
  

 

Abstract—Industries are being swept up by the tide of market 
innovations originated from pervasive application of Robotics 
and Automation (RA). Given the critical role of RA in industry, 
it has become relevant for RA to have human-like decision 
making capabilities. Such enablers intrinsically require the use 
of flexible and robust 3D perception and control systems. In the 
process of automating complex automotive sub-assemblies, 3D 
vision-based recognition as well as grasping of complex objects 
is required not only for detection and categorization but also for 
pose estimation and robotic pick-and-place operations. In this 
paper, we propose a novel 3D visual perception system for 
sub-assembly automation based on a structured light 3D vision 
system. We use a novel geometric surface primitive patch 
segmentation approach based on Hough transforms to obtain 
accurate surface normal estimations from 3D point clouds for 
the identification of patch primitives. The most relevant 
primitives for our application include planar, cylindrical, conic 
and spherical surface patches. We extract primitive surface 
patches from automotive CAD models in DXF format. The 
models are then decomposed to simple entities such as planar 
polygons, vertexes and lines. Our resulting models based on the 
3D point clouds are composed only by simple planes and 
cylinders. Our system takes advantage of the available CAD 
data for both object recognition and for pose estimation. Our 
experimental results demonstrate that we can achieve, in only a 
few seconds, a highly accurate pose and object class estimation. 

I. INTRODUCTION 
HEstate-of-the-art commercial robotic systems used in 
manufacturing today rely mostly on highly calibrated, 

task-specific end-effectors and part fixtures to implement 
assembly processes. In general, setting up such a system is 
time and effort consuming, often requiring extensive offline 
calibration and robot programming. Recently, 2D and 3D 
machine vision technologies have been brought into assembly 
processes at a reasonable cost and shown to be reliable to 
locate specific parts or to confirm assembly tasks, adding 
flexibility to conventional robotic manufacturing systems. 
However, the resulting assembly systems cannot yet 

 
This work was mainly funded by the General Motors Global R&D Center, 

Manufacturing Systems Research Laboratory. This work is also supported by 
the Intelligent Robotics Program, one of the 21st Century Frontier R&D 
Programs funded by the Ministry of Commerce, Industry and Energy of 
Korea. This work is also supported by the Brain Korea 21 Program of 
Ministry of Education & Human Resources Development and the Science 
and Technology Program of Gyeonggi Province as well as in part by the 
Sungkyunkwan University. 

S. Lee, J. Kim, M. Lee, and K. Yoo are with the School of Information and 
Communication Engineering of Sungkyunkwan University, Suwon, Korea, 
(phone: 82-31-299-7150; fax: 82-31-290-6479; e-mail: lsh@ece.skku.ac.kr) 

L. G. Barajas and R. Menassa are with the Advanced Robotics Group, 
Manufacturing Systems Research Laboratory at the General Motors Global 
R&D Center, Warren, MI 48090, USA, (e-mail: L.G.Barajas@ieee.org) 

overcome challenging issues as commissioning, calibration, 
and support. This is due not only to the fact that they tend to 
be limited in applications to one set of tasks under specific 
conditions but also to the unsolved and undiminished issues 
of non-value-added engineering, installation, and conversion 
expense and lead-time from the requirements for fixturing, 
tooling and material handling. Therefore, a next generation of 
robotic assembly systems that can significantly reduce the 
reliance on fixturing, tooling, and other pre-set, sunk cost, 
manufacturing infrastructures are very much anticipated. 
Ultimately, smart or intelligent assembly systems are 
expected to emerge with little or no more infrastructure 
requirements than those for manual assembly. This new 
generation of smart assembly systems may take advantage of 
the recent advancement on robotic vision and cognition 
technologies to build powerful vision/cognition components 
for flexible robotic assembly. Such powerful vision/cognition 
components will play an integral part for the successful 
introduction of the next generation of smart assembly systems, 
together with the advancement of highly dexterous robots and 
end effectors as well as of the capability of robots to assist or 
collaborate with people in shared workspaces and tasks. The 
advancement of vision/cognition components would also 
enable the automated planning and execution of assembly 
tasks via assistance and collaboration with human operators 
to perform tasks not yet appropriate or cost effective for 
automation.  This capability will enable a smart assembly 
process which will be highly flexible and self-contained and 
that can be used for various and changing assembly tasks as 
required by the variable production mix and business needs of 
today. 

