
  

 

Abstract—In this paper, we present a system for automatic 

object detection and pose estimation from a single depth map 

containing multiple objects for bin-picking applications. The 

proposed object detection algorithm is based on matching the 

keypoints extracted from the depth image by using the RANSAC 

algorithm with the spin image descriptor. In the proposed system, 

we combine the keypoint detection and the RANSAC algorithm 

to detect the objects, followed by the ICP algorithm to refine the 

3D pose estimation. In addition, we implement the proposed 

algorithm on the GPGPU platform to speed-up the computation. 

Experimental results on simulated depth data are shown to 

demonstrate the proposed system. 

I. INTRODUCTION 

3D object alignment is essential to bin-picking 
applications. It usually consists of object detection and pose 
estimation. Most of the previous methods are based on the 2D 
image data. As depth sensor technology is getting mature in 
recent years, we can easily acquire real depth data for 
industrial applications. However, it is quite challenging to 
efficiently align 3D objects only from depth data. In this paper, 
we focus on aligning 3D industrial objects, such as those 
depicted in Fig. 1, from a single depth image. 

Depth image contains some advantages over the 2D color 
image counterpart. The main advantage is the depth image 
contains rich and direct geometric information. However, 
there are some challenges for object detection from depth 
image. First, the texture information on the object is missing in 
the depth image. Second, depth data is usually quite noisy. 
Finally, converting depth image to 3D representation, such as 
the point cloud, for 3D alignment usually requires high 
computational cost.  

In this paper, we present an efficient 3D object alignment 
system for bin picking from a single depth image. The 
proposed system consists of 3D object detection and pose 
estimation. The object detection from depth image is 
accomplished by detecting keypoints from depth image and 
finding correspondences between keypoints extracted from the 
input and template depth images by using the RANSAC 
algorithm. Then, the 3D pose of the object is refined by using 
the ICP algorithm. In addition, we accelerate the 3D object 
alignment system via implementation on the GPGPU platform. 

II. RELATED WORK 

Previous works in 3D alignment from point-cloud data 
could be divided into the following categories: segmentation, 

 

 
 

classification, matching, modeling, registration and detection.  

There are several previous works proposed to process different 
types of point cloud data for different purposes. One category 
is focused on urban scenes. For example, some focused on 
developing algorithms for detecting vehicles [1][2],  and some 
focused on detecting poles [3][4]. Another category deals with 
indoor scenes. For example, [5] presented a model-based 
method to detect chairs and tables in the office. [6] proposed a 
graphical model to capture various features for indoor scenes. 
[7] proposed a system to obtain 3D object maps from scanned 
point-cloud datasets of indoor household objects. However, 
only a few previous works developed algorithms for 
processing point cloud data for industrial applications. In [8], 
Vosselman et al. developed techniques for recognition in 
industry as well as urban scenes. Schnabel et al. [9] presented a 
RANSAC algorithm to detect some basic shapes, such as  
plane, spheres, cylinders, cone and tori, from the point-cloud 
dataset. Liu et al. [10] developed a novel 3D object alignment 
system based on using an image acquisition system that 
captures the contour of the object. However, it may not work 
for objects with complex shapes. 

The 3D local shape descriptor is very critical to the 
keypoint matching from depth images. For example, spin 
image [11][12] is one of the most widely used 3D descriptor. 
Some 3D descriptors are extended from the original 2D 
descriptors, such as the 3D Shape Context[13], 3D SURF [14] 
and 3D SSIM [15]. Heat Kernel Signature [16] and its 
variation [17] can be applied to deal with non-rigid shapes. In 
this paper, we use spin image and 3D detector [18] in our 
system. 
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Figure 1. CAD models of some industrial parts. 
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III. SYSTEM OVERVIEW 

The pipeline of the proposed 3D object alignment system 
is shown in Fig. 2. 

The point-cloud data in our system is generated from the 
depth information. Unlike general depth image, the 
point-clouds data are more precise. We use the structure of  the 
object  as the detection information. 

