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Abstract 

This paper describes a vision guided robotic 
platform that will be used for the handling of 
natural products in a multi-layer stack that is 
typical in a bin situation. It is designed to 
automatically recognise non-rigid objects, to 
estimate their pose, and to select suitable picking 
points using depth information from a 3D 
camera. We adopted a novel approach by using a 
topographical method to segment the objects and 
then with elevation contours to build volumetric 
data for each object. When the periphery for each 
object is established, we introduced strategies by 
which decisions will be made for task planning. 
These strategies identify the appropriate object to 
pick and the optimum picking position. Results 
of the experimental trials demonstrate the 
robustness of this approach for specific types of 
natural products. 

1 Introduction 

The automatic grasping of parts in a bin with the use of a 
robotic arm is commonly known as robotic bin picking. It 
is a complex task that is usually carried out by a vision 
guided robot (VGR). Recent developments in VGR have 
been in the vision technology. Now with low-cost 3D 
vision, complex issues can be overcome with novel 
approaches in image processing and analysis. 

1.1 Literature review 

The challenge of robotic bin picking of rigid parts has 
been around for a long time (see [Lowe, 1987] and for 
recent examples, see [Dupuis et al., 2008; Perreault and 
Olivier, 2007; Bloss, 2006]). Rigid parts are generally a 
known quantity where shape and features are invariant. 
Although a main issue had been with image occlusion but 
with modern 3D stereoscopic imaging, to a certain extent 
this has been solved. Partial occlusion could be addressed 
through pattern matching. Boehnke [2007] used a 2.5D 
image to generate the outline of objects in order to 
perform the common pattern matching. Some examples 
currently employed are time of flight sensors [Fuchs and 
May, 2008; May et al., 2006] and single stereo vision  
[Seal et al., 2005; Watanabe et al., 2007].  

Robotic bin picking with non-rigid objects such as 
fruit introduces a number of issues. Fruit is largely 
variable in size, shape, firmness and sometimes texture. 
One example where this can be employed is in the 

kiwifruit packing industry. In the repacking process which 
goes right through the year, fruit from the coolstore is 
loaded in bins. The fruit currently go through a screening 
process to detect blemishes or bruises before undergoing 
quality inspection and then sorting to be packed into 
cartons. 

Using traditional techniques employed for rigid 
objects would simply not work and alternative methods 
must be developed. Foresti and Pellegrino [2004] 
developed a vision based system to recognise deformable 
objects by segmenting colour images based on texture. 
With 3D data, Kirkegaard and Moeslund [2006] applied 
harmonic shape context (HSC) features and a graph-based 
scheme. Other examples of 3D vision was applied to 
manipulation of deformable objects [Firai et.al, 2001; 
Wögerer et al., 2005] and visual servoing [Kumar and 
Jawahar, 2006]. 

1.2 Overview of VGR platform 

Robot system 
Our system comprises a 6-axis IRB 2400 robot, custom 
gripper, stereo camera and remote PC as shown in Figure 
1. The S4Cplus controller runs ABB’s Robot Application 
Protocol (RAP) which executes commands from the 
remote PC via a TCP/IP ethernet connection. 

 
Figure 1: Vision guided robot system components 

Gripper tool 

A custom 3-fingered end-effector was designed and fitted 
to the robot mounting flange. It is a pneumatically 
actuated gripper comprising a moveable thumb and two 
parallel and opposing fingers controlled by digital signals 
from the robot controller. When the remote PC sends the 
coordinates and motion commands to the robot controller, 
the gripper approaches the target object at the appropriate 
pose to pick it up. 
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Stereo camera 

The target product to be handled by the robot is 
multilayer, and therefore the vision system must report 
product height information. We decided to use a stereo 
camera for this purpose, and selected an STH-MDCS 
camera from Videre Design. The camera has twin imagers 
fitted with 6mm lenses, with a baseline of 9cm. Images 
are stored in 8-bit grayscale format and are transfered to 
the host PC through IEEE-1394 firewire ports. The stereo 
images are then processed using functions from SRI 
International’s Small Vision System (SVS) library and 
source code development kit to produce point cloud data. 