Automobile manufacturing General Assembly (GA) lines 
are yet to be widespread automated via robotics given that 
they require highly dexterous, complex, and labor-intensive 
operations. Especially, sub-assembly lines that support the 
main lines with the preparation of parts, sub-assemblies and 
tools are the least structured and thus rely heavily on manual 
operations. Relevant examples related to this paper of 
sub-assembly operations include palletizing alternators and 
batteries in a rack in the right pose and sequence for use in 
primary assembly lines. 

In robotic automation, bin-picking systems[3] have been 
used to perform pick-and-place tasks for randomly oriented 
parts from bins or boxes[4, 5].Bin-picking systems as well as 
laser-vision-based bin-picking systems were proposed by 
Ban[6]. To address the problem of pose estimation in robotic 
assembly automation systems, many groups have researched 
both pre-computed2D views-based approaches [7], and 
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feature-based approaches [8,9]. Other similar view-based 
approaches tried to reduce the search space[10] and assumed 
that the object is placed on a conveyor belt or a table and that 
the distance from camera to the object was known. Other 
groups have developed pose estimation using also CAD data. 
Recently, Choi [11] used 3D CAD data with 2D key points 
for object recognition and camera pose estimation for a fixed 
object with a moving camera. Harris [12] used RAPiD to 
implement pose estimation comparing CAD model edges 
with grey level images. Finally, Ulrich’s group [13] evaluated 
an algorithm for textureless 3D object recognition by using 
CAD data. 

This paper is organized as follows. Section II presents an 
overview of the proposed 3D Visual Perception System; 
Section III explains the proposed surface normal estimation 
and surface segmentation approach. In Section IV, the surface 
segmentation and object modeling are explained. Sections V 
describes the overall object recognition and pose estimation 
needed for grasping. Section VI presents experimental results. 
Finally, Section VII summarizes results, offers conclusions & 
proposes future work. 

II. OVERVIEW 
The proposed automotive sub-assembly automation 

consists of two main systems: i) The 3D visual perception 
system, and ii) the robotic system. The 3D visual perception 
system uses a 3D structured light camera, and consists of five 
modules: 

 Surface normal estimation from 3D point clouds by 
structured light camera; 

 Surface segmentation from surface normal of 3D point 
clouds by predefined geometric primitives; 

 Surface segmentation from surface normal of CAD data 
by predefined geometric primitives; 

 Planar and cylindrical object modeling using joint 
parametric surface segmentation; 

 Object recognition and pose estimation using a 
matching strategy to enable robust object grasping. 

The robotic system consists of: i)a DA-20 MOTOMAN 
robot, and ii)a Yaskawa NX-100 robot controller. 

There are also some previous research results using 
MOTOMAN robots. In [1] a probabilistic motion planning 
technique is illustrated via a simulated MOTOMAN SV3X 
Manipulator, and in [2] several control and communication 
methods with a MOTOMAN UP6 are analyzed. The NX-100 
controller can communicate to PC or laptop via the MotoCom 
SDK which serves as a C++/C# API for the user to directly 
implement the robot control.  We illustrate the entire system 
overview in Fig 1. 

III. SURFACE PRIMITIVE PATCH SEGMENTATION BY 
TRANSFORMATION IN THREE SPACE 

We define three spaces for efficient surface segmentation 
of surface primitives such as plane, cylinder and cone from 
raw data: 1) IJK Space, 2) Parameter Space and 3) 3D Space. 

 IJK Space: The Gaussian Image is called IJK Space in 
which we can find plane candidates by extreme density 
of points in the space.  

