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Summary 
 
 
This paper shows a method for object pose detection that is successfully applied to industrial applications running a 
three-shift system. The industrial applications are fully automated feeding systems, commonly known as bin-picking. 
The proposed method is a generic approach to detect 6 degrees of freedom of any solid objects with arbitrary geometry. 
The proposed method is using 3D range data and is based on a hypothesize-and-test approach .In the first step, object 
poses are hypothesized by means of pose clustering. In the second step, the verification of estimated object poses is 
realised by an appearance-based template-matching approach. In addition, the method’s interfaces are designed to 
ensure compatibility to 3D sensor systems and handling systems [5]. During long-term operations in different use-cases, 
the method showed its usability regarding the crucial requirements, such as robustness, accuracy, portability and speed. 
 
 
 
 
1 Introduction 
Object pose detection is of major importance for 
automation in industrial environment, such as fully 
automated feeding systems. Typical use-cases are bin-
picking and conveyor-picking. These applications are 
characterized by chaotically stored objects, which need to 
be picked and placed by handling systems. 
Starting point for these tasks are any kind of charge 
carriers, like lattice boxes. They can be seen as a standard 
for manufacturing internal material flow systems. They 
can be filled easily with different objects and transported 
comfortably with forklifts or lift trucks. In addition, their 
stackability ensures ideal stocking. Also, when objects 
need to cover comparatively short distances for pro-
cessing they are placed on conveyors. In both cases, the 
objects lose their state of order. States of the art for 
restoring objects’ state of order are mechanical or manual 
solutions. These current solutions are expensive and 
inflexible (cf. [1], [2]). From an automation point of view, 
this task is absolutely challenging making it an on-going 
subject for decades in automation, particularly in robotics. 
The considered handling tasks are one of the last not yet 
automated gaps in material flow chains. A strong market 
growth could be observed making robot supported 
intralogistics a key industry for modern processes in 
economics and production [4].  

1.1 Related Work 
There exist various numbers of approaches to solve object 
pose detection and their categorisation is not consistent. 
Among others, literatures classify between model- and 
view-based approaches ([12], [13]), feature- and 
appearance-based approaches or introduces several 
classes (cf. [11]). The amount of approaches especially 

designed for industrial purpose is comparably small. A 
specific characteristic is that almost exclusively dealt with 
rigid objects of well-known geometry. 
In this paper, top-down and bottom-up classifications are 
applied. Top-down approaches are based on deduction, 
meaning to verify a theory based on empirical data. 
Commonly used methods are template-matching 
approaches. Templates are matched on sensory input in 
order to accept or decline a theory (i.e. object pose). Due 
to their lack of a generally acceptable threshold, the 
comparative techniques can be rather used to find the 
relative best result. As a matter of fact, these approaches 
result in a huge number of comparisons, very likely to 
cause difficulties when it comes to fast evaluation. In 
contrary, bottom-up approaches create theories based on 
empirical data. Usually, extracted features and their 
correlations are used to draw conclusions about an 
object’s pose. In order to gain reliable object poses, a lot 
of features have to be correspondent to each other. 
Especially, cluttered or noisy scenes can highly influence 
the approach’s reliability. 

1.2 Requirements for Object Pose Detection 
Based on enquiries of industry, following requirements 
and boundary conditions of a vision system for industrial 
use can be stated: 
Process reliability – On the one hand the vision system 
must always detect a pose in order to keep the system 
going, on the other hand it must be robust and reliable to 
guarantee the object will be picked correctly. Whenever 
the vision system fails the automation stops and needs to 
be restarted manually. This is harming the contracted 
availability, which is supposed to be fairly above 95% in 
general. 
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Duration of detection – The actual time, that the vision 
system needs to detect object poses, is significantly 
influencing the overall cycle time of the automation. The 
majority of considered applications is required to pick an 
object between 6 and 15 seconds. Even though the 
detection can at least be partially performed parallel to the 
robot’s movement, it becomes obvious that the desired 
duration needs to be less than a couple of seconds. 
Moreover, due to interference contours and possible 
collisions, not every detected object can be actually 
grasped. This is why it is essential that as much objects as 
possible are located within a scene. 
Accuracy of detection – The required precision for a 
detected object pose is defined by the gripping system and 
the placement area. Though, it is possible to correct a 
certain amount of inaccuracy (cf. [6]) with mechanical 
alignment, the gripping accuracy is supposed to be within 
a few millimetres and degrees. Also, it has to be 
considered that handling systems like 6-axis robots have 
absolute position accuracy between 1 mm and 4 mm [7], 
adding a default value to resulting chain of error. This 
means that in order to ensure accurate gripping, the object 
detection must be as precise as possible. 
Portability – The spectrum of object geometries and 
colours varies strongly. It is absolutely common that on a 
single automation, a dozen of different objects has to be 
handled. This urges the need for the vision system to be 
adaptable on practically any given geometry. 

