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Abstract

This paper describes a model based vision system for bin picking tasks. The system has 

two major modes; deriving a interpretation tree and applying the interpretation tree. 
When deriving an interpretation tree, a geometrical modeler is used to generate various 

apparent shapes of an object under various viewer directions. Secondly, shape groups are 
generated from these apparent shapes based on the observable faces under each viewer 
direction. Thirdly, representative attitudes are determined at each shape groups. 
Fourthly, various features are extracted using the geometrical modeler at each 
representative attitude. These features contain the original face inertia, the original face 
shape, the original edge distribution, the surface characteristic distribution which can be 
recovered from the observed shape with the affine matrix. Here, the affine matrix can be 

obtained from the surface orientation distribution. Fifthly, an interpretation tree is 
generated to classify an observed shape into one of the representative attitudes, and to 

determine the attitude using generation rules. Here, the interpretation tree determines 
maps, areas, and features for attitude determination. When applying the interpretation 

tree, the system uses the depth map, the needle map, and the edge maps, which are 
obtained by the pair of the photometric stereo systems. The interpretation tree 
determines the attidue and the position of the object observed as a target region in the 

image. The attitude and the position obtained is represented in the world in the 

geometrical modeler.



INTRODUCTION

Sensory capabilities will extend the functional range of robots. Without sensing the 

outer world, robots can only repeat pre-programmed tasks. Thus, the task is very rigid; 

such a system cannot overcome any small disturbance. Therefore, sensory capability is an 

essential component of a flexible robot.

Vision could be the most important type of robotic sensor. Since a vision sensor is a 

non-contact sensor, we can get the necessary input information without disturbing the 

environment. Also vision can acquire global information about a scene. This is not the case 

for the tactile sensor.

A manipulator without vision can only pick up an object whose position and attitude is 

pre-determined. Such a system needs the help of another machine and/or human for 

feeding objects at a pre-determined place in a pre-determined attitude. Since this feeding 

job is tedious, the job is quite unsuitable for a human being. Some researchers have aimed 

at solving this feeding problem by introducing mechanical vibration methods. These 

methods may cause defects in objects due to collisions. Other researches have proposed a

This paper proposes a method to solve this problem by visual guidance. This method
»

has following characteristics:

1. The system uses a depth map, a needle map, and edge maps which are 

obtained by the pair of the photometric stereo (Dceuchi:1985).

2. An interpretation tree controls the process of determining attitude with using 

the most appropriate features derived from these maps at each determining 

process.

3. The interpretation tree classifies one target region into a representative 

attitude and then to determine the attitude more precisely over the attitude 

range of the representative attitude.

4. The attitude and the position obtained is represented in the world in SOLVER 

(Koshikawa:1984).



DERIVING INTERPRETATION TREE

REPRESENTATIVE ATTITUDE

A three-dimensional object varies its apparent shapes depending on the viewer direction 

and viewer rotation. These apparent shapes of an object fall into groups such that each 

group consists of roughly same shapes. Some researchers explore this characterization 

with visible lines (Koenderink & Van Doorn:1979, Sugihara:1979, Chakravarty & 

Freeman:1982). This paper explore the characterization with observable faces under 

photometric stereo. Here, "roughly same" means that almost same faces can be observed 

hi the almost same condition under the photometric stereo.

The number of observable regions of a non-convex object depends on the viewer 

direction under the photometric stereo. The photometric stereo can determine the surface 

orientation at the place where the three light sources project their light directly. A non- 

convex object is often observed as a few of detectable regions which are isolated with each 

other by shadowing and/or mutual illumination between neighboring faces. The number 

of the isolated regions and their corresponding faces depends on the viewer direction. 

Thus, we can characterize the viewer direction based on the observable faces. (Note that 

the object attitude has three degrees of freedom; two degrees of freedom hi the viewer 

direction, and one degree of freedom in the viewer rotation. While the viewer rotation 

does not affect the number of observable regions, the viewer direction affects the number.)

Each viewer direction can be characterized with visible faces from the direction. Let us 

suppose that

face i is detectable

face i is not detectable 

,...,X ) denotes one label of an apparent shape based on the detectable faces under

the photometric stereo. We can characterize each viewer direction with this label. If this 

label has the same combination of 1 as another shape, then these two shapes are contained 

in the same shape group. In other words, the viewer directions which have the same visible 

face label becomes a shape group.



