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In this paper, we derive new geometric invariants for structured 3D points and lines
from single image under projective transform, and we propose a novel model-based
3D object recognition algorithm using them. Based on the matrix representation of
the transformation between space features (points and lines) and the corresponding
projected image features, new geometric invariants are derived via the determinant
ratio technique. First, an invariant for six points on two adjacent planes is derived,
which is shown to be equivalent to Zhu’s result [1], but in simpler formulation.
Then, two new geometric invariants for structured lines are investigated: one for
five lines on two adjacent planes and the other for six lines on four planes. By
using the derived invariants, a novel 3D object recognition algorithm is developed,
in which a hashing technique with thresholds and multiple invariants for a model
are employed to overcome the over-invariant and false alarm problems. Simulation
results on real images show that the derived invariants remain stable even in a noisy
environment, and the proposed 3D object recognition algorithm is quite robust and
accurate. c© 2001 Elsevier Science (USA)
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1. INTRODUCTION

Projective invariants are known to be an effective tool for 3D object recognition. They
can provide a feasible solution for the view-variant problem in object recognition, using
invariant properties common to all views of an object, irrespective of viewing direction and
position of a camera [2]. Exploiting these properties, the model-based recognition can be
efficiently carried out, avoiding the problematic camera calibration step. So far, a lot of
work has been done to extract geometric invariants from various types of image features,
including points, lines, or curves, and to apply them to recognize objects. However, most
of them are concerned with planar features, which are usually inappropriate to general 3D
object recognition using projected images [3–6].

Recent research reveals that invariants cannot be obtained for a set of 3D points in general
configuration from a single view [7]. Thus, additional information on the geometric relation
between space points is required to obtain invariants for general 3D point sets.

One approach is to derive invariants from multiple uncalibrated images of an underlying
object. Barrett et al. proposed a method to derive an invariant for six points by using stereo
images [8]. Hartley has shown that once the equipolar geometry is known, the invariant
could be computed from the images of the four lines in two distinct views with uncalibrated
cameras [9]. Quan [10] has also derived invariants for six space points from three images,
provided that the correspondences of the points are known.

While, recently, several researchers have proposed methods to construct invariants, by
approximating the perspective projection model in simplified forms, such as weak perspec-
tive, para-perspective, and affine projections, provided that the camera is far away from
the object compared to the depth range of the object. Weinshall proposed a hierarchical
representation of 3D shape of an object which is invariant to affine transformation using
multiple frames [11]. Wayner considered a structure of four points, composing three or-
thogonal vectors in 3D space and constructed an invariant descriptor of single 2D image
under orthographic projection and scaling [12].

Another common approach to derive invariants is to impose some restrictions on the geo-
metric structure of space features. Rothwell et al. have shown that the projective invariants
could be derived from a single view for two classes of structured objects [13]: points that lie
at the vertices of a (virtual) polyhedron and objects that have bilateral symmetry. To derive
these invariants, minimum of 7 and 8 points are required, respectively. More recently, Zhu
et al. argued that there exists an invariant for a structure with six points on two adjacent
planes, constituting of two sets of four coplanar points [1]. Sugimoto also has derived an
invariant from six lines on three planes in a single view, including a set of four coplanar
lines and two pairs of coplanar lines [14].

In this paper, we derive new invariants for several structured sets of space lines as well
as points, and we investigate the relationships with the previously known invariants. First,
a new invariant for six restricted space points, which has the same geometric configuration
as Zhu’s approach, is derived. Unlike Zhu’s approach in which an implicit point, obtained
by the intersection of lines, is involved to calculate the invariant, the proposed approach
provides the same invariant without any auxiliary point, yielding a much simpler form of
invariant. Then, by extending the approach to line features, and investigating the properties
related to the projection of lines, we derive two new invariants for structured lines in space:
the invariant for five lines on adjacent planes, and that for six structured lines on four
planes.
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Based on the derived geometric invariants for structured features in space, a novel 3D
object recognition algorithm is proposed, in which the matching is carried out based on
the geometric hashing technique [15]. For the given model of a 3D object, by analyzing
the geometric relations among space features, all pertinent sets of features having the
constrained structures to yield the invariants are automatically extracted. Then, invariant
values are computed and recorded in a table of model invariants as the index of related
features. For a given input image, candidate sets of features are selected through a geometry
test to confirm the structural feasibility to the model. Then, for each candidate set, an
invariant is calculated to index the table of model invariants, and it is used to vote for the
corresponding feature set in the model. The final result of matching is determined by the
maximum scores credited by repeated votes.