Our goal is to detect the object and estimate its 3D pose 
based on different pose hypotheses for the object. We define 
the template as a specific view of the object and the target as 
the detected scenes. Different views of the object contain 
different partial information of the object, so we simulate a 
sufficient number of depth maps of the object at different 
poses from its 3D model as the templates. In our problem, 
there are many the identical objects in the container, as 
depicted in Fig. 3. In the target scene, there are many identical 
objects, so it might contain numerous possible detection 
results. In this work, we are interested in finding the object 
closest to the camera in target scenes as our detection target.  

 We use the 3D keypoint detection to extract interest points, 
such like the corner points, as candidate points for matching. 
Then, we compute the spin image feature at the keypoints and 
use RANSAC to find the best point matching between the 
candidate point sets in the target and template. However, the 
target and template might not align well due to partial 
occlusion and noise in the keypoint data, so we apply the 

Iterative Closest Points (ICP) algorithm to refine the 3D pose 
estimation result. 

A. 3-D keypoint detection 

Given a point of a 3-D object, we are interested in finding 
the corner point. However, the structure of the 3D object is 
different from the 2D object. We need mesh from the 
point-cloud to obtain adjacency information for the 
neighboring points. 

Let v be the interest point and  Vk(v) be the neighborhood 

considering k rings around v. Figure 4 shows point v (black 

circle), the first ring around v (path formed by green circles), 

and the second ring (path formed by yellow circles). All these 

points correspond to the neighborhood Vk(v). Then, we 

compute the best fitting plane to the translated points via 

Principal Component Analysis to the set of points and compute 

the 3-D Harris corner response to extract the keypoint [18]. 

  We extract keypoints on the template and target data. Let 

U
 
be the points in template and W be the points in target. H 

denotes the 3-D keypoint detection. Let  be the keypoint from 

template and be the keypoint from target. 


(W) H   

(U) H    








 

B. Spin image of 3D keypoint 

 Johnson and Hebert [11] proposed the spin-image for 
object recognition. A spin image is 2D representation of the 
surface surrounding a 3-D point as Fig. 5. The formulation is:  
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An oriented point O at a surface mesh vertex is defined by 

 
Figure 2. Flowchart of our 3D object alignment system 

 
Figure 3. Objects stacked in container 

 

Figure 4. Point v and its neighbor rings 

 

 
Figure 5. The cylindrical system and its (p,n) 2-D basis 
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the 3-D position of the surface vertex (denoted as p) and a 
surface normal (denoted as n). With p and n defined, we can 
formulate a 2D basis (p, n), which corresponds to n and the line 
L through p parallel to n. This results in a (α,β) cylindrical 
coordinate system, where α is the perpendicular distance to L 
while β is the signed perpendicular distance to P. 

We use the spin image as the 3D descriptor and we 
compute it for all keypoints for finding point correspondences. 
For example, there is a triangular body converted into a 
point-cloud representation. The structure of the triangular 
body with four corner points can be detected via 3-D keypoint 
detection and the matching problem focus on the spin image of 
the keypoints. It is easy to find the correct correspondences 
between the two sets of keypoints by comparing their spin 
images. 

We add the equation (1) to equation (2) to obtain the spin 
image from template (denoted as P) and target (denoted as Q) 
as follows: 
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 The subscript p and q denote that it is from template or 
target, respectively. Then, we have to compute the correlation 
coefficient between the spin images of the points in the 
template and target, respectively, and it is given by 
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Note that pi denotes the size of the spin image from P and qi 
denotes the size of the spin image from Q and N denotes the 
bin size from the spin image. R is between -1 (anti-correlated) 
and 1 (completely correlated), and it measures the normalized 
error using the distance between the data and the best line 
fitted to the data. The correlation coefficient R provides a 
measure for the comparison of two spin images. The higher the 
measure R is, the more similar between the spin images are. 
Thus, we can find similar matching points based on the 
correlation coefficients as the candidates for point 
correspondence pairs. Thus, we can obtain the corresponding 
points from template, denoted as Uc, and from target, denoted 
as Wc 

C. Select the point correspondence pairs 

There are many similar pairs of matching points but they 
may contain wrong correspondences, which are considered as 
outliers. For rigid transformation, we need to solve for rotation 
matrix R and translation matrix T from the set of point 
correspondences. Our target is the object that is similar to the 
template and closest to the camera. We use the concept of 
RANSAC to pick up the correct matching pair points to align 
the target to the template. To solve for the rigid transformation, 
we need at least 3 correct pairs of point correspondences. The 
rigid transformation is given by: 

TRUU '                                (5) 

The following two steps are performed to confirm that the 
rigid transformation (R, T) estimated from the randomly 
selected three pairs of candidate point correspondences is 
acceptable. 

