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This paper presents a new method, based on 3D vision, for the recognition of free-form objects in the
presence of clutters and occlusions, ideal for robotic bin picking tasks. The method can be considered as a
compromise between complexity and effectiveness. A 3D point cloud representing the scene is generated
by a triangulation-based scanning system, where a fast camera acquires a blade projected by a laser
source. Image segmentation is based on 2D images, and on the estimation of the distances between point
pairs, to search for empty areas. Object recognition is performed using commercial software libraries
integrated with custom-developed segmentation algorithms, and a database of model clouds created by
means of the same scanning system.

Experiments carried out to verify the performance of the method have been designed by randomly
placing objects of different types in the Robot work area. The preliminary results demonstrate the
excellent ability of the system to perform the bin picking procedure, and the reliability of the method
proposed for automatic recognition of identity, position and orientation of the objects.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

To maintain global competitiveness, the manufacturing indus-
try must focus on flexibility and re-configurability, to produce
customized work-pieces in a fast an efficient way [1]. Most of the
operations are usually performed by Robots in the production line.
One of the still unresolved issues is the ability of Robot manip-
ulators to perform well in non-structured environments, where
neither shape nor posture of the objects are predictable [2].
Machine vision, both 2D and 3D, is considered to be an essential
aid in this context [3].

Fast and effective bin picking from non-organized containers is
one of the present challenges for Robots, required to identify
objects and to estimate their spatial location and orientation in
unstructured bins [4]. Main issues of an effective bin picking are
(i) acquisition of the scene through vision, (ii) scene segmentation
(i.e., separation of different objects), and (iii) recognition and pose
estimation of the segmented objects. These three tasks should be
performed in the presence of clutter, shape variability, occlusions,
object overlapping. All these aspects make bin picking a still
almost unresolved problem.

Presently, scene segmentation and object recognition are
based on 2D vision techniques, ideal for elements whose third
ll rights reserved.
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dimension is negligible, lying on structured bins or on vibrating
elements. Blob analysis and learning-based approaches are used,
although with some limitations [5].

With complex objects, randomly oriented and partially over-
lapped, the 3D approach is highly preferable [6], using commer-
cially available 3D scanners based on different principles (time-of-
flight, passive and active stereo vision) [7–9]. In 3D vision, scene
segmentation is based on depth discontinuities in the point cloud
of the scene [10]. Other methods are based on region growing and
curvature estimation, in search for planar, convex or concave
continuous surfaces [11]. Edge-based approaches are more accu-
rate in detecting border locations, however, the results need
further elaboration in order to increase reliability.

Object recognition can be based on the construction of a
database of 3D CAD models: every segmented element of the
scene is compared with those models, to estimate their orientation
[12]. Using 3D CAD models presents the drawbacks of high
computational time and resources, as well as the need to create
CAD models of the objects and the requirement of a good initial
pose estimation to avoid local minima. An alternative model-free
approach is based on the extraction of invariant geometric features
from the 3D range image [13–15]: these approaches detect simple
shapes in work areas with a single topology of objects. More
sophisticated techniques, based on super-quadrics [16] spin
images [17] and tensors [18,19] allow efficient recognition in
semi-clutter scenes: however, their level of complexity might
not be compatible with on-line bin picking in industrial plants.
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Fig. 1. Flowchart of the procedure.
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Methods based on 3D template matching, where the point
cloud of a segmented object is compared to the point cloud of a
template, present the ability to treat complex shapes that cannot
be modelled by local features [20]. Thanks to their robustness,
these approaches to object recognition in bin picking applications
are being considered with increasing attention.

Our Laboratory is focused on solutions for the industrial world
of Robotic manipulation and bin picking using 3D vision [21]. Our
approach to satisfy industrial needs in terms of (i) short time-to-
market, (ii) high cost effectiveness, and (iii) ease of implementa-
tion of the solution, is based on the use of existing hardware and
software tools where available and economically sustainable, but
trying to adapt some of the hardware or software tools when the
commercial ones should be improved in some of their aspects.