Results on extensive experiments demonstrate that the proposed invariants remain quite
stable in spite of pixel noise and change of viewing direction, so that the 3D object recog-
nition can be efficiently carried out. Moreover, it is shown that by employing a geometric
hashing technique, the target object in images can be correctly located even when some
features of the object are missing due to occlusion and the imperfect feature extraction
process.

This paper is composed of six sections. Following the Introduction, the invariant for
constrained points is discussed in Section 2, and the invariants for lines are proposed in
Section 3. In Section 4, the proposed object recognition technique based on the developed
invariants for structured features is described. The robustness of the proposed invariants
and the performance of the proposed recognition technique are examined by several exper-
iments for real and synthetic images in Section 5, and finally the conclusions are drawn in
Section 6.

2. INVARIANT FOR SIX RESTRICTED SPACE POINTS

In this section, by using a Euclidean transformation and determinant ratio technique, a
new invariant for a restricted set of points in space is derived. Then, the comparison of the
proposed invariant with the invariant derived by Zhu et al. is also provided.

2.1. Derivation of a New Invariant

In a projective image formation process, a space point X = [X, Y, Z ]T is mapped to
an image point x = [x, y]T . Let us denote M = [X, Y, Z , 1]T and m = [x, y, 1]T as the
homogeneous representation of X and x, respectively. Then, the relation between these two
points can be given linearly, via a 3 × 4 projection matrix P, by

wm = PM, (1)

where w is a scaling factor.
Let us consider six space points on two adjacent planes that constitute two sets of four

coplanar points as shown in Fig. 1, where the points A, B, C, and D lie on one plane �,
while points C, D, E, and F are on the other plane �. Through the imaging process, these
points are projected to the corresponding image points A′–F ′, respectively, given by

wi mi ′ = PMi , for i = A, B, C, D, E, and F . (2)
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FIG. 1. Geometric configuration of six points on two adjacent planes.

Let U� be a Euclidean transform of only rotation and translation, which moves the points
on the plane � to the XY plane. Then, (2) can be rewritten as

wi mi ′ = PU−1
� M�

i , for i = A, B, C, and D, (3)

where M�
i = [X�

i , Y �
i , 0, 1]T , which is the transformed coordinates of Mi by U� . Note that

the third column of the matrix PU−1
� can be ignored, since the Z coordinate of M�

i is zero.
Therefore, (3) can be simplified as

wi mi ′ = T�n�
i , for i = A, B, C, and D, (4)

where T� is a 3 × 3 matrix, obtained by eliminating the third column of PU−1
� , and n�

i =
[X�

i , Y �
i , 1]T . Similarly, using the 3 × 3 matrix T�, the relation between the points on the

plane � and the image points can be expressed as

w j m j ′ = T�n�
j , for j = C, D, E, and F.

Now, by augmenting the three equations for the points A, B, and C in a single matrix form,
we have

[wAmA′ wBmB ′ wC mC ′ ] = T�

[
n�

A n�
B n�

C

]
. (5)

By taking the determinant for both sides of (5), we obtain

wAwBwC |mA′ mB ′ mC ′ | = |T�|∣∣n�
A n�

B n�
C

∣
∣. (6)

Note that the determinant of a matrix composed of three coplanar points in homogeneous
coordinate is equal to twice the triangular area made of those points. Moreover, the Euclidean
transform preserves the area of a planar patch as well as the distance between points. Thus,
if we denote the area of the triangle composed of three vertices, i, j , and k by Qi jk , then
(6) becomes

wAwBwC Q A′ B ′C ′ = |T�|Q ABC = i1. (7)

Similarly, the following three equations can be obtained for the other sets of points,

wAwBwD Q A′ B ′ D′ = |T�|Q AB D = i2 (8)
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wCwEwF QC ′ E ′ F ′ = |T�|QC E F = i3 (9)

wDwEwF Q D′ E ′ F ′ = |T�|Q DE F = i4. (10)

