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Abstract 

This paper focuses on developing a fast and accurate 3D 

feature for use in object recognition and pose estimation for 

rigid objects. More specifically, given a set of CAD mod­

els of different objects representing our knoweledge of the 

world - obtained using high-precission scanners that de­

liver accurate and noiseless data - our goal is to identify 

and estimate their pose in a real scene obtained by a depth 

sensor like the Microsoft Kinect. Borrowing ideas from the 

Viewpoint Feature Histogram (VFH) due to its computa­

tional efficiency and recognition performance, we describe 

the Clustered Viewpoint Feature Histogram (CVFH) and 

the cameras roll histogram together with our recognition 

framework to show that it can be effectively used to recog­

nize objects and 6DOF pose in real environments dealing 

with partial occlusion, noise and different sensors atributes 

for training and recognition data. We show that CVFH out­

peiforms VFH and present recognition results using the Mi­

crosoft Kinect Sensor on an object set of 44 objects. 

1. Introduction and related work 

Object recognition and pose estimation is a well stud­
ied problem in computer vision due to its endless applica­
tions in scene understanding, robotics, virtual reality, etc. 

Several feature descriptors for object recognition have been 
presented in the literature, both in 2D (e.g. [6]) and 3D (e.g. 
[12]). However, they still can not manage to resolve the 
full object recognition problem, especially when faced with 
hard problems such as textureless objects noise or missing 
parts of the objects. For both 2D and 3D, there are mainly 
two different approaches to the object recognition problem: 
local (e.g. [1], [2], [4]), or global descriptors (e.g. [5], [8]). 

The latter and most relevant in the scope of the paper, 
describe the geometry, appearance or both of a whole par­
tial view of an object and are more robust to noise than local 
features, specially in the 3D domain but they require the no-

tion of object before recognition which is normally given by 
a prior segmentation procedure. Because of its global na­
ture they have problems dealing with missing parts which 
are caused by partial occlusions, sensor limitations or seg­
mentation artifacts (see Figure I). 

Figure 1. The figure shows how CYFH can deal with limited 

amounts of occlusion. The support plane is shown in blue, the 

segmented object candidates from the current scene in red, the rec­

ognized views from the database in green and the corresponding 

models overlapped as grey meshes. 

These artifacts increase the complexity of the problem, 
mostly in our specific scenario where we want to develop 
a feature that can be trained on 3D CAD models and yet 
perform recognition on real data. Almost none of the de­
scriptors presented in the literature (excepting [13]) have 
tackled the problem of training on synthetic data and match­
ing on real data. Creating training databases for a reason­
able number of objects using real devices can be a cumber­
some task, even very difficult if one would like to have all 
different viewpoints and poses of an object. On the other 
hand, there are publicly available databases of CAD mod-
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els and accurate 3D meshes for thousands of objects found 
in our daily life (e.g. , Google Warehouse). Given a 3D 
CAD model and a rendering system, it is straightforward 
to place a virtual camera around the object and obtain all 
desired viewpoints without the need of calibrated systems 
and a time-consuming capturing process. We believe this is 
a crucial factor for cost and ease of scaling the set of objects 
the robot can learn and manipulate. 

With the advent of the Kinect, depth information at 
ranges of 0.8-3.5 meters can be obtained at framerate and at 
a moderate price. This cost breakthrough is an enabler for 
vision systems and robotics and new low cost depth sensors 
such as the WAVI Xtion [9] are following rapidly. Now that 
depth information is cheap and easy to get, there is a need 
to develop efficient 3D features that will work etlectively 
with this data in order to support robot object recognition 
plus 6DOF pose for manipulation. 

We decided to build on the VFH feature which is effi­
cient to compute, and already showed high discriminability 
in previous work [8]. As described below, VFH has short­
comings to perform recognition on real data when trained 
on synthetic data. 

The rest of the paper is organized as follows: In section 
2 the Viewpoint Feature Histogram is reviewed and used 
to motivate the Clustered Viewpoint Feature Histogram 
(CVFH), presented in section 3, that meets our goal of al­
lowing for training on 3D CAD models and yet performing 
well on real world data. In section 4, the Camera's Roll 
Histogram is presented as an efficient way to deal with the 
invariance to rotations around the camera axis that appear in 
3D global descriptors based on partial views. In section 5, 
we present the recognition framework allowing for train­
ing and recognition which includes the histogram metric 
used for nearest neighbor searches together with the post­
processing applied after CVFH recognition to refine the re­
sults. In section 6, we compare CVFH against VFH and 
show that CVFH outperforms it. Finally, we conclude in 
section 7 and present our future work lines. 