One representative attitude will be selected from each shape group. Each shape group is 

represented as one representative attitude. Namely, the viewer directions over one 

particular range is represented by one representative attitude. Usually, the viewer 

direction which gives the largest sectional area among a shape group is determined as the 

viewer direction for the representative attitude. The viewer rotation for the 

representative attitude is determined so as to have the maximum inertia direction which 

agrees with the x axis on the image plane.

Fig. 1 shows an example of this process. Fig.la is a picture of an object. Fig.lb is a 

model synthesized using SOLVER. Fig.lc shows apparent shapes of the object observed 

from sixty different viewer directions, where the faces enclosed with bold lines are 

observable by the photometric stereo. The sixty directions come from the face centers of 1 

frequency dodecahedral geodesic dome which can devide the spatial angle into sixty 

directions almost evenly. These shapes are fallen into 7 shape groups as shown in Fig.Id.

Through face group 1 to group 5, five representative attitudes are generated as shown in
*^  > » . f f  ^ 

Fig.le. Since group 6 corresponds to ^nolejregion of the object and group 7 has too small 17I ' 

visible area, no representative attitudes are generated from the group 6 and group 7. -^

WORK MODEL

The work models consist of original face information such as the original face inertia, the 

original face shape, the original face relationship, the original edge relationship, the 

surface characteristic distribution, the extended gaussian image. These work models will 

be used to classify one target region into a representative attitude, and to determine the 

attitude of an object observed as the target region. These work models are derived from 

SOLVER in modeling process, and are derived from needle maps and/or edge maps in 

determining process.

The work models are generated at each representative attitude. Since the surface 

orientation is available at each region from the needle map, the original face information 

can be recovered from the observed region information using affine transform. For 

example, when the surface orientation, the affine matrix, and the observed region shape is 

known, the original face shapes can ber recovered from the skewed region shape with the 

affine transform. Only one face information is necessary at each shape group in which



detectable faces are the same and they are reachable with each other by the affine 

transformation. The work models are, thus, generated at each representative attitude 

which represent one shape group.

Original Face Inertia

One work model is the original face inertia. The original face inertia gives the rough 

shape information of a face. In order to obtain the inertia, we have to convert a needle 

map into a binary map. Here, the binary map has 1 at the pixel where the surface 

orientation can be obtained there, and 0 at the pixel where the surface orientation cannot 

be obtained there. The original face inertia can be obtained from the obtained binary map 

and the affine matrix.

Original Face Relationship

A non-convex object often appears as multiple isolated regions under the photometric 

stereo. In this case, the relationships between regions are used as a work model. For each 

region, the relative position of other regions are stored. The relative position is described 

with a vector whose length corresponds to the distance between the mass centers of the 

two regions and whose direction indicates the direction from the mass center of the region 

to the other mass center based on the maximum inertia direction and the surface 

orientation of the region. In case that if the region has no unique inertia direction, for 

example a circular region, only the distance is stored.

Original Face Shape

The original face shape is also used to characterize a region. The face shape is described 

as the distance from the mass center of the face to the boundary of the face as a function of 

the angle round the mass center, d=d(0) The rotation angle 0 is calculated with respect to 

the maximum inertia direction. This is a two dimensional well-tessellated surface 

representation of the shape (Brown:1979).

Original Edge Distribution

Some of the prominent edge information is also used. In some case the needle map from 

the photometric stereo cannot determine the object attitude uniquely. In this case some of 

the prominent edge information is used to reduce this ambiguity. Thus, some of the edge 

information is stored if necessary. The edge information is described with the starting 

position and the ending position. These positions are denoted relatively with the mass



center of the face and the maximum inertia direction. In application, this position is 

converted into the position on the image plane using the affine matrix. Then, the 

connecting place between the converted starting position and the converted ending 

position will be searched on the edge map whether there is an edge or not.

Extended Gaussian Image

Roughly speaking, the extended Gaussian image of an object is a spatial histogram of its 

surface orientation distribution. Let us assume that there is a fixed number of surface 

patches per unit surface area and that a unit normal is elected on each patch. These 

normals can be moved so that their "tails" are at a common point and their "heads" lie on 

the surface of a unit sphere. This mapping is called the Gauss map; the unit sphere is 

called the Gaussian sphere. If we attach a unit mass to each end point, we will observe a 

distribution of mass over the Gaussian sphere. The resulting distribution of mass is called 

as the extended Gaussian image (EGI) of the object (Ikeuchi:1981).