Using Eqs. (7)–(10), we can establish the following invariant Ip for the six structured
space points:

Ip = i1i4

i2i3
= Q A′ B ′C ′ Q D′ E ′ F ′

Q A′ B ′ D′ QC ′ E ′ F ′
= Q ABC Q DE F

Q AB D QC E F
. (11)

In applying Ip for object recognition, two important facts should be noticed: One is that
if three or more points among the coplanar subset of the model points are collinear, Ip

could be zero or undefined, which is a degenerate configuration for Ip. Another one is the
“over-invariance” problem. That is, different configurations of model features can yield the
same invariant, which may result in misclassification. For example, if points A and B in
Fig. 1 are translated on the plane �, while preserving the related areas, the invariant value
will not change. Thus, to increase the reliability for recognition, multiple invariants with
more feature sets should be considered.

2.2. Comparison with Zhu et al.’s Result

Zhu et al. [1] also have derived the invariant for six restricted space points, which have
the same geometric configuration considered in this paper. However, for the derivation of
the invariant, they employed an implicit point G, constructed by the intersection of several
lines.

As shown in Fig. 2, the intersection of the lines AD and BC and that of the lines C F and
DE are denoted by S1 and S2, respectively. Then, the point G is defined as the intersection
of the lines F S1 and BS2. Based on this geometric configuration, they derived an invariant,
given by

Iz = QC B A QC E D QC FG

QC D A QC E F QCG B
.

Note that the invariance of Iz can be easily verified using the same approach described in
the previous section. Let us denote the virtual plane on which the four points B, C, F, and
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FIG. 2. A structure of six points given by Zhu et al.
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G lie by �, and the corresponding 3 × 3 transform matrix by T� . Then, we can obtain the
following projective relations for the six triangular areas,

wCwBwA QC ′ B ′ A′ = |T�|QC B A

wCwDwA QC ′ D′ A′ = |T�|QC D A

wCwEwD QC ′ E ′ D′ = |T�|QC E D

wCwEwF QC ′ E ′ F ′ = |T�|QC E F

wCwFwG QC ′ F ′G ′ = |T� |QC FG

wCwGwB QC ′G ′ B ′ = |T� |QCG B,

which simply lead to

QC ′ B ′ A′ QC ′ E ′ D′ QC ′ F ′G ′

QC ′ D′ A′ QC ′ E ′ F ′ QC ′G ′ B ′
= QC B A QC E D QC FG

QC D A QC E F QCG B
.

Now, let us verify that the invariant Ip, derived in the previous section and Iz are equivalent
to each other, by showing that

QC B A QC E D QC FG

QC D A QC E F QCG B
= Q ABC Q DE F

Q AB D QC E F
.

For notational simplicity, let us define some vectors and auxiliary parameters first; three
vectors,

→
C A,

→
C D, and

→
C E are denoted by the basis vectors 	a, 	d, and 	e, respectively, and as

shown in Fig. 2, the intersecting ratios of lines are defined by six parameters, given by

DS1 : AS1 = α : (1 − α); DS2 : E S2 = β : (1 − β)

C S1 : BS1 = 1 : (γ − 1); C S2 : F S2 = 1 : (δ − 1)

GS1 : G F = λ : (1 − λ); GS2 : G B = µ : (1 − µ) .

Note that the three vectors 	a, 	d, and 	e and the four parameters α, β, γ , and δ uniquely
specify the geometric configuration of the six points, while the other two parameters λ and
µ are dependent ones. Then, other vectors can be expressed as the linear combination of
the three basis vectors, in terms of these parameters, given by

→
C S1 = α	a + (1 − α) 	d

→
C B = γ

→
C S1 = αγ 	a + (1 − α)γ 	d

→
C S2 = β 	e + (1 − β) 	d

→
C F = δ

→
C S2 = βδ 	e + (1 − β)δ 	d,

and
→

CG can be written as

→
CG = (1 − λ)

→
C S1 + λ

→
C F

= α(1 − λ) 	a + {(1 − β)δλ + (1 − α)(1 − λ)} 	d + βδλ	e. (12)
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It is noted that since →
CG can also be expressed as

→
CG = (1 − µ)

→
C S2 + µ

→
C B

= αγµ 	a + {(1 − β)(1 − µ) + (1 − α)γµ} 	d + β(1 − µ)	e, (13)

and by comparing (12) and (13), we obtain the following relations for λ and µ,

1 − λ = γµ

1 − µ = δλ

λ = γ − 1

γ δ − 1

µ = δ − 1

γ δ − 1
.