2. The Viewpoint Feature Histogram 

The VFH descriptor is a compound histogram represent­
ing four different angular distributions of surface normals. 
Let Pc and nc be the centroids of all surface points and their 
normals of a given object partial view in the camera coor­
dinate system (with Ilncll = 1). Then (Ui , Vi ,  Wi) defines a 
Darboux coordinate frame for each point Pi (see [10]): 

Pi - Pc 
Vi = X Ui 

Ilpi - Pcll 
Wi = Ui X Vi 

(1) 

The normal angular deviations cos(ai)' COS(;Ji), COS(¢i) 

and ()i for each point Pi and its normal ni are given by: 

COS( ai) = Vi . ni 

COS(;Ji) = ni . II�: II 
(" ) 

Pi - Pc 
cos 'Pi = Ui . II Pi - Pc II 

()i = atan2(wi . ni, Ui . ni) 

(2) 

Note that cos(ai), COS(¢i) and ()i are invariant to view­
point changes, given that the set of visible points does not 
change. For cos(ai), COS(¢i) and ()i histograms with 45 
bins each are computed and a histogram of 128 bins for 
COS(;Ji), thus the VFH descriptor has 263 dimensions. 

Though VFH showed promising results in [10], it has a 
few shortcomings: 

• it is invariant to the size of the object as the compound 
histogram is normalized by the total number of points 
in the partial view; 

• it is invariant to rotations around the camera's view di­
rection, so it does not allow full pose estimation; 

• using the centroid and average normals (Pc and nc) to 
build the Darboux coordinate system, makes VFH sen­
sitive to missing parts of the object caused by partial 
occlusions, segmentation or sensor artifacts. 

3. The Clustered Viewpoint Feature Histogram 

As outlined in section 2, the major flaws to VFH are its 
sensitivity to noise and occlusions (e.g. missing parts of 
the object) and the fact that it is invariant to rotations about 
the camera axis. By analyzing the data obtained from the 
Kinect, we noticed that surfaces that are at a steep angle 
relative to the sensor as well as parts that are close to ob­
ject borders contain more noise or even miss a few depth 
estimates (see Figure 2). 

These effects can result in unstable estimations of the 
object points and normals centroid (Pc and nc from Eq. 1),  
thus affecting the resulting VFH and making it unsuitable 
to match against the corresponding synthetic view that will 
not present these artifacts. 

The main idea behind CVFH is to take advantage from 
the object parts that can be robustly estimated by the depth 
sensor and use them to build the Darboux coordinate sys­
tem while still using the whole partial view to compute the 
descriptor. 

Formally, we propose to describe a partial view of an 
object, represented by a set of points p, as a set H of Clus­
tered Viewpoint Feature Histograms. The cardinality of H 
is the same as the cardinality of S, where S is the set of sta­
ble regions found on P using the procedure defined in the 
upcoming section 3.1. 
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Figure 2. Example of an incomplete surface due to limitations of 

the sensor. 

Taking Si E S with Si C;;; P, we can define a Darboux 
coordinate system D = (Ui ' Vi , Wi) like in Eq. 1 but in this 
case Pc and nc represent the euclidean centroid and normal 
centroid of Si and not of the whole partial view P. Given D 
and using Eq. 2, the normal angular deviations for all points 
in P can be computed. 

Let then (0:, rp, e, (3) represent the normal angular devi­
ations already bined in (45,45,45,128) bins, the CVFH his­
togram hi E 1i is defined as the following concatenation: 

(0:, rp, e, SDC,lJ) (3) 

where SDC represents the Shape Distribution Compo­
nent of CVFH computed as follows: 

(4) 

The number of bins used for this component is again 45 
thus making a total size of 308 for CVFH. This component 
allows to differentiate surfaces that have very similar nor­
mal distributions and sizes but their points are distributed 
differently. For instance we could differentiate an elongated 
planar surface from a more compact planar surface. 