We have recently been focused on the implementation of a full
3D solution for bin picking applications, in the presence of semi-
cluttered scenes with objects characterized by both simple geome-
tries and free-form shapes. We followed a “building brick” philo-
sophy to simplify the development: we chose a market available
laser slit as the acquisition device [22], and the Match 3D tool of the
commercial 3D Shape Analysis Library (SAL3D) Library (AQSense
Inc., Spain) to perform object identification and pose estimation
[23]. Match3D Coarse follows a template matching approach, based
on a best-fit algorithm that quickly aligns and compares 3D point
clouds with their respective models (templates).

To complete the chain, a suitable segmentation tool was
required, and we focused our efforts to develop a novel tool with
superior performances with respect to the state of the art in terms
of speed and flexibility. Our segmentation is built on the modules
available from the open-source Point Cloud Library (PCL) platform
[24]; this library offers an advanced and extensive approach to 3-D
manipulation. In particular, we implemented an iterative algo-
rithm based on the Euclidean distance between points in the
cloud, that allows to efficiently segment the scene, in the presence
of objects of different shapes, dimensions and orientations. The
same tool was used to successfully treat occlusions and object
overlapping of segmented elements, and this is not present in the
state of the art.

In this paper the 3D acquisition procedure, the cloud segmen-
tation and the object identification procedures are presented,
together with experimental results performed to test them.
Fig. 2. Layout of the system.
2. Workflow of operation

Fig. 1 shows the workflow of the operations implemented in
the method. It is based on three main blocks. The first one
performs the acquisition of the 3D scene; this is accomplished
by (i) calibrating the acquisition device, (ii) scanning the work
area, and (iii) pre-processing the point cloud to simplify subse-
quent elaboration.

The second block implements the segmentation of the 3D
range map. To this aim, the point cloud is filtered to remove data
belonging to the transition regions between objects that are
partially overlapped or occluded. Clusters are extracted and
suitably processed to select those that are represented by 3D
sub-clouds corresponding to non-occluded objects. Finally, a
restoring operation is carried out on each selected cluster, to
maximize the visibility of the 3D features in each sub-cloud.

The last block performs the identification of the objects
corresponding to the clusters, and estimates their pose for robot
picking. Object identification is performed by matching the avail-
able templates to the selected clusters. The templates are 3D
clouds of the objects. 3D matching is carried out by means of an
alignment algorithm, implemented in the SAL3D Library. The
output parameters represent the pose information, that is used
as the input to the robot. In the following sections, these blocks are
described in detail.
3. 3D acquisition

3D scene acquisition is accomplished by using the high-speed
3D camera Sick Ranger D50 and a laser diode at 660 nm, equipped
with a cylindrical lens, angled by 451 with respect to the camera.
As sketched in Fig. 2, it is mounted orthogonally to the working
area and produces a very sharp line, in order to have a high
contrast between the illuminated pixels and the rest of the image,
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making the system insensitive to external light sources. The
deformation induced by the shape of the illuminated surfaces
onto the originally straight laser blade is captured by the camera;
hardware designed on purpose allows the Ranger D50 camera to
elaborate the light signal very fastly, and to provide the corre-
sponding object profile in few milliseconds [22,9]. The whole
scene is acquired through scanning: the Ranger D50 device
acquires and elaborates the profiles into blocks of 512, at max-
imum speed equal to 1ms/profile. The 3D map is defined with
respect to the so-called Global Reference (GR) system of coordi-
nates (z, x, y), shown in the figure. The acquired profiles are
defined in the (z, x) plane, being y the scanning direction.

3D data are sent to PC through a Gigabit Ethernet connection.
The acquisition camera must be calibrated as a first step, to map
the sensor coordinate system into real world coordinates. Purpo-
sely designed calibration software, called Coordinator is provided
by Sick.