Now, let Q ABC D be the area of the quadrilateral, made of four vertices A, B, C, and D.
Then, we can represent the areas of the triangles involved in the invariants Ip and Iz , in
terms of Q ABC D, QC DE F , and QC B F , scaled by four parameters α, β, γ , and δ. That is,

Q ABC = (1 − α)Q ABC D; Q AC D = 1

γ
Q ABC D; Q AB D = γ − 1

γ
Q ABC D

QC E F = (1 − β)QC DE F ; QC E D = 1

δ
QC DE F ; Q DE F = δ − 1

δ
QC DE F

QC FG = 1 − λ

γ
QC B F = δ − 1

γ δ − 1
QC B F

QCG B = 1 − µ

δ
QC B F = γ − 1

γ δ − 1
QC B F .

Thus, Ip is expressed as

Ip = Q ABC Q DE F

Q AB D QC E F

= (1 − α)Q ABC D
δ − 1

δ
QC DE F

γ − 1
γ

Q ABC D(1 − β)QC DE F

= (1 − α)(δ − 1)γ

(1 − β)(γ − 1)δ
,

and Iz can be also expressed as

Iz = QC B A QC E D QC FG

QC D A QC E F QCG B

=
(1 − α)Q ABC D

1
δ

QC DE F
δ − 1
γ δ − 1 QC B F

1
γ

Q ABC D(1 − β)QC DE F
γ − 1
γ δ − 1 QC B F

= (1 − α)(δ − 1)γ

(1 − β)(γ − 1)δ
,

which proves the equivalence of the two invariants.
In conclusion, since the invariant, proposed by Zhu et al., is equivalent to the invariant

Ip presented in this paper, the virtual point G is redundant and unnecessary to calculate the
invariant for the constrained six points.
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3. INVARIANTS FOR RESTRICTED SPACE LINES

In this section, we extend the notion of the invariant over space points to restricted space
lines. By investigating the properties related to the projection of lines, we derive two new
invariants for structured lines.

3.1. Properties Related to Line Projection

Before deriving invariants for restricted lines, let us discuss several properties related to
the projection of lines first.

Note that a line on the plane � can be simply represented, in terms of the transformed
coordinates, as

l� · n� = 0, (14)

where l� = [a� b� c�]T , which is the coefficient vector of the planar line.
It is noted that αl� is equivalent to l� , where α is a nonzero scaling term. To dis-

criminate the projected image line and the space line, let us denote the image line by l′

hereafter.

Remark 1. Given two space points whose transformed coordinates are n�
A and n�

B , let
l� be the line passing through them. Then, the line can be expressed by the cross product
of the two point vectors, given by

αl� = (
n�

A × n�
B

)
, (15)

where α is a constant.

Remark 2. The cross product of two coplanar lines l�1 and l�2 is equal to the crossing
point n� of them, or

βn� = (
l�1 × l�2

)
, (16)

where β is a constant.
Note that the above definition and Remarks also hold for points and lines on the image

plane. That is, n� and l� can be substituted for m and l′, respectively, in (14), (15), and
(16).

LEMMA 1. If the projection of a point on the plane �, whose transformed coordinate is
n�, is given by (4), then the line on the plane �, denoted by the transformed coordinate l�,

is mapped to the line l′ by a projection matrix V�, s.t.,

l′ = ε�V�l�,

where V� = [
t�2 × t�3 t�3 × t�1 t�1 × t�2

]
, (17)

t�i is the i th column vector of the matrix T�, and ε� is a constant.
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Proof. Assume that n�
A and n�

B on the line l� are projected to mA and mB , respectively.
Then, from (15) and (4), the line l′, projected from l� , can be expressed as

l′ = 1

α′ (mA × mB)

= 1

α′
(
wAT�n�

A × wBT�n�
B

)

= wAwB

α′
(
T�n�

A × T�n�
B

)
.