Calibration 

The stereo camera was calibrated for internal (lens 
distortion and decentering) and external (camera spatial 
offset) parameters using the SVS smallvcal application 
with an A3 checkerboard of 54mm squares analyzed as 
recommended by the camera manufacturer. Additional 
calibration factors were determined using test objects at 
two diverse spatial locations so that the stereo cartesian 
coordinates were precisely mapped to robot cartesian 
space. 

1.3 Overview of paper 

In this paper we apply a topographical segmentation 
method to the point cloud of a 3D static image 
overlooking a multi-layer stack of fruits. The method 
builds volumetric data and establishes a periphery for 
each identified object. Fused with apriori knowledge, this 
method is a robust way to discriminate between objects. 
Next we present strategies to select which object to pick 
based on the available picking positions termed as free 
space. This approach was implemented and tested on our 
VGR platform comprising a 3D camera, robot and a 
multi-layer stack of avocados. Results of the experiment 
indicate the robustness of this approach. 

2 Processing point cloud data 

Point cloud data provided by the stereo camera image 
acquisition and processing library describes a set of 
vertices in three dimensions, represented by cartesian 
values. These data are processed in three steps: pre-
processing, object identification, and blob analysis. The 
objective is to identify objects, along with their respective 
features, such as centroid, etc. Sections 2.1 to 2.3 describe 
these processes in more detail. 

2.1 Pre-processing 

Pre-processing prepares the point cloud data so that 
accurate analysis can be performed during later stages of 
processing. The following procedures are performed 
during pre-processing: 
- Removal of known errorneous data. When the stereo 

camera system is not able to compute distance values, 
it stores the data as (0,0,0). Such values were 
replaced by NAN (not a number) to prevent them 
being part of calculations. 

- Removal of data that has a depth (z-value) that is 
greater than the distance between the stereo camera 
and the table in the real world. Since the table is the 
base of the experiment, any data beyond this distance 
is incorrect, having been created by false 
correspondences. Such values were likewise replaced 

with NANs. 
Pre-processed point cloud data is then passed to 

the next module for object identification.  

2.2 Object Identification using contour analysis 

To be able to successfully grasp an object, an accurate 
identification algorithm is crucial to successfully 
manipulate an object. This is especially true when dealing 
with natural objects. 

Firstly, natural objects have irregular shapes and 
sizes. It is not often two objects are identical and hence, 
every fruit has different location for optimal pickup. If the 
shape of an object is computed incorrectly, then the 
manipulator will most likely not achieve a stable grasp of 
an object. 

Secondly, natural objects are easily damaged. 
Incorrect identification of a grasping point may result in 
damaged objects. The problem is further compounded 
when dealing with objects that are located at various 
heights. If the depth reported is not deep enough, the 
robot will fail to grasp the object. Conversely, if the depth 
is too deep, the gripper will damage the object that is 
located directly below. 

Hence, the process of object identification is not 
straightforward, especially when objects are touching 
each other. 

Essentially, we identify objects by accumulating 
contours grown from seed peaks in the point cloud data. 
That is, the highest peak is initially identified from the 
point cloud. The contour for this height is computed and 
all the points are categorised based on proximity. Below a 
set threshold, points are considered to be belonging to the 
same object. Else, a new object is created. We termed this 
process slice analysis. 

Slice analysis is performed on the point cloud data 
at different heights, starting from the highest point down  
to a pre-determined depth. Intermediate heights are set 
empirically. Smaller distances between each slice 
generates better precision but at the same time, increases 
processing time. 

Slice analysis is especially useful for segmenting 
objects that are touching. Touching objects can be easily 
confused to be a single item as neighbouring objects share 
points along the boundary region. Slice analysis is able to 
handle this problem without needing further processing. 
However, this approach does assume that objects have a 
single peak. 

As noted above, analysis of the point cloud data is 
performed only down to a certain depth from the topmost 
detected peak. The reason is simple: it is naturally easier 
to manipulate objects located on the top layer. Processing 
information beyond the fruits on the top layer is 
unnecessary as the additional information does not assist 
in the pickup process. In fact, managing the information 
this way provides for a more accurate object 
identification, as well as decreasing the time it takes to 
process a set of data. 