An example of the acquisition step is shown in Fig. 3. The field
of view in Fig. 3a is equal to 120 mm by 120 mm; the scene is
characterized by a number of different objects, disposed in a semi-
random way. The measurement reference system is also drawn,
with origin OG in correspondence with the top-right corner of the
black plane surface under the objects. The 3D raw point cloud
obtained after the acquisition is presented in Fig. 3b: in this
example, resolution along x and z is 6 points/mm and 0.06 mm
respectively. The acquisition speed equals 5 ms/profile. The reso-
lution along y is 10 profiles/mm. The whole point cloud is stored in
a 1230 by 720 matrix. The shadows due to undercuts are well
visible, as are the points belonging to the background surface. The
3D matrix encodes the shadows as invalid points; thus they are
not of concern for the subsequent elaboration.

In contrast, points belonging to the x,y plane are a problem,
since they would entail more computational effort in the next
steps. To exclude them, a simple but efficient procedure has been
developed. It consists into scanning the whole scene in the
absence of the objects, immediately after the camera calibration.
The resulting 3D map is obtained, and the maximum measured
zmax value is found. This value is used as a threshold to distinguish
the object points from the background in real scenes acquired
subsequently.

As shown in Fig. 3b, the point cloud undergoes a translation
along the y direction, with respect to the situation shown in
Fig. 3a. This is a consequence of the fact that the calibration
procedure does not estimate the coordinate of point OG along y.
This effect is compensated by precisely estimating the position, the
velocity and the acceleration of the scanning stage at any time, and
by measuring the cycle time between two subsequent scans.
Fig. 3c shows the effect of these procedures: the 3D point cloud
retains information only about the objects, and the origin is
correctly set at point OG.
Fig. 3. Example of acquisition and 3D cloud generation. (a) Scene acquired by the
3D vision system. (b) Associated raw cloud. (c) Resulting cloud after the removal of
points belonging to the plate and after the translation.
4. Segmentation

The aim of segmentation is to assign each object to the
corresponding sub-cloud. This task is not difficult when the
objects in the scene are far enough from each other: this is the
case of items labelled by O, G, A, and C in Fig. 3a. The correspond-
ing sub-clouds in Fig. 3c are well separated from the neighbour-
hood, and a simple approach, based on the computation of the
local density of the 3D map, might be very efficient to perform the
operation. The problem becomes more difficult in the presence of
objects very close to each other or even adjacent, such as the
elements labelled by K and J in Fig. 3a. The corresponding point



Fig. 4. Histogram of mean distances dmean from 20 neighbors for the cloud shown
in Fig. 3c.
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clouds in Fig. 3c are connected to each other, and cannot be
distinguished as separate clouds by looking at their local density.
The most demanding situation occurs when objects overlap, like M
and L with respect to N, and for couples B–E and D–F in Fig. 3a. In
these cases, not only the transition between the sub-clouds is not
sharp, but at least one of the sub-clouds in the pair is incomplete.

To cope with these problems, a segmentation algorithm based
on four steps has been developed. In the first one, called Cloud
filtering, a dedicated procedure to filter out points belonging to the
transitions areas among the objects has been designed, to enhance
their separation in the point cloud. The second step, called Cluster
extraction, implements a suitably designed algorithm able to find
dense regions in the cloud, which are expected to identify distinct
objects. The third step, called Cluster selection, is aimed at remov-
ing clusters corresponding to occluded objects. The last step, called
Cluster restoration, compensates for unavoidable data losses
caused by the preceding three steps.