To avoid scale invariance, each bin in CVFH count the 
absolute number of points falling in that bin. To reduce 
ambiguities, we first construct a voxel grid over our point 
cloud data with a fixed voxel size, and reduce the cloud to 
the set of voxel centroids. Because the actual size of the 
object is given by the 3D sensor, the amount of points for 
a given view will be the same no matter what the distance 
to the camera is. Avoiding the normalization step allows us 
to distinguish between objects of different size but identical 
shape. It also makes the descriptor more robust to missing 
parts of the object, as this will only influence local parts 
of the descriptor (compare Figure 3). Normalizing the his-

togram by the total number of points would increase the 
bins height under the presence of occlusion. 

Figure 3. The CVFH histograms become additive when the cen­

troids are consistent. top: Missing part on the view and the cor­

respondent CVFH signature. bottom: Whole view and and the 

correspondent CVFH signature. 

The advantages of CVFH are two-fold: (i) the coordinate 
system is more likely to resemble the one obtained from the 
synthetic view making the descriptor more stable and (ii) 
because the set of CVFHs represent a multivariate descrip­
tion of the partial view, we can better handle occlusions as 
long as any of the stable region is visible. Please note that 
the CVFH histograms in H are independent from each other 
and not complementary as they describe the same geometry 
but encode them differently. To understand how CVFH is 
used for recognition, we refer the reader to the next section 
(Recognition Framework). 

3.1. Stable regions clustering 

To overcome the instability caused by missing object 
parts and local noise artifacts, we first identify stable re­
gions in partial view obtained by the depth sensor. To do so, 
we apply a smooth region growing algorithm on the points 
obtained from a partial view of an object after removing 
points with high curvature (caused by noise, object edges or 
non-planar patches). 

Each new cluster is initialized with a random point. A 
point Pi with normal ni is added to a cluster Ck if the clus­
ter contains a point Pj with normal nj in the direct neig­
bourhood of Pi with a similar normal, i.e. the following 
constraint is fulfilled: 

For our experiments, td is set to three times the voxel grid 
size and tn to cos (10°) . For each stable region, a CVFH de­
scriptor is computed as outlined in the previous section. The 
number of stable regions for a specific partial view defines 
the cardinality of the descriptor set 1i. 
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Figure 4. Free shape smooth clustering. Left: a wine glass, and 

right: a milk carton. Smooth surfaces are clustered together. 

Points in red do not belong to any cluster and points with high 

curvature are not shown, e.g. at the edges of the milk carton. 

Only regions with more than 50 points in total are con­
sidered to be stable and taken into account. In the case that 
no regions are found that fulfill these conditions, the CVFH 
centroids are computed using all points in the partial view. 

Intuitively, we are trying to define a stable location to 
base the computation of the CVFH descriptor even when 
parts of the objects are missing. For instance, the base 
and stem of the wine glass in Figure 4 is partly missing, 
which usually happens due to oversegmentation of its sup­
port plane in an earlier processing step. This will atlect the 
descriptor centroids if the complete partial view is used, but 
the stable region shown in blue remains unchanged. In the 
case of the milk carton where 2 stable regions are found, the 
centroid for one of the dominant surfaces stays stable when 
the other one is occluded and thus the stable CVFH will al­
low for a positive recognition (see Figure 1 where part of 
the milk cartoon is occluded). 

4. Camera roll histogram and 6DOF pose 

Most descriptors based on views of an object like VFH, 
CVFH, CAP-SIFT [3] are unable to deliver a complete 6-
DOF pose. Due to the this invariance of CVFH with respect 
to rotations along the view direction of the camera (roll), 
the object and viewpoint recognition is determined up to an 
unknown rotation. To determine the correct orientation of 
the object, we introduce a new descriptor that is not invari­
ant to the roll angle. To avoid a higher dimensionality in the 
overall descriptor by extending it, which would decrease the 
performance of the object/viewpoint recognition noticeably, 
we use a final optimization step to find the correct roll angle. 
Since the computation of the roll angle is only done for the 
best N candidates from the CVFH matching step and fur-

thermore is efficient to calculate, the overall performance is 
not atlected drastically. 

For each CVFH descriptor in H, an additional histogram 
is computed - the camera's roll histogram. We project the 
normals at each point onto a plane that is orthogonal to the 
vector given by the camera center and the centroid of the 
stable region used to compute CVFH. For the projection, we 
compute a rotation-axis v and a rotation angle e using Eq. 6 
that transforms the CVFH centroid Pc to coincide with the 
camera's z-axis. Since we use an orthographic projection, 
the projected normals are given by the first two components 
of the transformed normals ni. 