A summary of the object formation algorithm is as 
follows: 

1. Detect highest point from point cloud data 
2. Compute contour points for this height 
3. Group points based on their proximity to each 

other 
4. Create a new object with points that do not 

belong to existing objects 
5. Increase depth by a pre-determined constant 
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6. Repeat steps 2-5 until processing reaches the 
required depth from the starting height 

7. For each object, apply convex hull computation 
to determine the object’s boundaries 

8. Plot all objects, each filled with different colours 
9. Perform blob analysis on the 2D plot thus 

formed, as described in Section 2.3. 

2.3 Blob analysis using 2D image processing  

Processing can now move into the 2D domain, since we 
are more interested in object perimeters (for grasping) 
rather than their 3D volumes. 

In two dimensions, each object is basically a 
silhouette which has a centroid, a major axis and a minor 
axis. The major and minor axes pass through the centroid 
and define the lines about which the turning moments are 
minimal and maximal, respectively. For manipulation 
purposes, the point where the minor axis and the 
perimeter of the object intersects is very interesting, as 
gripping across this axis will permit the object to be lifted 
with a degree of stability. 

Two-dimensional blob analysis is used to locate 
the centroid and orientation of the axes for a particular 
object. In addition, other information such as area and 
bounding box dimensions are computed as well. 

The locations of the points of intersection of the 
axes with the perimeter (or pivot points) are not generated 
directly in a traditional blob analysis. Therefore we 
developed a heuristic method which builds on a 
traditional blob analysis by tracing the axes radially 
outwards from the centroids until the perimeter is first 
reached, as shown in Figure 2. 

The blob analysis algorithm was adapted from an 
open-source image processing package, ImLab

1
. The 

program extracts information such as blob size, centroid 
position, major and minor axis slopes and lengths, from 
which the x, y locations of the four pivot points of each 
object are derived. 

 
Figure 2: Axes, pivot points and centroid computed during 
blob analysis 

For the purposes of this project, it is assumed that 
each axis intersects the object’s perimeter at only two 
points. In addition, the algorithm also filters out any 
object that is smaller than a given size. 

                                                 
1
 IM is a toolkit for digital imaging developed at 

Tecgraf/PUC-Rio, Brazil. 

The following steps summarise the blob analysis 
procedure: 

1. The input 2D plot is converted to a grayscale 8-
bit image. Individual colours are assigned to 
unique gray values (widely separated within the 
1-255 range). 

2. The grayscale image is thresholded at 0, creating 
a binary image with the background rendered 
black and the objects rendered white. 

3. Small objects of area less than 1000 pixels are 
removed. 

4. The size of the image is reduced to fit the 
internal object limits. 

5. Object regions are found by performing a 4-
connected blob analysis on the above image. 
Objects are labeled with values 1, 2, 3, etc. 
according to the order in which they are found, 
from bottom left to top right. 

6. Objects are measured. The centroids are located 
and the slopes of the axes are calculated.  

7. The pivot points are found by tracing the axes in 
the image radially outwards from the centroids 
until the object boundaries are reached. 

Since ImLab operates using pixel coordinates and 
cell size, all x,y point locations are converted to real-
world coordinates when exported to the next process. 

3 Strategies for object selection 

Once objects have been identified, the system needs to 
determine 1) the best object to pick and 2) the best pickup 
location for the particular object. 

The manipulation strategy is based around a 3-
fingered end-effector built for grasping avocados. The 
strategy requires the ‘thumb’ of the gripper to move into 
any available space around the fruit. Two additional 
fingers hover above the object and when the gripper is in 
place, all fingers are actuated to grasp the object. Figure 3 
shows the gripper being positioned to grasp an object. 

 

 
Figure 3: Gripper being positioned to grasp an object 

Given this strategy, it is essential to firstly 
determine what free space is available around all objects, 
and secondly, determine which of those would provide for 
the most stable manipulation. This in turn determines the 
object to be picked up. The rest of this section describes 
the selection process in more detail. 
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3.1 Computing free space 

Free space is computed based on the proximity between 
adjacent objects. For this, test points are placed at set 
intervals along the periphery of each object. For each test 
point, a circle is drawn. If any points from neighbouring 
objects are within this circle, then the test point would be 
considered unsuitable for pickup. The radius of the circle 
is set to be slightly larger than the diameter of the thumb. 