4.1. Cloud filtering

This algorithm is based on the analysis of the neighbourhood of
each point in the cloud, to find and remove points whose mean
distance from their neighbours is greater than a given threshold.
This algorithm is structured as follows:
(a)
Fig. 5. Filtering procedure applied to the cloud shown in Fig. 3c.
the neighbourhood of each point of the cloud is determined:
given point q and the number of neighbours n, the goal is to
find the points {p1,…,pn} in the cloud that are the closest to q.
This is a typical application of the nearest neighbours search
(NNS) problem, which is a hard problem and one of the most
computationally expensive components in many computer
vision algorithms. To cope with this aspect, a number of
approximate methods have been developed; they are proven
to be a good-enough approximation in practical applications
and are orders of magnitude faster than the algorithms
performing the exact search. The most widely used algorithm
for nearest-neighbour search is the k–d tree, a space-
partitioning data structure that stores a set of k-dimensional
points in a tree structure [25]. In our work, we selected this
algorithm to perform this computation; in particular, the Fast
Library for Approximate Nearest Neighbours (FLANN), which is
part of the Point Cloud Library (PCL), was selected at the
implementation level [26].
(b)
 Distances {di} (i¼1,…,n) among point q and points {p1,…,pn}
and the mean value dmean over values {di} are computed;
(c)
 The distribution of distances dmean obtained for each point q is
assumed to be a Gaussian distribution, with mean μ and
standard deviation s. As an example, Fig. 4 shows the
histogram of distances dmean, obtained considering a neigh-
bourhood of n¼20 elements, for the cloud shown in Fig. 3c
(the semi-logarithmic scale is used for clarity). The mean value
μ of the distribution is estimated to correspond with the
lowest dmean value, and the standard deviation s is chosen in
correspondence with the 68.27% of the integral area of the
histogram.
(d)
 This distribution gives an indication about the density of
points in the cloud. In fact, points q with distance dmean almost
equal to μ are kept in the filtered point cloud Pf, as they belong
to dense regions, whereas points q having dmean greater than a
given threshold are filtered out, as they correspond to sparse,
if not empty, regions. The threshold is chosen equal to dThF¼μ+αs
where α, the standard deviation multiplier, is the degree of
freedom of the algorithm: low values of α result into a strong
separation among portions of points in the cloud, because a
considerable number of points are filtered out. Referring to the
example Fig. 4, it is evident that most of the points in the cloud
belong to dense regions, because the histogram is compressed
toward the mean, and the number of points decreases sharply
for increasing values dmean. The cloud resulting from the
filtering process with α¼0.05 is shown in Fig. 5: less densely
populated regions are removed and homogeneous groups of
points are clearly separated.
4.2. Cluster extraction

The aim of this procedure is to decompose cloud Pf into
clusters, i.e., sub-clouds that are supposed to identify distinct
objects. From a mathematical viewpoint, two clusters, defined by
sets of points Oi¼{qi∈Pf} and Oj¼{qj∈Pf}, are distinct from each
other if:

min∥qi�qj∥2≥dThE ð1Þ
where dThE is the distance threshold. In other words, Eq. (1) states
that if the minimum distance between the points in the set Oi and
the points in the set Oj is larger than threshold dThE, then points qi
belong to cluster Oi and points qj to cluster Oj. In our algorithm, the
basic idea is to find the neighbours of each point q in cloud Pf, by



Fig. 6. Clustering algorithm applied to the 3D cloud in Fig. 5.
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using a NNS approach similar to the one described in Section 4.1.
However, in this case, the parameter that determines the neigh-
bourhood is the distance threshold dThE.

The algorithm includes the following steps:
1.
 set up an empty list of clusters C and an empty queue of
points Q;
2.
 for any point in Pf
a) add point qi to the current cluster Q;
b) determine the neighbours {p1,…,pn} of qi in a sphere with

centre in qi and radius rodThE;
c) add points {p1,…,pn} to Q, if they are not already present in

the cluster;
d) for any point of Q, repeat steps b and c;
e) save Q in the list of clusters C;
f) reset Q;
3.
 Go to step 2 and repeat until all the points in Pf have been
processed.