Pc x z 
v = ---

IIPcl1 
e = - arcsin (II v II) 

(6) 

The roll histogram is then computed by taking the an­
gie of the projected normal relative to the up-view vector 
of the camera on the plane. The histogram contains 90 
bins giving an angular resolution of 4 degrees. The num­
ber of bins for the camera-roll-histogram is selected from 
our empirical evaluations to provide a reasonable trade off 
between efficiency and accuracy. Due to noise in the input 
data, we weight the projected normals by their magnitudes. 
This removes most of the equally distributed noise in the 
histogram, resulting from unstable projections of normals 
that are almost parallel to the roll axis of the camera. 

Figure 5 shows two histograms of the same object. The 
upper one is from the object in upright orientation, whereas 
the bottom histogram is computed from the object rotated 
around the roll axis by 440• 

~ 
O.02� 

0.020 

0.010 

0,0000 ,� \lO 1�� 180 22!\ 270 �13 �60 

Figure 5. The camera roll histograms of the same object in differ­

ent orientations. 

In order to estimate the object's rotation around the roll 
axis, we need to find an orientation where the two roll his­
tograms match best according to a metric. This can be con­
sidered a correlation maximization problem. Therefore, we 
apply a Discrete Fourier Transform for both histograms, and 
multiply the complex coefficients of the database view with 
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the complex conjugate coefficients, and perform the inverse 
transform to compute the cross power spectrum R. The 
peaks of this spectrum appear at rotation angles that align 
the two roll histograms well. 

There are cases where the power spectrum of two roll 
histograms can have multiple high peaks due to different 
kinds of symmetries. Also, partial occlusions or sensor 
noise might deteriorate the roll histograms, so it is gener­
ally not sufficient to rely solely on the maximal peak in R. 

In order to select a set of orientations that can be pruned 
in a subsequent test, we select a minimum threshold tp for 
peaks, and add peaks with higher magnitude to the set. We 
start with the highest peak, adding peaks if their correspond­
ing rotation angles do not fall within a certain distance band 
td of any of the previously added peaks. This ensures that 
the set of orientations does not contain multiple entries for 
very similar alignments, but captures local maxima that are 
distributed over the whole set of rotations, if they indicate a 
good alignment. 

In our experiments, we set td = 12° and chose a rel­
atively high value for tp in order to keep the size of the 
rotation set small. We found a value of tp = 0.9 * max(R) 
to yield a low number of peaks - typically up to 10 peaks -
while still capturing comer cases. 

5. Recognition framework 

In this section, we concentrate on the recognition frame­
work which consists of two different parts: an offline train­
ing stage where the CVFH descriptors are computed for the 
models in our training set, and an online recognition stage, 
in which the real scene is processed. The recognition stage 
includes segmentation, recognition and pose estimation us­
ing CVFH and final refinement of the recognition results. 
Please note, that in this case, segmentation refers to finding 
possible objects candidates in the scene and not to the stable 
regions clustering step presented before. 

5.1. Training stage 

Our training data is generated from a set of CAD models. 
Because CVFH works on views from object, our first step 
is to take each of the CAD models and generate a set of 
distinguishable views. We place a virtual camera on the 
vertices of a tesselated sphere looking at the CAD model of 
the object and render the object seen from that viewpoint 
into a depth buffer from which we can efficiently extract a 
partial pointcloud. 

For each view, the CVFH descriptor and roll histogram is 
computed. Views that are not distinguishable, like symmet­
ric objects as bottles or bowls, are not considered, reducing 
the initial number of 80 view to about 12 views per object. 

To decide which views can be removed, we align two 
different views of the same object using the camera's roll 
histogram and compute the overlapping between the aligned 

point clouds by searching for each point in one of the views 
the nearest neighbor in the other view. A point is considered 
not to overlap if the nearest neighbor is not within a range of 
twice the voxel grid size. If more than 2.5% do not overlap 
the view is considered to be different and the next view is 
checked. 

5.2. Recognition stage 

The recognition stage runs on a raw pointcloud from a 
depth sensor, which in our case is the Kinect. We pro­
ceed first with a segmentation of the scene using dominant 
plane extraction and Euclidean segmentation on the remain­
ing points [11]. The segmented groups of points represent 
the objects to be recognized. Independently for each object 
in the scene: 

1. Compute a set of CVFH descriptors (H) and camera's 
roll histograms. Please note, that each CVFH descrip­
tors is paired with a camera roll histogram. 