In the first step, we measure how well the estimated rigid 
transformation matches to the remaining pairs of candidate 
point correspondences, whose points in template are denoted 
by Uc and those in target are denoted by Wc. We use eq. (5) to 

compute the transformed Uc as '
cU . Then, the mean distance 

between the matching points in '
cU  and Wc is defined by: 
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where n is the total number of point correspondence pairs. If Pe 
is less than a threshold ε1, then we confirm that the estimated 
transformation provides correct fitting from the target to the 
template.  

In the second step, we compute the mean position from 

transformed template as '
mU  and the same for the target as 

Wm , We want to ensure that the alignment from the template to 
target is on the object and close to the camera, so we define 
another error Ce  as follows: 

                    
meC WU'

m                                (7) 

If Ce is less than a threshold ε2, we can confirm that the 
alignment from template to target is close to the camera. Once 
the object that is close to the camera is detected, then we apply 
the ICP algorithm to refine the 3D pose of the detected object.  

D. GPU acceleration  

Extensive parallel processing by using graphics processing 
unit (GPU) can be employed in the implementation of our 3D 
alignment system. We have many hypothesis poses of the 
object obtained from the RANSAC process. We detect the 3D 
keypoints from the depth image and compute the associated 
spin images. Our acceleration is focused on finding the correct 
pairs of matching points from different views. We use the 
concept of parallelization on the matching problem. For a 
hypothesized pose of the object, we need to run specific round 
to confirm if the number of correct pairs of matching points is 
sufficient enough or not. We parallelize the computation for all 
hypothesized poses of the object in the RANSAC process on 
the GPGPU platform to accelerate the proposed 3D object 
alignment system. 

IV. EXPERIMENTAL RESULTS 

A.  Hypothesized pose of object 

The template contains different poses of the object. The 
point-cloud data are generated from the depth information, so 
the depth map of the object from one view only contains partial 
information of the object. The 3D object is more complex. We 
try to use a small number of depth maps of the object from 
different views to represent the 3D object. In our experiments, 
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we observe that the tolerance of deviation in the rotation angle 
is about 20 degree. We use different objects to evaluate the 

pose estimation accuracy by using the proposed algorithm. We 
use the specific pose of the object and randomly select the 
object poses to synthesize the depth images (see Fig.6 for 
example). Then, we compute the pose estimation and the error 
of the pose estimation by using the proposed pose estimation 
algorithm, and the errors are summarized in Table I.  

TABLE I.  ERROR OF POSE ESTIMATION FOR THE CASE WITH A SINGLE OBJECT 

6DOF |α| |β| |γ| R |Tx| |Ty| |Tz| 

Obj. A 2.92 1.17 1.22 3.59 0.48 0.90 1.21 1.71 

Obj. B 1.23 2.43 1.48 3.10 0.38 1.57 1.12 1.96 

Obj. C 1.87 3.21 2.43 4.43 1.83 2.13 1.56 3.21 

Obj. D 1.55 0.24 0.76 1.74 0.83 1.13 0.24 1.42 

 

In Table I, we calculate the average errors of the pose 
estimation on four objects. Note that |α|, |β|, and |γ| denote 
absolute value of rotation errors along x-axis, y-axis, and 
z-axis, respectively, and |Tx|, |Ty|, and |Tz| denote absolute 
value of translation error along x-axis, y-axis, and z-axis. The 
rotation is in degree and the translation is in millimeter. The 

total rotation error R and total translation error are 
defined by: 

222

222

zyx TTTT

R



 
                         (8) 

 To represent the 3D model for an object, we use a simulator 
to generate the depth images of an object along x-axis from 0

o 

to 180
o
 and y-axis from 0

o  
to 360

o
. Thus, We have totally 172 

poses of an object. We use some industrial objects, as depicted 
in Fig. 7, in our experiments to evaluate the accuracy of the 
proposed system. 