Note that for a 3 × 3 matrix T� and 3 × 1 vectors a and b, we have

T�a × T�b = (
a1t�1 + a2t�2 + a3t�3

) × (
b1t�1 + b2t�2 + b3t�3

)

= (a1b2 − a2b1)
(
t�1 × t�2

) + (a2b3 − a3b2)
(
t�2 × t�3

) + (a3b1 − a1b3)
(
t�3 × t�1

)

= [
t�2 × t�3 t�3 × t�1 t�1 × t�2

]
(a × b), (18)

where t�i is the i th column vector of the matrix T�, a j is the j th element of the vector a,
and bk is the kth element of the vector b, respectively. Therefore, using (18), l′ can be written
as

l′ = wAwB

α′
[
t�2 × t�3 t�3 × t�1 t�1 × t�2

](
n�

A × n�
B

)

= ε�V�l�,

where ε� = wAwBα
α′ , and V� = [

t�2 × t�3 t�3 × t�1 t�1 × t�2
]
. �

Remark 3. It is clear that the point and line projection matrices T� and V� satisfy the
following relationship, given by

VT
�T� = |T�|I, (19)

where I is the 3 × 3 identity matrix.

LEMMA 2. Consider three space lines on two adjacent planes � and �, constituting
two pairs of coplanar lines with a shared line, as shown in Fig. 3, where l j

i denotes the i th
line on jth plane. Let l′i be the projected image line of l j

i . Then, the following relationship
holds,

D′
123 = ε�

1 β ′
23w23

β23
|T�|D123, (20)

where

D123 = ∣
∣l�1 l�2 l�3

∣
∣

D′
123 = ∣

∣l′1 l′2 l′3
∣
∣.
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FIG. 3. Configuration of three lines on two adjacent planes.

Proof. Note that the determinant D′
123 can be expressed as

D′
123 = l′T1 (l′2 × l′3).

And, by using (2), (16), (17), and (19), this can be rewritten as

D′
123 = ε�

1

(
V�l�1

)T
(l′2 × l′3)

= ε�
1 β ′

23

(
V�l�1

)T
m23

= ε�
1 β ′

23w23
(
l�1

)T
VT

�T�n�
23

= ε�
1 β ′

23w23

β23
|T�|(l�1

)T (
l�2 × l�3

)

= ε�
1 β ′

23w23

β23
|T�|D123,

where m23 is a virtual point, formed by l′2 and l′3. �

3.2. Derivation of Two New Invariants for Restricted Lines

From the relationship among three lines on two adjacent planes, given in (20), two new
invariants for structured lines can be readily derived.

THEOREM 1. For a set of five structured lines on two adjacent planes, which consists of
two set of three coplanar lines as shown in Fig. 4, there exists an invariant Il1, given by

Il1 = D′
123 D′

543

D′
143 D′

523
.

Proof. From (20), we have the following relationships for each D′
i jk .

D′
123 = ε�

1 β ′
23w23

β23
|T�|D123
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FIG. 4. Configuration of five structured lines on two adjacent planes.

D′
543 = ε�

5 β ′
43w43

β43
|T�|D543

D′
143 = ε�

1 β ′
43w43

β43
|T�|D143

D′
523 = ε�

5 β ′
23w23

β23
|T�|D523,

yielding

Il1 = D′
123 D′

543

D′
143 D′

523
= D123 D543

D143 D523
.

�

Note that even when the five lines are on a single plane in space, the invariance of Il1

is still preserved, which is the well-known invariant of five coplanar lines (FCL)
[2].

THEOREM 2. For a set of six structured lines, which is composed of three coplanar
lines and three pairs of planar lines as depicted in Fig. 5, there exists an invariant Il2,

given by

Il2 = D′
124 D′

235 D′
316

D′
125 D′

236 D′
314

.

Proof. Using (20), the following relationships for each D′
i jk can be obtained.

D′
124 = ε�

4 β ′
12w12

β12
|T�|D124

D′
235 = ε�

5 β ′
23w23

β23
|T�|D235
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FIG. 5. Configuration of six structured lines.

D′
316 = ε�

6 β ′
31w31

β31
|T� |D316

D′
125 = ε�

5 β ′
12w12

β12
|T�|D125

D′
236 = ε�

6 β ′
23w23

β23
|T� |D236

D′
314 = ε�

4 β ′
31w31

β31
|T�|D314.