 Parameter Space: Parameter Space consists of theta and 
phi which are axis direction of cylinder/cone and d 
which is Euclidean distance from origin of IJK Space to 
a normal vector. In the IJK Space cylindrical/conical 
group of normal vectors are spread as circular. So we 
transform all points in IJK Space into Parameter Space 
and then we can get cylinder/cone candidates by 
extreme density of points in the space. 

 3D Space: High density area in IJK Space sometimes 
has a lot of separate planes. So, all 3D point clouds in 
that area should be separated in the 3D Space 
additionally. Same reason high density area in 
Parameter Space also should be separated to different 
location and radius cylinders/cones in 3D Space. 

Using input 3D point clouds from above three spaces and 
surface normal vectors, we can obtain dominant surface 
primitives are segmented effectively for object recognition 
and pose estimation. We explain in more detail about 
algorithms and mathematic formula in the next. 

 
Fig. 1. Overview of proposed system for 3D vision based automotive sub-assembly automation. 
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A. Surface Normal Estimation 
Many surface normal estimation methods that use 3D point 

clouds, and various surface normal estimation strategies have 
been compared in [15-17]. To reduce a noise that is satisfied 
to erroneous results in all 3D point clouds initially we 
perform the Gaussian Smoothing in the local image 
coordinate frame(Z axis pointing forwards in measurement 
direction). Then all surface normal vectors, 푁 =
{푛 �, 푛 , ⋯ , �푛 } , are obtained to perform normal vectors 
estimation from triangles formed with pairs of neighbors are 
averaged of N by N mask of image coordinate[15]. For 
getting more robust surface normal from noisy point clouds 
instead of the commonly used nearest N-neighbors method, N 
by N mask of tangential plane in camera coordinates frame is 
used. By equation (1) we calculate the rotation matrix 
푅 (푘, 휃)of each mask by transforming all neighbor 3D points 
those are able to project on each tangential plane mask into 
local coordinates of the tangential plane where 휃 =
 푎푐표푠 (푛 ∙ 푛 ), 푐휃 = 푐표푠휃 , 푠휃 = 푠푖푛휃 and 푣휃 = 1 − 푐표푠θ.  

푅 (푘, 휃)

=  
푘 푘 푣휃 + 푐휃 푘 푘 푣휃 − 푘 푠휃 푘 푘 푣휃 + 푘 푠휃

푘 푘 푣휃 + 푘 푠휃 푘 푘 푣휃 + 푐휃 푘 푘 푣휃 − 푘 푠휃
푘 푘 푣휃 − 푘 푠휃 푘 푘 푣휃 + 푘 푠휃 푘 푘 푣휃 + 푐휃

 (1) 

The sign of 휃 is determined by the right-hand rule. If 휃 is 
satisfies 180 ≤ 휃 < 360 , then 푅 (−푘, −휃)  is a feasible 
solution. The vector 푛  is a unit vector which is usually 
defined by the z axis component of Cartesian coordinate 
frame. All transformed points in each cell of tangential plane 
mask are averaged, then we get represented N2 3D points for 
estimating surface normal vector from triangles formed with 
pairs of neighbors are averaged of N by N tangential plane 
mask once again.  

B. Surface Segmentation 
Object and shape reconstruction have been widely studied 

in literature through approaches like Hough transform(with 
geometric primitives: plane, cylinder, cone and sphere) 
[18-20] which may become inefficient as the dimensionality 
of the parameter space increases. We assume that a specific 
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Fig. 2.  Surface normal estimation and surface segmentation method. (a)  Tangent plane mask; all points in real 3D space transformed to x-y 
plane, mask1-2 and mark3-4 are designed symmetric pairs for normal estimation. (b) All normal values are moved to IJK space and 
represented on a half of sphere in IJK space. If there is a dense area with many points markedly, points in the dense area can compose a 
plane. (c) Spherical Frame is shown all (i, j, k) points on a half surface of sphere. If points are gathered in a circular shape, those can be a 
point of cylindrical or conic object. Moreover, those points depict a circle in a new circle Frame, (i', j', k') called parametric space. (d) We 
get a transformation from sphere frame to circle frame. First, Making a rotation around l vector with θ, we calculate a transformation matrix 
(rotation) and a translation, d. (e) Candidate points of cylinder or conic objects in parametric space are gathered around one point. (f) The 
parameter space changes into histogram space for finding out meaningful surfaces. The most dominant cylinder/cone surface has the 
largest amount of points in a cell. 
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group of points 훸  on a Gaussian image can be transformed 
into a group of points 훸  on the Circle Frame by 
transformation matrix 푇 . 