B.  Object pose estimation in container 

Given the position of the camera, we synthesize depth maps 
of many identical objects in the container scenes as the target 
depth images. We have the ground truth of poses of the object 
closest to camera. An example of the target depth image is 
depicted in Fig.3. Our goal is to estimate the pose of the object 
closest to the camera. For visualization, we show the detected 
result in point-cloud display in Fig. 7. The red bounding box 
contains the detected object that is closest to the camera.  

We experiment on the target depth images, and the average 
errors in pose estimation are summarized in Table II.  The 
error of Object C is slightly higher than the others. It is because 
object C is with similar spin images around the bounding 
region, so it might cause the matching result deviates from the 
ground truth.  

TABLE II.  ERROR OF POSE ESTIMATION ON MULTIPLE OBJECTS 

6DOF |α| |β| |γ| R |Tx| |Ty| |Tz| 

Obj. A 0.34 0.64 0.43 0.84 0.32 0.22 0.65 0.75 

Obj. B 0.83 0.64 1.22 1.61 0.34 0.54 0.48 0.80 

Obj. C 1.42 2.59 3.12 4.30 1.92 2.24 2.84 4.10 

Obj. D 1.52 2.13 1.34 2.94 0.88 1.49 1.76 2.47 

 

 
 

Algorithm 1 Alignment from template to target 

 
 

INPUT : Uc , Wc , U, W 

OUTPUT : estimated pose 

Set Ce = Cmax, Pe = Pmax  

While Ce > ε2 

While Pe > ε1 

iter = 1 

Select 3 similar matching pair points randomly. 

Compute the rigid transformation. 

'
cU  =  RUc + T 

nWUP cce  '   

iter = iter + 1 

If  iter > Iter_max 

    Break; 

   END If 

END While 

If Pe > ε1 

  Return 1, Break 

 END If 

 U’ = RU + T 

    Compute the means for U’ and W as '
mU  and Wm 

 meC WU '
m   

END While 

ICP Refinement on U’ and W 

Compute the pose estimation 

 
 

 
Figure 6. The center is a specific pose of the object and 

others are similar poses of the object. 
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Object A        Partial view from the point cloud  Partial view from the point cloud 

 

   
Object B        Partial view from the point cloud  Partial view from the point cloud 

 

`   

Object C        Partial view from the point cloud  Partial view from the point cloud 

 

   
Object D        Partial view from the point cloud  Partial view from the point cloud 

 

Figure 7. The 3D alignment results for different objects. The first column contains the target depth images. The second and 

third columns are different views of the target point clouds overlaid with the detected object template. The blue points are 

from template and the red points are from target. If the region of the overlapping is high, it means the result is better. 
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C. Detection Rate 

 We experiment on different objects, depicted in Fig.1, to 

evaluate the detection rate of the proposed algorithm. We use 

100 different target depth images, with each containing many 

identical objects. The object in the target depth image is 

successfully detected if the translation error and the rotation 

error in the estimated 3D pose are smaller than predefined 

thresholds (5 degree and 5 mm). 

 In Table III, we can see that the objects with simple 

structures can be successfully detected. For the objects with 

complex structure, the detection rates are decreased because 

the complex structure of the object captured from different 

views  is more difficult to match well from a single depth 

image. 

TABLE III.  DETECTION RATE ON DIFFERENT OBJECTS 

Object Detection Rate False Detections 

Obj. A 96% 4 

Obj. B 93% 7 

Obj. C 84% 16 

Obj. D 92% 8 

 

D.   GPU acceleration 

We implement our system in C++ with GPGPU by using 
CUDA programming. Our computing platform is equipped 
with Intel(R) Core(TM) i7-27670QM CPU and NVIDIA 
GeForce GT 630M GPU. 

We focus on parallelizing the procedure of selecting the 
correct pairs of matching points from different poses of the 
object. We compute the template keypoints of different poses 
offline and obtain the correct pairs of matching points. Our 
execution time of using the proposed algorithm on CPU and 
GPGPU computing platforms is summarized in Table IV. It 
takes most of the time in RANSAC on CPU because every 
candidate object pose needs to be computed sequentially to 
find the candidate set of matching points. In our experiment, 
the GPGPU implementation is about 150 times faster  than that 
implemented on CPU for the RANSAC procedure. 