Using this algorithm, each cluster is defined by points whose
mutual distance is less or equal to radius r; steps from (b) to (d) are
in a loop: the exit condition occurs when no more elements can be
appended to the queue. This condition inherently occurs when the
points at the boundaries of the cluster have been included.
Subsequent clusters are detected by applying this searching
algorithm to the residual points of the cloud. The degree of
freedom of this procedure is the distance threshold dThE: if its
value is too high, multiple objects can be grouped into a single
cluster; on the other hand, every point of the cloud is assigned to a
single cluster if the threshold value is by far lower than dThE.

Clusters with a very small number of points are removed as
they are supposed to correspond to noise. Fig. 6 presents the result
of this procedure applied to the 3D cloud of Fig. 5. Eighteen
clusters, each showed in a different colour, have been detected.
Referring to the objects in Fig. 3a, it is evident that most clusters
(i.e., clusters 1–11, and 16–18) have been correctly assigned to a
single object: the algorithm only fails in correspondence to object
N, which has been assigned to two different clusters, (labelled by
12 and 15 in the figure) because of objects L and M, that stand on
it. Objects E, F and Q, which are partially occluded, are assigned to
clusters 5, 6 and 18; however, the corresponding point clouds are
incomplete and any subsequent matching with the template
representing the real object would fail, preventing the robot from
correctly picking them up. For this reason, clusters corresponding
to occluded objects must be detected. To this aim, a dedicated
procedure has been developed. It is presented in the following
section.

4.3. Cluster selection

Our method is based (i) on the calculation of the bounding box
of each cluster, i.e., the smallest rectangular region in the xy plane
that includes all the cluster points, and (ii) on the detection of
overlaps between bounding boxes taken in pairs. Step (i) is very
simple, since clusters share the same matrix which represents
cloud Pf. Hence, denoting by Col and Row the matrix indexes, a
simple sorting operation allows us to calculate, for each cluster,
the highest values (maxCol, maxRow) and the lowest values
(minCol, minRow) along columns and rows respectively of their
bounding boxes. Step (ii) is performed by considering that, given
two clusters Qi and Qj, there are sixteen overlapping combinations
between the corresponding bounding boxes, schematically pre-
sented in Fig. 7. The conditions that must be checked to detect
these combinations are shown in Table 1.

Whenever an overlap is detected, the occluded cluster has to be
identified. To this aim, points in clusters Qi and in Qj, belonging to
the region of overlap, are selected, and mean values zi and zj over
corresponding depth values {zi} of Qi and {zj} of Qj are evaluated. If
zi4zj, then Qj is occluded by Qi, if ziozj Qj occludes Qi. Occluded
clusters are removed from the cluster list C. In case that the area of
intersection does not include any of the two clusters, both remain
in the list.

An example of the performance of this procedure is shown in
Fig. 8: with respect to the situation in Fig. 6, clusters 5, 6, 12, 15 and
18 have been correctly excluded because they are occluded by
clusters 2, 4, 13, 14 and 17, respectively. The elaboration of clusters
9 and 10 deserves a special comment: in this case, the correspond-
ing bounding boxes do intersect (both conditions 2 and 3 in
Table 1 hold); however, there are no points in cluster 10 that also
belong to the intersection, and the algorithm correctly keeps both
clusters in the list.

4.4. Cluster restoration

Cluster 7 in Fig. 8 gives a poor representation of object G: this is
well evident by comparing the corresponding point cloud to the
one in Fig. 3c. This behaviour is a consequence of the procedures
presented in Sections 4.1 and 4.2. Matching this cluster with the
template model, which represents the real object, might be
unsuccessful. Cluster restoration deals with this problem: for each
cluster in list C, the corresponding point cloud is replaced with the
original one, which was acquired by the 3D scanning system: thus
it can be more robustly aligned with the template.
5. Object identification

The core of this procedure is based on the Match3D Coarse
function, belonging to the commercial suite of routines SAL3D (3D
Shape Analysis Library), which contains a set of tools for the
development of applications based on analysis and processing of
range maps and point clouds.