3.2 Selection criteria 

Two criteria were implemented for ranking the suitability 
of a pickup point: 
- Proximity to major and minor pivot points 
- Proximity to the nearest object. 
For each of these criteria, each pickup point is assigned a 
score between 0 and 1, with 0 being most unsuitable and 1 
being most suitable. 

Whilst we have implemented only two criteria, this 
approach provided the flexibility to add further criteria as 
needed. The following subsections describe the criteria in 
more detail. 

Criteria 1: Proximity to major and minor pivot points 
From experimentations, it was found that the best 
approach to grasp an object is to position the thumb near 
the intersection between the minor axis and the perimeter 
of the object, which we termed a minor pivot point (see 
Figure 2). Once positioned, the gripper has to align the 
top fingers across the object by pointing towards the 
object’s centroid. It was also found that the stability 
decreases as the thumb moves away from the minor axis 
and towards the major axis, with the critical point 
approximately midway. Past this point, the gripper has 
significant issues in grasping the object. 

From this observation, pickup points that are 
closer to the minor axis are much more desirable than 
those that are further away. Conversely, a pickup point is 
deemed less desirable if it is closer to the major axis or its 
pivot points. 

Instead of having two measures: one for the 
distance to the minor axis and another for the distance to 

the major axis, the ratio major

or

d

dmin

 is used instead. Smaller 
values indicate greater suitability of a pickup point. An 
advantage of this distance ratio is its impartiality to the 
size of an object. 

Nonetheless, the distance ratio in its pure form is 
not a good scoring system. We needed a scoring system 
which equates to 1 (the highest value) when the ratio is 0 
i.e. the pickup point is on a minor axis pivot point. As the 
pickup point moves away from the minor axis (and 
towards the major axis), the score decreases. 

The following equation is used to generate the 
score: 




























×−

major

or

d

dminexp σ  

 
σ  determines the spread of the score for different 

distance ratios, and was selected based on the desired 
score when the distance ratio is 1. As mentioned before, a 
distance ratio of 1 is a critical value as it defines the point 
where the grasping stability of an oval-shaped object 
changes dramatically. 

Criteria 2: Proximity to the nearest object 
The second criteria is based on the proximity of a pick up 
point to the nearest neighbouring object. The algorithm 
rewards pickup points that have large clearance for the 
gripper’s finger to be inserted and penalizes pickup points 
that have smaller spaces. 

The following equation is used to compute the 
score based on the size of gap available: 

 

( )( )βρα x−+ exp1

1
,   where 

 
x   - distance to the closest object in millimetres 

ρ  - is the minimum allowable distance in millimetres 

α  - sets the score at the critical point when x = ρ  

β   - controls the slope of the transition region between  

  score of 0 and 1 
 

If the distance from a pickup point to the nearest 
object is below the minimum allowable distance ρ , the 

score will be low. As this distance increases above ρ , the 

score increases. However, this increase in score stops 
after a certain distance as the extra distance does not make 
any impact on the ease of pickup. 

3.3 Object selection 

After the scores for each criteria are determined, an 
overall score for each pickup point is computed using the 
equation: 
 

2/)**( 2211 criteriacriteriacriteriacriteriaoverall weightscoreweightscorescore +=  

 
This equation allows for weightings to be assigned 

to the respective criteria, based on their importance. Once 
the overall scores are computed, the pickup points are 
ranked and the one with the highest score is selected. If 
there are several objects with the same highest score, then 
a random object will be chosen. 

3.4 Gripper orientation 

The robot tool coordinate system is configured such that  
the robot’s Tool Centre Point (TCP) is calibrated to the 
base of the gripper thumb. With the z-axis protruding 
from the thumb and the x-axis towards the other fingers, it 
is a convenient way for efficient robotic motion planning. 
It therefore remains for the gripper to be rotated about  the 
z-axis to align with the optimum orientation to grasp the 
selected fruit. 