2. For each CVFH in H, a nearest neighbor (NN) search 
is performed to find the N closest CVFH descriptors in 
the training set, giving a set of views from the trained 
objects. 

3. As we have performed as many NN-searches as ele­
ments in H, the best N candidates according to the 
metric given in Eq. (7) are selected. 

4. For the resulting N view candidates the roll angle 
is determined using the roll histogram matching and 
6DOF pose estimation (as detailed in section 4). 

5. After aligning the views using the pose and roll infor­
mation gathered so far, an additional ICP [14] step is 
used to refine the alignment. 

6. Finally the N best view candidates are sorted using the 
number of inliers from the last iteration of ICP using a 
distance threshold of twice the voxel grid size. 

Because of its efficiency, we use the FLANN library 
[7] to perform the nearest neighbor search. FLANN in­
cludes different search and indexing methods such as linear 
search, randomized kd-trees or hierarchical k-means index­
ing. Moreover, it provides different distance and histogram 
comparison metrics for high dimensional spaces, including 
e.g. L 1, L2, Histogram Intersection, and ChiSquare. 

We have performed different empirical experiments to 
determine which is the best metric for our needs. The major 
problem with metrics like L 1 and L2 are its sensitivity to 
outliers. Dealing with partial occlusions implies that the 
histograms will have outliers due to missing parts of the 
objects even if the rest of the histogram is shaped correctly. 
Therefore, we use the following metric: 
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308 

1 + L: min(Ai, Bi) 

d(A, B) = 1 __ --'--i=--=l ___ _ 

308 

1 + L: max(Ai, Bi) 
i=l 

(7) 

where A and B represent two CVFH descriptors. This 
metric is not element-wise addivite, making it unsuitable for 
kd-tree search but suitable for hierarchical k-means index­
ing. At the moment, we are using linear search to retrieve 
the nearest neighbor since our database contains only 1704 
CVFH descriptors for the 44 objects in our training set. The 
computation time for finding the nearest neighbor is below 
2m3 in our experiments, and using other search methods 
such as hierarchical indexing requires an addiotional over­
head to construct the appropriate search structure, which is 
not necessary for linear search. 

6. Results 

For the evaluation of CVFH, we perform a different set 
of experiments and compare the results to VFH. First, we 
evaluate the performance on our training set for noise. We 
also evaluate the performance of both descriptors in match­
ing single objects in real scenes obtained with the Kinect 
sensor. Finally, we show some scenes with the aligned mod­
els overlapped as a qualitative evaluation, see Figure 7 . 

The criteria we use to evaluate performance in synthetic 
data are multiple: 

• Correct view and correct object id, respectively, in the 
first result. 

• Correct view and correct object id, respectively, in the 
first N results. 

• To test the performance of the camera's roll histogram, 
all views from the training set are randomly rotated 
along the virtual camera's roll axis. Because of dis­
cretization errors, we assume the result to be correct if 
the computed angle is off by 4° or less from the applied 
rotation. 

6.1. Noise 

Each view in the training set is noisified by applying a 
Gaussian kernel to each point. We use different standard de­
viations to test robustness to noise, ranging from 0.5mm to 
2mm for each point in the view. After a view is noisified, we 
compute the CVFH and VFH and perform a search for the 
nearest neighbors in our descriptors database obtained from 
non-noisified views and compute the metrics listed above. 
Table. 1 and Table. 2 show respectively the results for VFH 
and for CVFH. 

Table. 1 and Table. 2 show that with this kind of uniform 
noise and without missing parts VFH performs better than 

Noise levels (Stdev in mm) 
0.5mm Imm 1.5mm 2mm 

View (Ist) 99.32% 97.25% 92.76% 86.39% 
View (N-I st) 100% 100% 99.93% 99.60% 
Roll 98.32% 96.51% 93.89% 90.84% 
Id (I st) 99.53% 97.98% 94.63% 89.87% 
Id (N-I st) 100% 100% 100% 99.79% 

Table I. Recognition rates and roll angles correctness with differ­

ent amount of noise applied on the training data using YFH. 

Noise levels (Stdev in mm) 
0.5mm Imm 1.5mm 2mm 

View (1st) 93.89% 94.63% 86.92% 41.51 % 
View (N-I st) 97.38% 97.58% 93.62% 59.96% 
Roll 97.10% 97.52% 94.48% 79.53% 
Id (I st) 97.45% 97.38% 94.29% 58.62% 
Id (N-I st) 99.53% 99.73% 99.46% 77.33% 

Table 2. Recognition rates and roll angles correctness with differ­

ent amount of noise applied on the training data using CVFH. 