We use a set of unit surface normal vectors, 
{(푖, 푗, 푘)   , 푛 = 1, … , 푘}  defined at individual 3D surface 
points to specify the input data. The variables we need to find 
include: {n} which captures the circle equation with the 
parameters of vector n, n=[x, y, z], which is the vector normal 
to the plane where the circle is defined, and d, the distance 
from the origin of the (푖, 푗, 푘) space to the plane where the 
circle is defined.As shown in Fig.2. (b), we make local bins in 
(푖, 푗, 푘)  space and find the ones that represent the local 
maxima with a count of which is larger than a specified 
threshold. Those points in the local maxima might be a part of 
a plane. As shown in Fig. 2. (c), we obtain a transformation 
matrix, STC, from a IJK frame to the parametric frame, 
(푖′, 푗′, 푘′) . The l vector is represented as 풏 × 풌 , S 푙  = 
[−푦 푥 0] . We conclude by rotating the spherical frame 
around l through휃. The position of one point in IJK space is 
SX = SRC 

CX + SPC, where SPC is a translation. 
훩(푙, 휃) =  푇

=  

⎣
⎢
⎢
⎢
⎡푦 (1 − 푧) + 푧 −푥푦(1 − 푧)

−푥푦(1 − 푧) 푥 (1 − 푧) + 푧
푥 1 − 푧 0
푦 1 − 푧 0

−푥 1 − 푧 −푦 1 − 푧
0   0

푧 푑
0    1 ⎦

⎥
⎥
⎥
⎤

 (3) 

In order to move each point from the Sphere frame to the 
Circle frame, we use the inverse matrix of  푇 . We finally can 
transfer all points to the Circle frame using 푇 = (푇퐶

푆) . 
Χ = 푇 Χ  (4) 

Transformed points in the Circle Frame could be located on 
one small area by (4). If a group of points are in a Gaussian 
image, which implies that a cylindrical property was 
successfully transformed into a small area in the Circle Frame, 
then we can calculate α by (5) and it should approach 1. 

Χ 훢Χ = 1,              훢 =
푟 0 0
0 푟 0
0 0 1

 

훸 푇 훢(푇 훸 ) = 훼 
(5) 

There are 4 variables, i, j, k and d, that we can map from 4 
dimensions to 3 dimensions by the use a spherical coordinate 
mapping, 휌(= 푑), 휃 푎푛푑 휑. However, there is one constraint, 
which is that z values of all transferred points in the Circle 
frame should be zero. To search for cylindrical and conic 
surface patches, a set of bins are generated in the parameter 
space of the circle equation as shown in Fig. 2. (e). For each 
bin representing a particular parameter value, all the (i, j, k)s 
are collected such that they satisfy the circle equation (6). The 
complete surface patch segmentation is outlined by algorithm 
of surface patch segmentation. For each bin representing a 
particular set of parameter values, all the (i, j, k)s that satisfy 
the circle equation (6) are selected. 

푥 =  푠푖푛 휃 ∗ 푐표푠 휑 푦 =  푠푖푛 휃 ∗ 푠푖푛 휑 
푧 =  푐표푠 휃 푟 =  1 − 푑  

(6) 

 
ALGORITHM 

SURFACE PATCH SEGMENTATION  
Input: A Set of Unit Surface Normal Vectors, {(푖, 푗, 푘)   , 푛 = 1, … , 푘}, 

defined at individually captured 3D surface points, the circle 
equation with the parameters of vector n, the vector normal to the 
plane, where the circle is defined, and d, the distance from the 
origin of (푖, 푗, 푘) space to the plane where the circle is defined. 

