

number of objects in the scene no, our experiments show that 

a good choice to limit the number nc of VRI candidates to  

 

OC
nn ⋅= 2.1  (2) 

 

The error threshold depends on the object size and the 

increment size. We take the VRI candidates within the best 

10-20% of all error values in the coarse pose estimation 

process which have to be a good initial threshold proven in 

our experiments.  

This pre-selection results in 10-15 VRI candidates in the 

application. These VRI candidates are delivered to the pose 

refinement process, starting with the best matching 

candidate.  

IV. OBJECT POSE REFINEMENT 

 

In the previous chapter the coarse pose estimation creates 

an error value for every pose. The best VRI candidates were 

chosen and used as input for the pose refinement to find the 

best matching candidate. 

The task of the pose refinement is to find a nearly exact 

match between the object in the scene and the simulated 

image. The pose refinement in our case is very similar to the 

registration process which generally deals with the 

determination of a transformation. The registration process 

aligns a representation of an object to another pose of this 

object. In this chapter the idea of “distance matching” of the 

pose estimation is extended to an iterative comparison to 

find the exact position for all VRI candidates.  

A. ICP 

The classical and most commonly used algorithm for rigid 

transformations is the Iterative Closest Point algorithm (ICP) 

[14],[15]. Important works are [16],[17]. Because of the 

slow convergence speed, the ICP was improved by many 

researchers [18],[19]. Nevertheless the ICP is still one of the 

most popular registration algorithms. Real time 

implementations [18],[20] show the potential of the ICP-

Algorithm.  

As the name already implies, the ICP is an iterative 

algorithm which determines its parameters with the help of a 

mathematical minimization. The algorithm minimizes the 

mean square error of the point distance in several iteration 

steps. To abort the iterations a threshold or a maximum 

number of iterations is implemented. The algorithm converts 

monotonously to a local minimum. Therefore, the knowledge 

of an approximate initial solution is important for the success 

of the method, which is provided in the first step of our 

approach: the coarse object pose estimation. 

The Iterative ICP algorithm is a registration method to 

transform the view of an object to another view of the same 

object or another object.  

The set of points M of the model is defined as: 

 

{ }
iiiiii
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 (3) 

 

The set of points P of the scene is defined as: 

 

{ }
jjjjjj
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The set M consists of points with the coordinates x,y,z in 

 
Fig. 5.  The distance values of the VRI are compared to the distance 

values of the real range image in their position. The result is a 

matching error for this VRI.  
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the coordinate system of our simulated sensor. Due to the 

fact that the simulated and real coordinate systems are equal, 

we get the rigid transformation between the VRI and RRI by 

minimizing the error E 
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 To find the rotation R and the translation t we use the 

closed form solution with the help of unit quaternions[21].  

An iteration of the ICP is separated into three steps. At 

first, every point of one dataset is assigned to a point in the 

other dataset. Hereby, every point is assigned to the 

Euclidean closest point of the model. The corresponding 

points of two datasets are usually not known, so the ICP 

guesses the corresponding points by determining the smallest 

distance between two points in the two datasets. According 

to Besl and McKay[16], a point-to-point distance is used for 

the calculation of the transformation. Chen and Medioni[17] 

developed simultaneously a similar algorithm for point-to-

surface distance. We use a point-to-point metric and 

implemented a kD-Tree to increase the processing time of 

the ICP algorithm[18].  The elements of the normalized 

eigenvector of the largest positive eigenvalue of the matrix Q 
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correspond to the elements of the unit quaternion.  (Please 

refer to [16],[18] for details). 

We improve the approach of Horn by solving this 

eigenvalue problem with a QR-decomposition, which expose 

to be a fast algorithm in our previous experiments [22]. 

According to Horn [21] we get the rotation matrix R from 

resulting unit quaternion. The result is a rigid transformation 

in the used coordinate system. An iteration step finishes by 

applying the resulting transformation to one dataset. 

The ICP algorithm is used for every VRI candidate. The 

resulting error value after applying the ICP is calculated 

according to (5). The best VRI candidate is selected and the 

object coordinates in the sensor coordinate system and used 

as the final result in our object localization step.  

V. FURTHER EXTENSIONS AND CONCLUSION 

This work focuses on range images provided by range 

sensors and uses a model-based scalable hierarchical system 

without the need of segmentation or feature extraction. Our 

approach was successfully implemented and tested in its first 

version to handle a real industrial application and to proof 

the potential of our concept. We achieve an overall accuracy 

of ±1mm in translation and a rotation accuracy lesser than ±5 

degrees.  Our intention is to provide a basic system, which 

can be used with any kind of object. But this object has to be 

known preferred as CAD- representation. Industrial robotic 

bin picking includes -beside the object localization- an 

adequate sensor selection, an application-invariant 

localization algorithm, a robot control interface, a grasp 

point definition and a collision avoidance strategy. Merging 

all these components in a system will be one of our 

challenging tasks in the very next future. 

Our approach has potential to meet different requirements 

and solve many problems with its universality. The system 

does not use any segmentation algorithms, but uses 3D 

information which is aligned to the input data in a 

hierarchical system.  

The system framework offers many possible extensions. 

Due to the incremental process object positions can be 

verified and tracked over all steps of the process. This 

increases the robustness and reduces the computational costs. 

By using range data the complexity of the object localization 

process is increased. The complexity of the object 

localization depends also on the chosen algorithm and the 

complexity of the object. The main problem of our algorithm 

is the high computational cost, if we have very complex 

objects models and sensors with high resolutions. But 

depending on the application and the used PC, we can 

change this computational time-memory-trade off by 

increasing the number of pre-calculated VRI’s in our 

database. We are not limited to only one object, because we 

can store as many objects in our database as we want. This is 

one big advantage of the whole system.  

The scalability of our approach offers a great potential in 

the future. Starting with the coarse pose estimation process, 

we are able to adjust the needed accuracy with simple 

changes in the position and orientation step width. New 

sensors with higher resolution can be modeled without any 

problem, even if sub sampling is necessary due to system 

limits. 

The approach of coarse pose estimation could be extended 

to an iterative process and could be used as a refinement 

method. This minimization process can be accelerated 

applying minimization methods like Hill climbing, simplex 

minimization and other minimization algorithms. 

One of the promising improvements in the near future will 

be the modification of the ICP algorithm using the features 

of the used sensors. Therefore we will change the point-to-

point metric to the so called reversed calibration metric 

introduced by Blais and Levine[23]. 

All real range sensors deliver range images with 

measurement errors, reflections, and noise[12]. To increase 

our accuracy we will take these additional features into 

consideration. As mentioned above our error function in the 

coarse estimation step can be changed to increase the 

accuracy, which has to be analyzed in our next research 

activities. Our approach is characterized by a flexible coarse-

to-fine algorithm, which can be used to find any kind of 

objects in range data provided that these objects are known 

to our system. The density of positions and the rotational 

degree of freedom of the object to create a VRI is the most 

important parameter to adjust the level in our flexible coarse-
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to-fine algorithm. The simulation of real scenes offers the 

possibility to use our approach in many scenarios. The 

described two-step object localization will be used in a 

flexible system to cover a high percentage of applications in 

robotic bin picking.   
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