CVFH. Because in CVFH, the amount of points used for the 
computation of the centroid and the average of the normals 
which are used to build the Darboux coordinate system is 
usually smaller than in VFH, CVFH becomes more sensi­
tive to this noise applied uniformly over the whole partial 
view. Another reason is that when the amount of noise in­
creases, the estimation of stable regions becomes very un­
stable thus making the CVFH descriptor also unstable. 

It is interesting to note that the roll orientation performs 
extremely well (over 90% with 1.5mm noise) when CVFH 
or VFH return the correct view. 

6.2. Recognition and pose evaluation on real scenes 

We have performed recognition experiments on 18 of our 
44 objects in the database to estimate the recognition rate 
of CVFH, VFH and CVFH + post-processing using Kinect 
data. Here, we refer to CVFH + post-processing as the steps 
5) and 6) outlined in section 5.2. Because ground truth data 
for pose is not easily obtained, we decided to evaluate the 
recognition results manually. 

To do so we have taken each of the 18 objects inde­
pendently and placed them in the field of view of the sen­
sor. The cluster of points representing the view of the ob­
ject is extracted using Euclidean segmentation and recog­
nized using CVFH, VFH and CVFH + post-processing to 
refine the recognition results. The recognition of the three 
pipelines are displayed together with the matching view 
in the database and the CAD model overlayed. All three 
recognitions include the computation of the roll orientation 
for a full 6DOF pose. We visually inspected the results and 
annotated independently for each 3 results set at which posi-

590 



tion the correct object and pose is found. For each recogni­
tion, 14 nearest neighbors were retrieved. Each object was 
recognized 10 times in different stable poses. 

lOO,--�--------�-�-------, 

.& 80 
� 

E 60 
." g 40 
� 

20 
............ CVFH + post-processing 
--- CVFH 
-- VFH 

6 8 10 12 
Correct result appearing at position x 

Figure 6. Recognition rate for CVFH, VFH and CVFH including 

the recognition framework. We show how often the correct solu­

tion appeared within the first x results. 

Figure 6 shows the result of the experiment, where each 
point represents how many times we identified the right ob­
ject with in the first x results. It can be seen that CVFH 
outperforms VFH both in recognition rate for the first result 
and for the accumulated recognition rate over the first 14 
results. This is to show that although the recognition rate 
just by looking at the first result of CV F H is below 60% 
we obtain the correct solution in the top-10 results in 90% 
of the cases. If we take into account the top-10 results of 
CVFH which include the right solution in 90% of the cases 
and sort these with post-processing, we increase the recog­
nition rate in the first result to 70% of the cases. Ideally, 
we would like the recognition rate after post-processing to 
be 90% meaning that the post-processing can always iden­
tify the right solution if available in the candidates given by 
CVFH. In this case, for a desired recognition rate of 90%, 
the number of candidates is reduced using CVFH from 1409 
(number of views) to 10. 

7. Conclusions and future work 

We have presented the Clustered Viewpoint Feature His­
togram (CVFH) and shown that it can be robustly used to 
recognize objects and detect their poses in real scenes even 
when the training data source has different properties. In 
the scope of the paper, 44 objects were trained using CAD 
models and recognized in real scenes using the Kinect sen­
sor. 

Being able to determine a stable normal and a stable cen­
troid on the objects allows us to deal with partial occlusions 
and handle properly the different properties of the training 
and recognition sensors. In our experiments we have shown 
that CVFH returns in 90% of the cases the correct view in 
the first 10 results reducing the number of candidates that 
need to be processed from approx. 1409 (number of views) 
to 10 in less than 2ms. 

We have also presented the camera's roll histogram that 

can efficiently compute the rotation about the roll axis of 
the camera to which CVFH is invariant. 

Future work includes dealing more robustly with higher 
degrees of clutter and occlusion, larger object databases and 
taking advantage of the semi-global nature of CVFH be able 
to solve undersegmentation issues . 
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Figure 7. First column: Image of the scene, second column: results obtained using VFH and the third column using CVFH. Both VFH and 

CYFH results include the camera's roll histogram and the post-processing step to refine results. 
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