Output: A set of plane and cylinder surface patches{π } and {φ } containing 
parameters and 3D point clouds 

Step 1: In the IJK Space, generate a set of local bins, {퐵  , 푖 = 1, … , 푛}, 
representing the local region around uniformly distributed 
reference points. Then count the number of (푖, 푗, 푘)s that fall into 
this bin. 

Step 2: Find the bins that represent the extreme density of the count of 
(푖, 푗, 푘)s which are greater than a threshold. Those (푖, 푗, 푘)s listed 
in these bins are labeled as plane candidates. 

Step 3: To search for cylindrical and conic surface patches, generate a set 
of bins in the Parameter Space of the circle equation in Circle 
Frame. For each bin representing particular parameter values, 
collect all the (푖, 푗, 푘)s that satisfy the circle equation (We may use 
multi-step computation for making use of necessary conditions for 
efficiency.) Step 3 performs the Hough transformation for the 
identification of cylindrical and conic surface patches. 

Step 4: Apply the same procedure defined in Step 2 for the bins defined in 
the Parameter Space. Those (푖, 푗, 푘)s listed in these bins are labeled 
as cylindrical and conic surface candidates. 

Step 5: Based on the plane candidate (푖, 푗, 푘)s, segment them based on 
their 3D Space for spatial homogeneity. 

Step 6: Based on the cylindrical and conic candidate (푖, 푗, 푘)s, the unit 
sphere that represents the collection of unit surface normal vectors, 
find the circles. 

 
After transferring all points into a Circle Frame, we create 

uniform cells. Because of the use of spherical coordinates, it 
is not desirable to separate a constant interval of theta and phi. 
We use a Golden Section Spiral for generating points with 
uniform distribution on a sphere. Counting how many points 
there are in all cells, we choose the cell with the maximum 
amount of points. As shown in Fig. 2. (f), the parameter space 
changes into a histogram space for finding out the greatest or 
greater than a threshold cell. All points in the cell make a 
circle on a sphere in IJK space and a cylinder or a cone in real 
3D space. Finally we find a cylinder or a cone. In IJK space, 
we make points with uniform distribution and then count the 
points around the point we selected. We choose some of 
points that have many IJK points. These most likely will be 
part of a plane. 

We can also segment parts in 3D and 2D image spaces 
using a distance based classifier. Overall, we have three 
spaces, 3D/2D space, IJK space and Circle space; if we 
cannot segment the part in one space, we move all points 
among those spaces until the segmentation is successful.  

IV. OBJECT RECOGNITION AIDED BY CAD DATA 

A. Feature Extraction in CAD Data 
A vehicle alternator is composed of many small geometric 

surface primitive patches and complex parts to accurately 
represent the entire object model. So for system speed and 
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efficiency a few dominant features as like surface patch 
primitives, namely plane and cylinder, were used for object 
categorization and recognition. For getting meaningful 
surface patch segmentation from CAD data, we try to extract 
geometric primitive patches from DXF models automatically 
which is widely used not only for historical reasons but also 
for adopting simple entities like planes, vertexes and lines for 
model representation. For surface patch classification aided 
by CAD data, first, we extract all triangle meshes from DXF 
data by open source converting program. Then we can 
classify the surface patch with the same method mentioned in 
our proposed surface patch segmentation algorithm. In this 
case triangle mesh does not have any 3D point clouds for 
finding specific pattern in IJK Space and Parameter Space. So 
we give a weight factor ω of mesh area instead of counting 3D 
point clouds in each triangle mesh. The area, A(Δi), of given 
triangle mesh Δi = V0V1V2 is given by half the magnitude of 
the cross product of two of its edge vectors; namely, ½ |V0V1 
× V0V2|. The ω is normalized by A(Δi) / [Amax – Amin], then 
maximum weight group of meshes in each spaces are used. 

After performing the segmentation from the CAD data, we 
get a set of plane and cylinder, and especially we also extract 
various cylinder parameters by modeling method 
in[3][14].Some characteristics: 1) Amount of plane and 
cylinder, 2)Cylinder and plane parameters: radius and height 
and 3) Intersection lines and points between plane to plane, 
cylinder to plane and cylinder to cylinder are used for object 
recognition and pose estimation. 