1.3 Setup 
A bin-picking application is schematically shown in 
Figure 1 and usually contains the following components: 
The 3D-sensor system captures the scene and provides 
the range. There were different 3D line-scanners used. In 
order to obtain an area scan of the scene, the device has to 
be moved while scanning. For this purpose the device is 
mounted at the robot, which performs the movement, or at 
a separate kinematics, such as a pivot (see Figure 2). 
The vision software includes the Object Pose Detection, 
which is described in chapter 2. 
The handling kinematics including a gripping system 
have been 6-axis industrial robots by the manufacturers 
Fanuc, Kawasaki or Universal Robots. 6-axis robots are 
commonly used, due to their flexibility, usability and 
competitive pricing (cf. [3]). 
The overall cell control is typically realised by a 
programmable logic controller (PLC). In the considered 
applications SIMATIC S7 by Siemens or Allan-Bradley 
by Rockwell Automation were used. 
 

  
 
Figure 1  Schematic layout of bin-picking cell. The 
charge carrier is captured by a 3D-sensor. Obtained range 
data is analysed by a vision system, which provides object 
poses. Overall sequence is controlled by a separate PLC, 
which also forwards movement commands to kinematics 
(i.e. industrial robots) 
 
 

 
 
Figure 2  Utilized 3D-sensor systems and pivot. From left 
to right: line scanner Sick LMS 400[8]; line scanner 
Leuze LPS 36[9]; pivot Schunk PR 70[10] 

2 Method 
The introduced method is a two-staged algorithm based 
on hypothesize-and-test approaches. First step is a fast 
pose estimation, which creates object pose hypotheses. 
The hypotheses represent the most likely object poses 
based on extracted features. The pose estimation is done 
by pose clustering. Being on its own the hypotheses are 
vague and do not allow reliable object pose detection, but 
they are capable of reducing the number of possible 
solutions. Consequently, in the end reliable object pose 
verification must be evaluated in order to accept only 
correct solutions. 

2.1 Preprocess 
Before the estimation and verification can be executed, 
following steps of preprocess are required: 
Obtaining point clouds – Two commercial available 
sensor systems were used: SickLMS 400 is suitable for 
boxes with a volume between 1 m3 and 4 m3 and objects 
larger than circa 10 cm. Leuze LPS36 is qualified for 
boxes and objects smaller than mentioned above. Both 
devices measure along a spatial line, for which reason 
they have to be moved around in order to obtain a point 
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cloud, which captures the whole scene. By mounting the 
sensor system at the robot, it could be used as the required 
kinematic. The robot can move either linear above or pan 
over the bin of interest. On the one hand this means a 
reduction of possible cycle time; on the other hand the 
robot can access several boxes in its workspace. To 
finally obtain a point cloud, each measurement is 
registered with the robot’s pose at that time. 
Obtaining depth images – Depth images are obtained by 
performing a parallel projection on a received point cloud. 
The point cloud is initially referring to the sensor 
coordinate system (sensor frame). It is transformed to the 
charge carrier coordinate system (supply frame) and 
mapped to a depth image. Another way to obtain depth 
images is to synthetically render the object in a given 
orientation. There are several rendering methods 
available, such as VTK or OpenGL. It can be shown that 
implementing self-made rendering algorithms on CUDA 
are significantly faster in runtime. 

2.2 Signal flow 
The signal flow of the proposed algorithm contains 
training and detection mode. During training a knowledge 
base for the estimation is generated. It stores all relations 
between features and poses that must to be recognized. 
During the actual object detection, these relations are used 
to vote for hypotheses. The verification receives these 
hypotheses. For each hypothesis, a template is generated 
which is used for matching with the sensory input. The 
process is shown in Figure 3. 
 
 

 
Figure 3  Signal flow of the proposed method. Black ar-
rows show detection mode. The point cloud is mapped on 
a depth image, on which features are detected. Each fea-
ture votes for an object pose. The votes lead to hypothe-
ses, which are verified eventually by template matching. 
Grey arrows show training mode. The object is rendered 
in different poses. All extracted features are stored in a 
knowledge base, which connects each feature to a set of 
poses, used to generate hypotheses in detection mode. 

2.3 Object Pose Verification 
The verification is done by template-matching. The pose 
to be verified is rendered and matched with the measured 
depth image. It is assumed that the measurement’s error is 
normal distributed, such that the probability of presence 
can be computed by taking the differences of the object’s 
visible surface. In addition, the object’s curvature is 
examined to confirm the probability. 

3 Object Pose Estimation 
The estimation is done by pose clustering. “Pose 
clustering is also called hypothesis accumulation and 
generalized Hough transform and is characterized by a 
‘parallel’ accumulation of low level evidence followed by 
a maximum or clustering step which selects pose 
hypotheses with strong support from the set of 
evidence.”[14]. While pose clustering is common in 2D 
(e.g. [15]), it is rarely used in 3D range data. The general 
idea is that each occurrence of a feature changes the 
likelihood of possible object poses. The strongest 
supported votes result in hypotheses, which are passed to 
the verification. Each hypothesis represents a pose 
consisting of all its estimated degrees of freedom. 