Match3D Coarse follows a template matching approach. It provides
three parameters. These are (i) the parameters of the 3D rigid
transformation necessary to obtain the alignment, (ii) the Quality
Factor (QF), which is a measure of how good the alignment is between
the template and the cluster, and (iii) the disparity map (DM),



Table 1
Conditions to be checked at the bounding boxes (first column) and corresponding
overlaps (second column).

Checking conditions Overlap combinations

minColi≤minCol≤maxColi∧maxColj≤maxColi 2, 6, 13, 15
minColj≤minColi≤maxColj∧maxColi≤maxColj 10, 12, 14, 16
minColj≤minColi≤maxColj∧maxColi4maxColj 1, 8, 7, 9
minColi≤minColj≤maxColi ∧maxColij4maxColi 3, 4, 5, 11

Fig. 8. Cluster selection method applied to the segmented point cloud in Fig. 6.

Fig. 7. Sketch of the possible overlaps between the bounding boxes of two clusters. Cluster Qi is represented by the transparent rectangle, bold framed; clusters Qj are
represented by semi-transparent, grey rectangles.
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which stores disparities Δz of corresponding points in the two aligned
surfaces.

The parameters of the 3D rigid transformation are expressed by
the following matrix:

T¼ R t
0 0 0 1

� �
ð2Þ

in Eq. (2), R is the 3�3 rotation matrix and t, of components Tx, Ty,
Tz, is the 3D translation vector.

The Match3D Coarse tool is very robust against initial misalign-
ment of the clouds; considering a typical situation, characterized
by a number of point clouds corresponding to the objects in the
work area, their position can be efficiently estimated by matching
them to suitable templates, whose orientation in the GR system is
known. Whenever a matching is found, the point cloud is assigned
to the object identified by the template (object identification), and
parameters in matrix T are used to tell the robot where the object
is located and how it is oriented, for optimal picking.

This approach requires the creation of a database of 3D
templates. Each template is a point cloud generated by acquiring
the real object from a specific viewpoint, using the 3D scanning
system in Fig. 2. The object shape determines the number of the
templates corresponding to a single object; in addition, the
templates of different objects can be stored, depending on the
particular application. As an example, Fig. 9 shows the templates
of the objects in Fig. 3a. Each point cloud is expressed in the GR
system, with matrix R and vector t in Eq. (2) equal to the Identity
matrix and to (0, 0, 0) respectively.



Fig. 9. Templates in the GR system, corresponding to the objects in Fig. 3a.
(a) template corresponding with objects A and C; (b) template corresponding with
objects P and Q; (c) template corresponding with objects D, F and E; (d) template
corresponding with objects G and B; (e) template corresponding with objects I and
M; (f) template corresponding with objects K; (g) template corresponding with
object I; (h) template corresponding with H and O.

Fig. 10. Output of the Match 3D tool. (a) Disparity Map; (b) corresponding
alignment.
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In our procedure, the 3D Match tool is applied (on a pairwise
basis) between each template T and each cluster Q belonging to list C.
Correspondingly, the QF parameter is calculated. QF ranges
between 0 (no matching) and 1 (perfect alignment), and is of help
in all cases where a single template is matched to a single cluster;
this typically occurs in quality control applications, where the goal
is to check the tolerances of the work-pieces with respect to a
model. However, in our application, the scenario is quite different,
since the crucial point is to select the best template-cluster (T–Q)
alignment, among all possible T–Q combinations. Very critical
situations occur when (i) a single template matches with two or
more clusters, or (ii) a single cluster matches with two or more
templates. In these cases, the highest value of parameter QF
represents a necessary but not sufficient condition for the best
alignment.
5.1. Finding the best alignment