B. Object Recognition 
To recognize the target object, an alternator, initially we 

assume the target object is consisted of two key cylinders 
were connected to planes or other cylinders. Ideally, the set of 
plane{π }and cylinder {φ } patches from raw data are always 
included in the set of plane {π′ }and cylinder {φ′ } from CAD 
data. For successful object recognition, we consider four 
possible cases: 

 Find the largest radius cylinder in the surface patch sets 
of {φ } and {φ′ }; 

 Find sub-cylinder smaller radius than the largest radius 
cylinder and very close to the largest radius cylinder in 
surface patch sets of {φ } and {φ′ }; 

 Find plane, intersected with the largest radius cylinder 
or sub-cylinder, in surface patch sets {π }and {π′ }; 

 Find intersection relationship, plane-to-cylinder, from 
base sub-cylinder and large plane. 

We define a set of “models” that consists of all cylinders 
and planes in {φ′ } and {π′ }, and we also define a set of all 
cylinders and planes in { φ }and {π }  are “observation”. 
Different radiuses r and heights h of cylinder parameters are 
prepared from all cylinders in model. For finding a suitable 
cylinder between the model and the observation, r and h of 
cylinder of observations and models are used to compare with 
each other for matching. If one cylinder is selected in model, 
all rand h values of the cylinders in observation are calculated 

with the r and h of the model, if the difference between the 
value of r and h is smaller than a threshold, an observed 
cylinder is selected from set as a matching candidate. The best 
fitting cylinder from many candidates to the 3D point clouds 
from observation is fitted to the ideal cylinder which is 
generated by the superquadric implicit equation with constant 
parameters 푒 ≈ 0  and 푒 = 1  and by the estimated radius 
parameter 푟of observation. Then, the fitness calculation (7) is 
iterated and if the 3D point clouds fitting constraint to the 
cylinder are satisfied, the iteration is terminated and the 
cylinder observation is finally selected for both main cylinder 
and sub cylinder. 

푓(푥, 푦, 푧) =
푥
푟 +

푦
푟 +

푧
푟 ≈ 1 (7) 

After a M to N matching by cylinder between the two sets, 
we can define the key cylinder that has at least one or more 
planes. For reducing invalid candidates and incorrect 
matching, the intersection relation between planes and 
cylinders was successfully used in the recognition process. 
For this we consider the following indicators: 

 Number of intersected planes with key cylinder; 
 Area similarity measure between intersected planes and 

key cylinder; 
 Existence of shared planes between two key cylinders. 

We regard this consideration as a key step in our object 
categorization. The main parts of the alternator mostly consist 
of independent plane and cylinder or have intersection 
relationships with each other. However, other metrics can 
also be used to achieve a more reliable categorization process. 
Such metrics include the angle of intersection between two 
planes and the distance between two cylinders. If we find 
correct CAD data set from {φ′ } and {π′ }, we can also try to 
estimate pose from key cylinders and planes. 

C. Pose Estimation 
To get the pose of recognized object, we estimate the 

rotation matrix and the translation vector independently. For 
example two cylinders or one intersected plane are matched  
from object recognition as shown in Fig. 3.Initially, we can 
easily get two normal vectors, 풗ퟏ and 풗ퟏ

′ ,of two cylinders. 
Ideally, these two vectors should be parallel each other. It is 
possible to estimate the normal vector 풗ퟑ = 풐ퟐ 풐ퟏ

|풐ퟐ 풐ퟏ|
. The 

 
Fig. 3. Geometric relation of cylinders and plane in alternator 
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normal vector 풗ퟐ  can be obtained by the 
between 풗ퟏ and 풗ퟑ, 풗ퟐ = 풗ퟑ × 풗ퟏ.The three normal vectors 
can be used to generate for rotation matrix 
 [푣 푣 푣 ]. We can now have two rotation matrixes
the model and the observation.  