Surface Characteristic Distribution

The surface characteristic distribution is available from the surface orientation 

distribution. A surface patch has a characteristic such as planer surface, cylindrical 

surface, elliptic surface, or hyperbolic surface. The first and the second fundamental 

forms can be obtained from the surface orientation and its derivatives. The first and 

second fundamental forms give the gaussian curvature and the mean curvature. The 

characteristic can be defined with the gaussian curvature and the mean curvature (do 

Carmo:1976). The surface characteristics are independent on the viewer direction and the 

rotation.

INTERPRETATION TREE
•

An interpretation tree determines the viewer direction and the rotation of an object 

observed as one target region. The interpretation tree reduces the freedom step by step 

comparing the most appropriate feature of feature in work models with the feature 

obtained from the observed data over one target region at each step. The interpretation 

tree consists of three parts. The first part classifies an unknown region into one of the 

representative attitudes. This operation reduces some of the freedom in the viewer 

direction. The second part determines the viewer direction of the region uniquely. The 

third part determines the viewer rotation around the viewer direction uniquely.



The interpretation tree is derived by the extraction rules before execution of the 

determining process. Each extraction rule is examined whether the rule can constrain 

some of the freedom in the viewer direction and the rotation. If the rule can constrain 

some of the freedom, the rule is adopted into the interpretation tree. This adoption 

operation generates an interpretation tree to determine the viewer direction and the 

viewer rotation completely.

Classifying into Representative Attitude

This section gives rules to generate the classification part of the interpretation tree. At 

each rule, if the rule can divide a group of the representative attitudes into smaller groups, 

the rule will be adopted into the tree. The decision whether the rule can divide them or not 

is made by human at present.

LI: Comparison based on the original face inertia.

L2: Comparison based on the original face shape.

L3: Comparison based on the extended Gaussian image.

L4: Comparison based on the surface characteristic distribution.

L5: Comparison based on the edge distribution.

L6: Comparison based on the region distribution.

L7: Comparison based on the relationship between a particular edge and a particular

surface characteristic distribution.

If one observed shape of an object cannot be classify into one particular representative 

attitude with these rules, it means that the object is observed as the same number of 

regions whose area, inertia moment, edge distribution, and the surface characteristic 

distribution are completely same in two different attitude. We treat such kinds of objects 

over the scope of this technique presented in this paper.

The classification part of the interpretation tree is generated to the object using these 

rules.
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Determining Viewer Direction and Viewer Rotation

This section gives the rules to generate the part of the interpretation tree which 

determines the viewer direction and the rotation. If one rule can reduce some parts of 

remaining freedoms in the viewer direction and the rotation, the rule will be adopted into 

the tree.

Alt Using the mass center of EGI mass distribution.

A2: Using the extended Gaussian image.

A3: Using the position of observable areas distribution.

A4: Using the rotation of original face shape.

A5: Using the position of the surface characteristics distribution.

A6: Using the position of the edges.

A7: Using the position of the edges with respect to the position of the surface
characteristics distribution.

If we cannot determine the viewer direction and the rotation with these rules, it means 

that the object is observed as the same number of regions whose area, inertia moment, 

edge distribution, and the surface characteristic distribution are completely same in two 

different attitude. We treat such kinds of objects over the scope of this technique 

presented in this paper.

The viewer direction and the rotation is determined at each representative attitude 

using the most effective featur at each step. The most powerful rule for determining the 

viewer direction and the rotation depends on the representative attitude and the stage of 

the determining process. Thus, we will discuss which rule will be used for generating the 

determination part of the interpretation tree at each representative attitude. Using these 

rules, the determination part of the interpretation tree is derived. Fig.2 shows the 

interpretation tree derived for the object using these rules.
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APPLYING INTERPRETATION TREE

This experiment checks the ability of the interpretation tree. A strategy is necessary to 

select the region interpreted for the bin picking tasks. The highest region is selected as the 

target region. In this scene the region which will be classified into S2 representative
9

attitude is highest.

%

The system can use three kinds of maps: edge maps, needle maps, and one depth map. 