TABLE IV.  AVERAGE EXECUTION TIME OF THE PROPOSED ALGORITHM ON 

CPU AND GPGPU COMPUTING PLATFORMS (UNIT: SECOND) 

Exec. 
Time 

Keypoint
detection 

Spin 
Image 

RANSAC ICP Total 
time 

CPU 2.21 1.01 312.34 1.72 318.34 

GPGPU 2.13 1.56 2.48 1.84 9.06 

V. CONCLUSION 

We presented a novel 3D object alignment system to detect 
the object from the depth image for robotic bin-picking 
applications. The proposed system consists of 3D object 
detection and pose estimation from a single depth image. For 
object detection, our algorithm combines 3D keypoint 
detection, spin-image extraction, and RANSAC to achieve 
robust and efficient object detection from depth data. In 

addition, we implement the proposed object detection 
algorithm on the GPGPU platform to accelerate the 
computation. We evaluate the proposed 3D object alignment 
system on simulated depth images. In the future, we will 
perform extensive testing of our system on real data.   

VI. REFERENCES 

[1] A. Patterson, P. Mordohai and K. Daniilidis, “Object detection 

from large-scale 3D datasets using bottom-up and top-down 

descriptors,” ECCV 2008. 

[2] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, 

“Recognizing objects in range data using regional point 

descriptors,” ECCV 2004. 

[3]  H. Yokoyama, H. Date, S. Kanai and H. Takeda, ”Detection 

and classification of pole-like objects from mobile laser 

scanning data of urban environments,” ACDDE 2012. 

[4] M. Lehtomaki, A. Jaakkola, J. Hyyppa, A. Kukko, H. Kaartinen, 

“Detection of vertical pole-like objects in a road environment 

using vehicle-based laser scanning data,” Remote Sensing 

2010. 

[5] B. Steder, G. Grisetti, M. V. Loock and W. Burgard, ”Robust 

on-line model-based object detection from range images,” IROS 

2009. 

[6] H. Koppula, A. Anand, T. Joachims and A. Saxena, “ Semantic 

labeling of 3D point clouds for indoor scenes,”  NIPS 2011. 

[7] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, 

“Towards 3D point cloud based object maps for household 

environments,” Robotics and Autonomous Systems Journal, 

2008. 

[8] G. Vosselman, B. Gorte, G. Sithole, T. Rabbani,” Recognising 

structure in laser scanner point clouds,”  IAPRS 2004. 

[9] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for 

point-cloud shape detection,” Computer Graphics Forum, Vol. 

26, no. 2, pp. 214-226, June 2007.. 

[10] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi, T. Marks, 

and R. Chellappa,”Fast object localization and pose estimation 

in heavy clutter for robotic bin picking,” IJRR 2012.  

[11] A. Johnson and M. Hebert,” Object recognition by matching 

oriented points,” CVPR 1997. 

[12] S. Ruiz-Correa, L. G. Shapiro, and M. Melia, ”A new  

signature-based method for efficient 3-D object recognition” 

CVPR, 2001. 

[13] M. Kortgen, G.-J. Park, M. Novotni, and R. Klein, ”3D 

shape m̈atching with 3D shape contexts,” Central European 

Seminar on Computer Graphics, April 2003. 

[14] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van 

Gool, ”Hough transform and 3D SURF for robust three 

dimensional classification.”  ECCV  2010. 

[15] J. Huang, and S. You, “Point cloud matching based on 3D 

self-similarity,” Intern. Workshop on Point Cloud Processing, 

2012. 

[16] J. Sun, M. Ovsjanikov, and L. Guibas,” A concise and provably 

informative multi-scale signature based on heat diffusion,” 

Symposium on Geometry Processing, Berlin, July 2009 

[17] M. M. Bronstein and I. Kokkinos,” Scale-invariant heat kernel 

signatures for non-rigid shape recognition.,” CVPR 2010. 

[18] I. Sipiran, and B. Bustos ,”Harris 3D: a robust extension of the 

Harris operator for interest point detection on 3D meshed,” 

Visual Computer, Vol. 27, No. 11, pp. 963-976, 2011. 

[19] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, ”Aligning 

point cloud views using persistent feature histograms,” IROS 

2008. 

1269