3.1 Feature extraction 
In general, the shown method is suitable for any kinds of 
features, which comply with the requirements such as 
noise-robustness. In the following, a local feature is 
introduced that is similar to gradients. On each pixel of 
the depth image, the corresponding feature is calculated 
by its local neighbourhood. The difference of z-values 
between the considered pixel and each neighbour is taken 
into account. By definition, the difference can be positive, 
negative or equal. The result of the comparison with all 
neighbours finally leads to a hash value, which represents 
the feature (see Figure 4). The size of the neighbourhood 
was chosen with 12. This leads to a computational 
manageable amount of about 0.5 million different features 
values. 
 

 
 
Figure 4  Exemplary calculation of feature value for pixel 
in depth image. Grey pixels are the considered neighbour-
hood. Each neighbour has one of three different condi-
tions. The default is 0, if both z-values are equal. If the 
neighbour’s z-value is less, its condition becomes 1 and if 
larger it is 2. The sequence of all conditions creates a spe-
cific value for the feature. 
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3.2 Knowledge base generation 
A knowledge base is required, to be able to store the 
relationship between features and object poses. The 
proceeding is to generate an object’s view and to perform 
feature extraction on the resulting depth image. The 
detected features are then associated to the respective 
object pose. The result is a set of associations for each 
found feature, called votes. This means that each feature 
can vote for several poses relative to the feature’s 
location. Any feature will be declined as soon as its 
number of votes exceeds a reasonable count. This is done 
to keep the feature meaningful. The idea is that the added-
value for a feature that is found on every view is lower 
than a feature occurring only once. Moreover, it is 
necessary to limit the size of the knowledge base due to 
finite computer memory. Since poses are voted, a vote 
contains a translatory and a rotatory part. Usually, 
translatory positions describe the object’s centre, within 
this approach the translatory part points at the highest 
point of the respective object pose. For a given rotation 
the highest point can be converted to the more suitable 
object’s centre. The assumption is that objects can be 
usually gripped, if their highest point is visible. During 
pose clustering it becomes obvious, that the highest point 
representation is highly reasonable. It should be noted that 
the complete method will work as well when the second 
highest point is also considered. 
Discretisation of training and voting space – There are 
three major influences to determine the chosen rotatory 
resolutions: Required gripping accuracy, sensors’ 
measurement data quality and available computer 
memory. The training space represents all poses that are 
considered for the knowledge base generation, whereas 
the voting space contains only that poses that can actually 
be voted. Since the voting space is supposed to be of less 
or equal size, it can be considered as a pre-clustering step. 
In typical bin-picking applications all rotations are likely 
to occur. When it comes to conveyor-picking, the objects 
are usually lying on the ground. They are isolated and 
tend to be in a physically stable state. Exemplary rotatory 
solutions space for a bin-picking application can be seen 
in Figure  a). Figure  b) shows the exemplary rotatory 
solution space for conveyor-picking. The representation is 
in axis angles. The length of each vector is its rotation 
around the respective axis angle. 
 

a) b)  
 
Figure 5  Discretisation of training-space and voting-
space in three-dimensional representation. Each illustrated 
dot represents a vector, which states a rotation in axis-

angle convention. The vector’s coordinates are the axis 
and its length is the axis-angle. 

3.3 Pose clustering 
The proceeding for pose clustering is that each extracted 
feature is compared with the knowledge base. If the 
feature has been already considered during knowledge 
base generation, it is used for voting. Figure  b) shows all 
votes for a depth image with contact bridges (see Figure 
 a).  
 
 

a)  b)  

c)  d)  
 
Figure 6  Pose clustering results. a) Depth image of con-
tact bridges b) Distribution of all votes c) Local maxima 
in depth image d) Valid votes that are used for hypothesis 
 
The pose clustering maps from feature space into pose 
space. Finding the strongest supported votes results in a 
considerable computational complexity. The pose space 
can be significantly reduced by accepting only plausible 
votes at the first place. In order to install an efficient 
method those votes will be suppressed, that are leading to 
objects being predominantly occluded. A general way to 
detect these votes is to test if they actually point on a 
potential highest point. Once the position of an object is 
referred to its highest point and not directly to its centre, 
all votes that do not point at local maxima in depth image 
can be ignored. 
Consequently, before the hypothesis generation can take 
place, all local maxima in the considered depth image are 
to be located. In a typical range image (see Figure  a) less 
than 100 local maxima with given parameter are located 
(see Figure  c). After declining all votes that do not point 
at local maxima only few valid votes are left (see Figure 
 d). 
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4 Results 
This method has been successfully tested with gear-
shafts, track links, contact bridges and steering wheels 
within industrial bin-picking applications. All results 
were computed with customary desktop-computers 
having a Quad-Core Processor and 8 GB of RAM.  
Figure  shows the results for contact bridges. On average, 
it took less than 350 ms to detect an object.  
Although there are still ways to improve the performance, 
the acceptance critera for this bin-picking application 
were fulfilled, enabling a production in three-shift system. 
 
 

a)

b)  
 
Figure 7  Results for about 3000 cycles of bin-picking. a) 
Shows required number of tested hypotheses to actually 
find a valid solution in percent (e.g. in above forty percent 
it takes less than 200 hypothesis to find a valid object 
pose). b) Shows time it took to find a valid solution in 
percent (e.g. in above forty percent it takes less than 
150 ms to find a valid object pose). 
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