Fig.3 shows one of the edge maps (Fig.Sb), one of the needle maps (Fig.3c), and one depth 

map (Fig.3d) to be used by the interpretation tree. The system also generate a binary map 

from the needle map which has 1 at the place where the surface orientation is determined 

and has 0 at the place where the surface orientation cannot be determined. Isolated regions 

are obtained from this binary map using the labelling operation.

Fig.4 shows the determination process of a region to be classified into S2 representative 

attitude, while a bold line in Fig.4a indicates the trace of the determining process of this 

region in the interpretation tree. The arrow in Fig.Sa indicates the target region given to 

the interpretation tree. The interpretation tree calculates the original face inertia of the 

region from the binary map converted from the needle map and the affine matrix obtained 

from the needle map over the target region. Fig.4b shows the square which has the same 

inertia direction and inertia value as the obtained inertia moment. The interpretation tree 

determines this region to belong to the group of representative attitude (82, S3, 84) from 

the inertia value (LI).

The interpretation tree makes the distinction between the representative attitude (82) 

and the group (S3, 84) by examining whether a brother region exists to have the same 

inertia direction and the inertia value around the target region or not. The interpretation 

tree tries to find such a brother region, and succeeds to find the brother region as shown in 

Fig.4b, where the target region and the brother region is connected with a solid line in 

Fig.4b. From this evidence, the interpretation tree determines that the target region and 

the brother region come from the same object and belong to 82 representative attitude 

(L6).
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The interpretation tree makes an EGI-mass center comparison to determine the viewer 

direction (Al). From the direction of the brother region, the viewer rotation is determined 

up to the two directions (A3).

The edge distribution is necessary to determine the viewer rotation uniquely (A7). The 

interpretation tree only examines the existence of the edge distribution whose direction 

agrees with the edge direction under one of the two possible rotation, at the place where 

one of the two possible rotations are supposed to make the edge distribution. This 

predicted place and the predicted direction can be obtained by applying the affine 

transform to the edge representation hi the work models. In Fig.4c, the dot lines indicate 

the distribution of edges over the target region and the broken lines indicate the search 

areas for the edge distributions. The solid lines in Fig.4c indicate the edges found to have 

the supposed directions at the supposed places under two possible rotations of the object. 

One of the two rotations is determined by the comparison of the edge distributions. The 

interpretation tree determines the object attitude in the space uniquely up to this point.

The object is represented in the world model in SOLVER using the object position and 

the attitude. The neighboring regions around the target region and the brother region are 

expressed as dodeca prisms as before. The final representation in SOLVER is shown as in 

Fig.4d. Fig.4e shows the all regions obtained successfully by the interpretation tree.

CONCLUSION

This paper describes a vision system to localize an object using a depth map, needle 

maps, and edge maps by an interpretation tree.

This system has the following characteristics:

1. The system requires one depth map, needle maps, and edge maps.

2. Representative attitudes are derived from a geometrical modeler, SOLVER 
automatically.

3. The interpretation tree controls the localization process to use the most 
appropriate features at each stage of the localization,

4. The obtain attitude and position is represented in the world model in SOLVER
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for further use.

This paper develops a flexible interpretation by an interpretation tree using multiple 

sensory inputs. Recent work in image understanding has let to techniques for computing 

surface orientation and/or surface depth. We can take various sensory inputs from the 

same scene by these methods. Since each technique has some merits and demerits, we have 

to select one appropriate feature among many available features in each processing stage. 

This paper proposes to use the interpretation tree for this purpose. This flexible 

interpretation matching should be explored further more.

A geometrical modeler is used to the recognition problem. Models from a geometrical 

modeler possesses rich geometrical features. Unfortunately however, the distance between 

the rich information and the information from the observed data is far. This paper uses 

the work model and the representative attitude to interface them guided by the 

interpretation tree. The effort is required to explore more convenient forms and method 

to connect them as well as to develop method of automatic generation and aquisition of 

the interpretation tree from CAD models.

The task of a vision system is to generate a description of the outer world. Some of the 

representation uses symbolic representation, others uses mathematics representations such 

as EGI and GC. However, since the representation is needed to manipulate it by other 

modules such as planning and navigation, the representation is easy to manipulate. This 

paper proposes to represent the outer world in the CAD model, because a CAD model is 

easy to achieve further task from that representation. Certainly there are many path 

finding programs to start from the polyhedral representations. How to express the outer 

world in such a representation should be explored more.
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