At this stage we know the cartesian coordinates of 
the pick up point and the relative x,y coordinates of the 
centroid, which may be assumed to be close to the fruit’s 
centre of mass. These coordinates permit the orientation 
of the gripper to be determined, as shown in Figure 4 
below. 

4 Experimental Results 

4.1 Experimental setup 

Our VGR environment comprises a stereo camera, robot 
and PC as described in Section 1.2 previously. The basic 
requirement is to process stereo images to produce point 
cloud data. 

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia



 
Figure 4: Diagram showing computation of the orientation 
of the gripper based on the centroid of the object 

However, the methods described here are not 
restricted to the type of sensor used, as long as a set of 
point cloud information is available. In fact, a more 
accurate sensor that does not rely on texture information 
would increase the performance of the system. 

4.2 Image Texture 

Stereo processing algorithms calculate range by 
recognizing features in a scene when viewed from two 
viewpoints. If the physical positions of the two viewpoints 
are known, then the spatial disparity of feature points in 
the two images permits distances to be calculated 
trigonometrically. 

It therefore follows that the scene must contain 
recognizable features, or texture, in order for the stereo 
algorithms to operate. If the scene has few features, then it 
may be possible to create texture by projecting non-
uniform illumination, or patterns, on to the surfaces. 

Images of fruit can be hard to process in stereo if 
their surfaces lack striations. Many fruit have a fine 
stipple texture but its uniformity renders them difficult for 
stereo processing. 

Initially we wrapped such fruit with bands of white 
masking tape on which dark irregular wavy lines were 
drawn. This proved to be excellent for the experiments, as 
the wavy lines adequately covered the top and side 
surfaces of each fruit, and the irregular form reduced the 
opportunity for false stereo correspondences. 

In another approach, we projected a structured 
light pattern using a data projector mounted horizontally 
(to meet its operational requirements) and its beam 
deflected vertically downwards using a mirror mounted at 
45 degrees to the vertical axis. A variety of patterns 
created in a drawing program could then be projected on 
to the fruit surfaces, either as black on white or white on 
black. 

We experimented with two projected structures: a 
parallel set of wavy lines, and a matrix of isolated, but 
varied, icons. Both forms of structure operated well on 
topmost surfaces, but the wavy lines were superior 
because they dropped down the sides of the fruit, and 
more clearly identified the fruit boundaries. Even so, the 
perceived edges of the fruit were not faithfully 
representative of the true fruit perimeters, especially if the 
fruit were close or touching. 

For this reason, the bulk of the experiments were 
carried out using fruits wrapped with tape and marked 
irregularly. 

4.3 Experimental results 

When objects are placed randomly into a bin, they can 
have one of many different arrangements. These 
arrangements can be broadly classified into three 
categories: 

1. Objects situated far apart 
2. Objects in close proximity 
3. Objects stacked to form multiple layers 

The sections which follow report experimental 
results for these situations. 

Objects situated far apart 
Objects located far apart is the easiest situation to handle. 
When objects are singulated, they are easily identified, 
processed and picked up. 

An example of this situation shown in Figure 5. 
This image was captured through the camera’s left lens. 
The objects have random orientations, but are spaced far 
enough for the gripper to have full access to any object 
and without difficulties. 

 

 
Figure 5: Grayscale image of objects located far apert, 
captured using the camera’s left lens 

A mesh plot of the computed point cloud data can 
be seen in Figure 6. The plot shows each object is well 
defined. Nonetheless, some information is still missing, as 
represented by the white coloured holes in the objects. In 
the plot, the temperature of the colour represents a point’s 
proximity to the camera. That is, hotter colours signify 
closer points and cooler colours signify points that are 
located further away. 

 
Figure 6: Mesh plot of the point cloud data with objects 
positioned at a distance from each other 

Figure 7 is a two-dimensional plot of the point 
cloud data that was extracted from the slice analysis. One 
can clearly see each of the objects available for picking. 
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Figure 7: Plot of data extracted from all iterations of slice 
analysis 

The result of processing is shown in Figure 8. Four 
objects were detected and are represented by blobs, each 
with a different colour. The grey lines represent the major 
and minor axes that were computed for each object. 