Therefore, we have

Il2 = D′
124 D′

235 D′
316

D′
125 D′

236 D′
314

= D124 D235 D316

D125 D236 D314
.

�

Notice that the determinant Di jk involves three lines on two adjacent planes, while the
determinant Qi jk for Ip involves three coplanar points. In a geometric sense, Di jk can be
interpreted as a scaled distance from one line li to the cross point of the other two coplanar
lines, l j and lk , while the scale factor varies depending on the scale factors of the line
parameters. While, by eliminating the scale factors using the determinant-ratio method,
the derived invariants, Il1 and Il2 can be geometrically interpreted as the ratio of related
distances.

Similarly to the point invariant case, degeneracy configurations as well as over-invariance
problem may occur for the line invariants. Note that three concurrent or parallel lines will
bring about the degeneracy conditions for Il1 and Il2. And, since the proposed line invariants
represent the distance ratio in geometric sense, there will exist many different configurations
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FIG. 6. Configuration of six lines given by Sugimoto.

which yield the same invariant value. Thus, for practical applications, the line invariant-
based recognition algorithm should be designed to resolve these problems.

3.3. Comparison with the Invariant by Sugimoto

In [14], Sugimoto has also shown that there exists an invariant for six constrained space
lines whose configuration includes a set of four coplanar lines and two pairs of coplanar
lines on three mutually adjacent planes, as depicted in Fig. 6:

Is = D′
123 D′

564

D′
124 D′

563
.

By using the relationship among three lines on two adjacent planes, described in Lemma 2,
this invariant can be easily verified as follows:

Since we have

D′
123 = ε�

3 β ′
12w12

β12
|T�|D123

D′
564 = ε�

4 β ′
56w56

β56
|T�|D564

D′
124 = ε�

4 β ′
12w12

β12
|T�|D124

D′
563 = ε�

3 β ′
56w56

β56
|T�|D563,

the following invariant relation for cross-ratio holds

D′
123 D′

564

D′
124 D′

563
= D123 D564

D124 D563
.
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Note that although the same number of lines are involved for the invariant Is as for Il2

derived in this paper, the geometric configurations are quite different. Thus, depending on
the geometry of the features which constitute the object model, an adequate invariant can
be selectively employed for a specific application.

4. PROPOSED 3D OBJECT RECOGNITION ALGORITHM

In this section, we propose a novel 3D object recognition algorithm, employing the
invariants for constrained 3D points and lines derived in the previous sections. Although
the invariant value itself can serve as an effective key to object recognition, its limitations and
related problems should also be taken into account for real applications. Note that the image
formation and feature extraction processes inevitably cause positional measurement errors,
yielding unreliable invariant values. And also, as was discussed in the previous sections,
the over-invariance and degeneracy problems may occur. To cope with these problems,
the proposed recognition algorithm employs several featuring components: table of model
invariants, geometry test, and geometric hashing combined with thresholding, which will be
explained in detail, respectively. Figure 7 shows the overall block diagram of the proposed
algorithm.

The target object model is assumed to be composed of a group of features, such as
dominant points or line segments, with the inherent information about the coplanarity among
the features. For a given model, by analyzing the geometric relations among the features, all
pertinent sets of features, satisfying the constrained structures are automatically extracted,

Input image

Feature extraction

Generate candidate set

Geometry test

Compute invariants

Target model

Geometry analysis

Extract informative set

Compute all invariants

Table of model invariants

Matching by vote

Recognition result

FIG. 7. The overall block diagram of the proposed algorithm.
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which will be referred as informative sets. For example, let us consider a target object model,
which has the following structural information:

plane index lines
1 · · ·
...
i 8 9 13
...
j 10 13 15
...
k 10 16
...
l 5 15

In this model, the set {8, 9, 13, 10, 15} constitutes an informative set for Il1 and the set
{10, 13, 15, 9, 16, 5} composes another informative set to yield the invariant Il2. Remem-
ber that the informative set should not include the degenerate configurations discussed in
Sections 2.1 and 3.2. For each informative set, all possible invariant values obtained by
exchanging the order of index are computed and recorded in the table of model invariants
as the indices of features. The table is composed of segmented bins in terms of the invariant
value. Note that the tolerance of error for invariant value is determined by the size of the
bin. In order to maintain the same maximum tolerance rate T hi for each invariant value,
we choose the size of bin to be proportional to the invariant value. This informative set
construction process is carried out in off-line mode, and thus it accelerates the overall
matching process.