In order to obtain the translation vector firstly we transform 
all cylinders and planes in the model to sampled 
by using the two rotation matrixes found before
position can be found by estimating the centroid 
points from the observations. To get the translation vector we 
are looking for it is useful to know that we 
corresponding points in model and observation
intersection points between cylinder and plane
푝 ), which intersect the line 푙  and 푙  between cylinder and 
the plane. Having a large number of corresponding
between the model and the observations 
accuracy of pose. Afterwards, we can use the Iterative Closest 
Points (ICP) algorithm to position the origin
coordinates.  

푑 =  푎푟푔푚푖푛 (푞 −  푝 )  

If we denote {푞 } is model and {푝 }is observations points, 

 
(a) (b) 

 
(e) 

 
(h) 

Fig. 4. Experiment results of “Alternator A”: (a) (i,j,k) space representation, (b) dense area for
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds
segmentation results, (g) object modeling from 3D point clouds; observation, (h) CAD da
from CAD data; model, (j) object recognition and pose estimation results

can be obtained by the cross product 
hree normal vectors 

can be used to generate for rotation matrix 푅 × =
have two rotation matrixes from 

firstly we transform 
sampled observation 

found before. An initial 
centroid of all 3D 

translation vector we 
are looking for it is useful to know that we can obtain four 

points in model and observation: four 
between cylinder and plane (푝 , 푝 , 푝  and 

between cylinder and 
corresponding pairs 
s will increase the 
the Iterative Closest 

origin in measurements 

)  (8) 

observations points, 

then for all corresponding pairs, the 
need to be minimized. Finally, we can get a transformation 
from the two rotation matrix and one translation vector.

V. EXPERIMENT R
In this section, we validate our 

several experiments. We performed 
different objects. The 3D visual perception 
composed of a desktop computer and 
camera. The desktop computer was an
2.93 GHz CPU and 2GByte RAM. We 
performance by measuring the computation time at each step 
of the process as shown in Table I. At this time, no real
conversion of CAD models was done between different 
formats (IGES to DXF). Such computation was
and it was not included in the results presented in Table I.

We have applied our algorithm to the 
alternators pose estimation. We are 
transformation method to find cylindrical or con
patches. A complication lies in that cylindrical
parts in the alternator are oriented
Moreover, the actual object in reality has 
features that are perceived as noise and therefore

  
 (c) 

 
(f) 

 
(i) 

Fig. 4. Experiment results of “Alternator A”: (a) (i,j,k) space representation, (b) dense area for plane candidates, (c) dense area for 
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds
segmentation results, (g) object modeling from 3D point clouds; observation, (h) CAD data represented by DXF format, (i) object modeling 
from CAD data; model, (j) object recognition and pose estimation results 

 

the sum of distance d would 
Finally, we can get a transformation 

from the two rotation matrix and one translation vector. 

RESULTS 
 system performance via 

e performed test runs with two 
3D visual perception system was 

composed of a desktop computer and 3D structured light 
computer was an Intel core 2 duo E 7500 

We evaluated our system 
computation time at each step 

At this time, no real-time 
conversion of CAD models was done between different 

computation was done offline 
not included in the results presented in Table I. 

our algorithm to the problem of 
are suggesting a new Hough 
cylindrical or conic surface 
that cylindrical and planar 

oriented in same direction. 
object in reality has a large number of 

and therefore it makes the 

 
(d) 

 
(g) 

 
(j) 

plane candidates, (c) dense area for 
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds, (f) 

ta represented by DXF format, (i) object modeling 
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segmentation quite challenging. In order to address this issue,
we present two different methods for segmentation. 

First, we find plane parts in IJK space that represent 
normal value for each point. Those points form a circle on a 
half sphere in IJK space. Given that there are both, cylindrical 
and planar parts on the alternator, they need to be correctly 
separated. To this end, we create uniform size cells and 
the points which are near each cell. Then we find the local 
maxima of each cell that has most points count and that 
us a candidate plane primitive. Next, we 
transformation over all point in the alternator 
to a parametric space. We assume that the 
circle on a sphere in IJK spaces are gathered 
in parametric space. Then we find a cell count number of 
neighboring cell points and get the local maxima just as 
before. Those points that make a circle on a unit sphere in IJ
space are good candidates for cylindrical or conic parts

We can find the cylindrical parts on alternators using the 
procedure outlined in Fig. 4 and Fig. 5 where the
recognition process for alternators “A” and “B” are shown.