Locations that would allow for the gripper to 
access for pickup are represented by green circles. It is 
obvious that for this situation, it has been identified that 
each object can be picked up from any part of the object. 
The green circles that have been filled with black are 
locations that have been calculated to be suitable for 
pickup. That is, the overall scores for these locations 
exceed the minimum value allowable for a point to be 
classified to be suitable. Finally, the red solid circle 
represents the location that was chosen from the 
computation. For this situation, the final point selected is 
more or less a random event as there are a number of 
suitable candidates. 

 
Figure 8: Plot showing the objects identified, shown in 
different colours. The lines through the objects are the 
major and minor axes and the green circles signify locations 
that the gripper is able to access. Green circles that have 
been filled with black are locations that have been computed 
as suitable picking points whilst the selected point is 
represented by the red solid circle. 

Objects in close proximity 
The second scenario presented here consists of objects 
that were placed in very close proximity. At least one side 
of the fruit is obstructed by another, and hence pickup 
cannot be performed at any location. This scenario can be 
seen in Figure 9 with its corresponding mesh plot shown 
in Figure 10. 
 

 
Figure 9: Grayscale image of objects located in close 
proximity 

 
Figure 10: Mesh plot of the touching objects  

 
Figure 11: Plot of data extracted from all iterations of slice 
analysis essentially shows one large connected object 

A 2D plot of the point cloud data can be seen in 
Figure 11. It is evident in the diagram that it is difficult to 
recognise the individual objects especially around the 
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regions where the objects touch each other. Therefore, 
recognising the objects here is not a straight forward task, 
especially when the shape of the objects plays an 
important role on how the gripper would attempt to 
pickup an object. 

The identified objects are shown in Figure 12 
below. Like before, four objects were detected. However, 
due to the proximity of the objects, the gripper is not able 
to access all locations around the objects. The locations 
that are not accessible are represented by red unfilled 
circles. For the same reason, there are a lot less suitable 
locations for the system to choose from. 

 
 
Figure 12: Plot showing identified objects in various colours. 
Lines through the objects depict the major and minor axes 
of each object. As before, the green unfilled circles signify 
locations that the gripper is able to access. In addition, red 
unfilled circles are now visible and these represent locations 
that are not suitable for pickup. The black-filled green 
circles are locations that have been computed as suitable 
picking points whilst the selected point is represented by the 
red solid circle. 

Objects stacked to form multiple layers 
The final arrangement presented here involves arranging 
the objects in a stacked configuration, as shown in Figure 
13. Figure 14 shows the mesh plot of the objects. As seen 
in the mesh plot, the four objects look like one large 
object. Hence, it is difficult to identify the individual 
objects if all point cloud data were processed. 
 

 
Figure 13: Grayscale image of objects stacked in a pile 

 
Figure 14: Mesh plot showing one large object which shows 
the difficulty in identifying each object from the point cloud 
data 

 
Figure 15: Plot of data extracted from all iterations of slice 
analysis essentially shows only the top object is used 

 
Figure 16: Plot showing a single object formed. Even though 
other objects exist underneath, this object is unobstructed 
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and hence, the gripper is able to access the fruit at all 
locations (green unfilled circles). The black solid circles are 
locations that have been computed as suitable picking points 
whilst the selected point is represented by the red solid 
circle. 

It is also worth noting that more than one object 
can exist on the top layer. Furthermore, the system 
proposed works with more than two layers as well. As 
mentioned earlier, processing only occurs up to a set 
depth. Hence, lower layers do not affect the performance 
of the system.  

Figure 15 shows that only point cloud data from 
the top object has been extracted for processing, with the 
blob formed shown in Figure 16.  

5 Conclusions 

We have presented a novel topographical slicing method 
and have applied it to 3D point cloud data generated by a 
stereo camera. This approach was demonstrated through 
the recognition of natural objects arranged in a stacked 
pile. Experiments conducted in various scenarios showed 
the robustness of this approach to discriminate between 
objects. Also by applying certain selection criteria, the 
optimum picking pose for a custom made gripper was 
determined. It is envisaged other grippers could be 
applied with the appropriate set of criteria imposed. It is 
modular and forms one of the building blocks for a vision 
guided robotics system. 
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