When an input image is applied to the recognition system, features are extracted, making
a pool of input features. From this pool, candidate sets of features are selected, followed
by a geometry test, which examines if the candidate sets have adequate geometric structure
to yield the invariants. Note that although the exact 3D structure of a set of candidate
features cannot be inferred due to projection, some useful geometrical relations among
space features can be still found in 2D images. Figure 8 shows an example of geometry test
on the informative set for Il1. In this case, we can compute an invariant value of Il1 from the
five lines, l1, . . . , l5 shown in Fig. 8. Note that without any constraint, all permuted indexing
of five lines (5!) should be compared with the model. However, in the image formed by
projecting these lines, it is obvious that the following properties are still preserved:

• l3 divides the set into two subsets of lines, {l1, l2} and {l4, l5}.
• the circulating order of lines in each subset is preserved, like as l1 → l2 → l3 and

l4 → l5 → l3.

Thus, by discarding feature sets which do not satisfy these geometric constraints, the
number of candidate sets for Il1 is greatly reduced. Similarly, we can find and use adequate
invariant structural properties for the informative sets of Ip and Il2, to not only eliminate
illegal candidate sets but also rearrange legal sets.

Following the geometry test, invariant value is computed for each candidate set in the
input image, which is then used as the index to the table of the model invariants. Voting
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FIG. 8. An example of geometry test for Il1.

is performed according to the correspondences among the candidate sets and the model
informative sets recorded in the indexed bin.

By repeating this process including the geometry test, computation of invariants, and
voting of all candidate sets, the correspondences among the model features and the input
features are easily found based on the maximum scores credited by votes, and finally the
matching is accomplished.

Notice that some informative sets of the 3D model would be unobservable or missing
in a scene due to the change of viewing direction, occlusion, noise, and imperfect fea-
ture extraction, which in turn cause false alarms in matching. To cope with this problem, in

FIG. 9. Test images for Ip and Il1.
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FIG. 10. Test images for Il2.

FIG. 11. Extraction of informative sets for point features.
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FIG. 12. Extraction of informative sets for line segments.

this work, we define a predefined threshold T hs as the minimum ratio of voting score
to the maximum expected score for each feature, and we utilize it in geometric hashing
process to confirm the correspondences. By employing the geometric hashing technique
with thresholds in matching, not only the problem of false alarm is efficiently solved, but
also the computational complexity is greatly reduced.

5. EXPERIMENTS

We have carried out several simulations on both synthetic and real scenes to investigate
the robustness of the proposed invariants. First, the numerical stability of Ip and Il1 for the
features on two adjacent planes were examined. Figure 9 shows the four test images, which
were obtained by taking images of the same object in different viewing conditions. The six
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FIG. 13. Experiments on the synthetic images.

points, denoted by A–F were used to calculate Ip, and the five white lines, marked as 1–5,
were used for Il1, respectively. For each image, both invariants were calculated and listed
in Table 1. The second row in Table 1 indicates the measured value of Ip for each image,
and the third row shows the deviation from the average in percentage. Similarly, the fourth
and fifth rows represent the calculated values of Il1, and the errors to the mean, respectively.
Note that although the positions of feature points and lines were disturbed due to imperfect
extraction process, the deviation from the average value for each invariant were observed
to be less than 2%. This implies that the invariants Ip and Il1 remain constant, in spite of
the noise as well as substantial changes in viewpoint.

Tests for the invariant Il2 were also performed with four different images captured in
different imaging conditions as shown in Fig. 10. Il2 was calculated using the six specified
structured lines for each image. The results of the experiment are given in Table 2, in which

TABLE 1

The Measured Values of Ip and Il1

View view1 view2 view3 view4 Average

Ip 0.627 0.639 0.625 0.619 0.627
Error to the average (%) 0.0 1.9 0.3 1.5 0.9
Il1 0.849 0.842 0.845 0.861 0.849
Error to the average (%) 0.0 0.8 0.2 1.4 0.6
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FIG. 14. Experiments on the aerial images.

the second and third rows indicate the calculated value of Il2, and the deviation from the
average, respectively. Note that the deviation errors are less than 1%, demonstrating the
stability of Il2, even in the presence of the pixel noise and view variation. Thus, from these
results we conclude that the proposed invariants can be applied effectively to 3D object
recognition in real environment.