To remove any ambiguity of the alignment and to establish
which template best represents a given object, the disparity map
provided by each alignment is used. This map is a signed float
matrix, storing the depth differences Δz for each point of coordi-
nates (x,y) in the template and in the cluster. As an example,
Fig. 10a shows the disparity map corresponding to the alignment
of Fig. 10b, between the template in Fig. 9d and cluster 2 in Fig. 8.
Disparities Δz are shown in mm on the right scale (a colour code is
used for displaying); texturized areas are also visible in the map.
The striped areas correspond to regions of the DM where neither
the template, nor the cluster, is present; dotted areas correspond
with points belonging to either the template or to the cluster. No
valid Δz elements belong to texturized areas. The dimension along
the rows and the columns of DM are W and H respectively.

In our approach, two new parameters are evaluated from each
DM (i.e., for each alignment): the former is called OF (Overlap



Table 2
Performance of the procedure applied to the clusters in Fig. 8. Tx, Ty, Tz: components of vector t; Dxy: distance on the x,y plane; Roll, Pitch and Yaw: rotation angles estimated
from matrix R.

Cluster OF (%) EF (mm) Tx (mm) Ty (mm) Tz (mm) Dxy (mm) Roll (1) Pitch (1) Yaw (1)

1 90.6 0.041 10.82 20.12 2.09 22.84 �0.36 �1.08 �3.31
2 91 0.051 0.42 45.34 3.55 45.34 0.89 �29.71 �10.98
3 97.1 0.047 11.51 77.5 1.88 78.35 0.44 �0.31 �32.8
4 89.7 0.106 15.43 100.64 1.15 101.82 30.34 �18.41 �56.4
7 90.3 0.088 29.47 2.93 1.8 29.62 0.11 0.17 32.6
8 83.1 0.037 65.73 44.66 1.69 79.47 �0.27 �0.85 171.11
9 91.8 0.092 59.3 64.6 1.7 87.69 0.04 0.2 10.1

10 88.7 0.244 35.73 70.14 1.63 78.72 �0.4 �0.5 �40.9
11 93.6 0.164 69.61 105.31 1.1 126.24 3.65 1.83 �48.09
13 93.9 0.932 81.81 50.15 8.73 95.96 �1.57 �0.21 �132.5
14 96.4 0.03 103.51 16.88 7.73 104.88 �0.9 �4.51 11.24
16 87.4 0.057 110.81 73.41 1.56 132.92 �0.16 �0.15 163
17 71.9 0.176 115.89 93.15 5.18 148.69 �1.92 5.02 87.49
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Factor), and is calculated as follows:

OF ¼ 100� 1� NInf

ðW � HÞ�NNaN

� �
% ð3Þ

in Eq. (3), NInf and NNaN are the number of points in DM that belong
to the dotted and to the striped regions respectively; the higher
OF, the better the intersection between the template and the
cluster on plane x,y. When OF¼100%, the template is perfectly
overlapped to the cluster along z.

The latter parameter is called EF (Error Factor) and is defined as
follows:

EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑NA

i ¼ 1ðΔzÞ2
NA

s
ð4Þ

in Eq. (4), NA is the number of elements Δz in DM. Squared values
of disparities Δz have been used, to emphasize large errors. The
lower the EF value, the better the quality of the alignment.

Considering the set of templates and the disparity maps
resulting from their alignment with a single cluster Q, parameters
OF and EF are evaluated by means of Eqs. (3) and (4) and used to
find the template that best aligns to cluster Q by means of the
following algorithm:
(1)
 The subset M of templates for which is OF≥70% is determined;

(2)
 The template that shows the lowest value of EF among those of

subset M is selected as the one which best aligns to
cluster Q.
If subset M is empty, the sub-cloud corresponding to cluster Q
cannot be assigned to any object, and the classification fails. In the
other cases, the condition that the template and the cluster share a
considerable subset of points must be satisfied at first. Then, the
pair showing the best quality of the alignment is selected.
6. Experimental results