The pose errors for both cases are presented in Table II. In 
our robot configuration, the z axis rotation error directly 
affects the end-effector rotation. For our grasping application, 
this is the most sensitive factor. We found that such 

 
(a) (b) 

 
(e) 

 
(h) 

Fig. 5. Experiment results of “Alternator B”: (a) (i, j, k) 
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds
segmentation results, (g) object modeling from 3D point clouds; observation, (h) CAD data represented by DXF format, (i) object modeling 
from CAD data; model, (j) object recognition and pose estimation results

In order to address this issue, 
methods for segmentation.  

First, we find plane parts in IJK space that represent the 
ints form a circle on a 

Given that there are both, cylindrical 
on the alternator, they need to be correctly 

e create uniform size cells and count 
hen we find the local 

count and that gives 
Next, we use a Hough 
alternator to transfer them 

the points forming a 
are gathered around one point 

Then we find a cell count number of 
and get the local maxima just as 

Those points that make a circle on a unit sphere in IJK 
space are good candidates for cylindrical or conic parts. 

We can find the cylindrical parts on alternators using the 
where the object 

recognition process for alternators “A” and “B” are shown. 
oth cases are presented in Table II. In 

our robot configuration, the z axis rotation error directly 
effector rotation. For our grasping application, 

this is the most sensitive factor. We found that such 

orientation errors are sufficiently small for safe and reliable 
grasping of both alternator types. 

 
TABLE I 

SYSTEM PERFORMANCE 

Process 

Data Acquisition 
Surface Normal Estimation 

Surface Segmentation 
Object Modeling 

Object Recognition& Pose Estimation 
Total 

 
TABLE II  

6-DOF ERROR OF TARGET OBJECTS 

Object X Y Z 

Alternator A 15.3mm 5.2mm 18.7mm

Alternator B 13.7mm 4.75mm 16.7mm

 

VI. CONCLUSION& FUTURE 

In this paper, we presented an automotive sub
system that uses active 3D vision for object recognition and 

  
 (c) 

 
(f) 

 
(i) 

Fig. 5. Experiment results of “Alternator B”: (a) (i, j, k) space representation, (b) dense area for plane candidates, (c) dense area for 
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds

3D point clouds; observation, (h) CAD data represented by DXF format, (i) object modeling 
from CAD data; model, (j) object recognition and pose estimation results 

 

mall for safe and reliable 

ERFORMANCE  

Computation Time 

2,431.95 msec 
5,421.80 msec 
6,926.70 msec 
8,458.12 msec 

 1,127.30 msec 
24,367.87 msec 

 
BJECTS RECOGNITION 

X theta Y theta Z theta 

18.7mm 2.10° 0.50° 1.17° 

16.7mm 1.94° 1.70° 1.42° 

UTURE WORK 
automotive sub-assembly 

system that uses active 3D vision for object recognition and 

 
(d) 

 
(g) 

 
(j) 

space representation, (b) dense area for plane candidates, (c) dense area for 
cylinder/cone candidates, (d) histogram space from parameter space for dominant cylinder/cone candidates, (e) 3D point clouds, (f) 

3D point clouds; observation, (h) CAD data represented by DXF format, (i) object modeling 
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pose estimation. Our approach uses surface normal estimation 
and a Hough-transform-based surface segmentation 
technique. We presented recognition results for different 
types of alternators in an integrated task of recognizing, 
locating and picking parts using a dual arm robot and a 3D 
vision system. Results demonstrate that both accuracy and 
runtime were within acceptable operational limits for the 
specific sub-assembly case under consideration. Future 
improvements to our approach will include more robust pose 
estimation under borderline image quality conditions, 
reduced runtime to match main assembly line throughput 
requirements, and extending the number and type of 
recognized objects. 
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