TABLE 2

The Calculated Value of Il2

View view1 view2 view3 view4 Average

Il2 0.680 0.671 0.669 0.672 0.673
Error to the average (%) 1.0 0.3 0.6 0.1 0.5
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FIG. 14—Continued

Then, the performance of the proposed object recognition algorithm was demonstrated on
synthetic images. In order to complete the recognition process, the table of model invariants
should be constructed in advance by extracting informative sets. Figures 11 and 12 show the
examples of extracted informative sets for the target model. A polyhedron was considered
to be a target model as shown in Fig. 11a, of which the corner points and the line segments
were provided as shown in Figs. 11b and 11c, respectively. From the corner points of the
model, 12 informative sets for Ip, satisfying the structural requirements, were extracted, as
depicted in Fig. 11d. Similarly, 6 informative sets for Il1 were extracted as shown in Fig. 12a.
For Il2, 28 informative sets were obtained, among which 6 are depicted in Fig. 12b. For each
informative set of the model, an invariant was computed and saved in the table of model
invariants.

Figure 13 demonstrates the recognition process based on line features. Four input images
of the target model in Fig. 11c with three other objects were obtained by varying viewpoint
as shown in Fig. 13a. For each input image, line segments were extracted by a line feature
extractor [16] as shown in Fig. 13b. Notice that according to the viewing direction, a different
set of features was obtained for each image. And, due to the imperfect performance of the line
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extractor, the line segments were disturbed substantially. Moreover, owing to the occlusion
by other objects, some features are missing as in views 1 and 4. Matching results using
Il1 and Il2 are shown in Fig. 13c. In this experiment, the threshold values were chosen as
T hi = 0.1 and T hs = 0.2. In spite of positional errors and missing features, it is shown
that the target object is correctly recognized in all the images.

Simulations of the proposed object recognition algorithm on real images also have been
performed. The threshold values were chosen as the same as in the synthetic image test. In
Fig. 14a, the target model is provided with the characterizing line features. Four input test
images with different viewpoints are given in Fig. 14b. The line segments extracted from
each input image and final matching results are shown in Figs. 14c and 14d, respectively.
Comparing these results, although the recognized set of features are somewhat different
according to the viewing direction and image condition, the proposed recognition algorithm
has located and identified the target object correctly in all cases.

6. CONCLUSIONS

In this paper, we have presented new projective invariants for structured space points and
lines. First, based on the projection matrix representation and determinant ratio technique,
we showed that the auxiliary point involved in determining the invariant for six points on
two adjacent planes, proposed by Zhu et al. [1], is redundant, and we derived a new simpler
formulation for this invariant. Then, by investigating the properties related to line projection,
two new invariants for structured lines were proposed: one is an invariant for five lines on
two adjacent planes and the other is an invariant for six lines on four planes. Based on the
proposed invariants, a novel 3D object recognition algorithm has been suggested, employing
a geometric hashing technique. Experimental results on various test images with different
views showed that the proposed invariants remain numerically stable, even in a noisy envi-
ronment. Moreover, the proposed object recognition algorithm was shown to perform accu-
rately and robustly, even when some features are disturbed by noise or missed by occlusion.

APPENDIX: NOMENCLATURE

X 3D space point
x 2D image point
P Projection matrix
M 3D space point in the homogeneous coordinates
m 2D image point in the homogeneous coordinates
ω Scaling factor
�, �, �, � Planes
U� Euclidean transform matrix of points on � onto the XY plane
T� Projection matrix of the transformed points on � to the image plane
V� Projection matrix of the transformed lines on � to the image plane
t�i i th column of T�

n� Transformed point on Γ onto the XY plane
l� Transformed line on � onto the XY plane
Qi jk Area of the triangle with vertices, i, j , and k
α, β, γ, δ, λ, µ Geometric parameters
Ip Point invariant
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Iz Point invariant derived by Zhu et al.
Il1 First line invariant
Il2 Second line invariant
Is Line invariant derived by Sugimoto
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