The implemented procedure has been tested to evaluate its
performance. The first test deals with the object identification
from the clusters in Fig. 8. For each cluster in Table 2 the values of
parameters OF and EF corresponding to the best T–Q alignment are
shown. Correspondingly, the parameters of the 3D rigid transfor-
mation are presented: Tx, Ty, Tz are the components of vector t, and
angles Roll, Pitch and Yaw are derived from rotation matrix R.
Parameter Dxy is evaluated as Dxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x þ T2

y

q
. A qualitative com-

parison of these values with the actual position of the objects in
the scene in Fig. 3.a shows that vector t and matrix R do hold the
required information to tell the robot where to move to pick
objects up. For example, object A is the closest to origin OG in GR;
its distance Dxy from OG equals 22.84 mm and is the lowest among
Dxy values in the table. Values Tz of clusters 13 and 14 are the
highest among values Tz in the table; this is consistent with the
fact that they are placed on object N in the scene. As a last
example, cluster 10 presents values of angles Roll and Pitch very
close to zero, which is perfectly in accordance with the fact that it
is placed on plane x,y. The value of angle Yaw is immaterial, due to
its symmetry with respect to axis z.

The second test aims at quantitatively assessing the quality of
the alignment. Fig. 11.a shows the experimental situation. The
effect of the segmentation procedure is visible in Fig. 11b and in
Fig. 11c. The cluster selection algorithm presented in Section 4
segments clusters from 1 to 4, which correspond with objects A–D
at the first iteration. Clusters 5 and 6 are segmented at the second
iteration, due to occlusions. To identify the objects, templates (e),
(f) and (h) in Fig. 9 have been input to the Match 3D tool and
aligned with clusters 1–4 first, and with clusters 5 and 6 after-
wards. For each cluster, three values of parameters OF and EF have
been obtained. The algorithm developed to choose the best T–Q
alignment provides the values shown in Table 3.

To quantitatively evaluate the quality of the alignment, the
following procedure has been implemented. Clusters in Fig. 11
have been given as inputs in the IMAlign software, belonging to
the market available PolyWorks suite of programs [27]. This
environment is one of the most powerful market-available pro-
ducts specifically designed for multi-view registration of 3D point
clouds, mesh modelling, dimensional control and CAD
applications.

The IMAlign module performs the pair-wise alignment be-
tween two point clouds defined in the same reference system. One
point cloud is ‘locked’, i.e., its rotation matrix is set to the Identity
matrix, and the translation vector is set to zero. The alignment
algorithm, which is based on a semi-automatic, very sophisticated
iterative closest point algorithm, provides the rotation matrix and
the translation vector that allows the free cloud to align to the
locked one [28]. The quantitative evaluation of the quality of the
alignment is given by the Std.Dev parameter, which represents the
standard deviation among corresponding points in the two clouds
after the alignment.

In our test, clusters were locked, and templates were aligned to
them, so that the alignment parameters output by the IMAlign
module could be directly compared to the parameters estimated
by our procedure. As an example, Fig. 12 shows the result of the
alignment of the template in Fig. 9h to cluster 2 in Fig. 11b: the two
point clouds are aligned very precisely as demonstrated by the
value of the Std.Dev parameter which is 0.044 mm. This procedure
was repeated for all the templates and all the clusters: the results



Table 3
Performance of the implemented procedure applied to the scene in Fig. 11a. Tx, Ty,
Tz: components of vector t; Dxy: distance on the x,y plane; Roll, Pitch and Yaw:
rotation angles estimated from matrix R.

Cluster OF
(%)

EF
(mm)

Tx
(mm)

Ty
(mm)

Tz
(mm)

Dxy

(mm)
Roll
(1)

Pitch
(1)

Yaw (1)

1 96.00 0.05 90.13 27.62 �0.76 94.27 4.61 �1.46 0.21
2 89.00 0.13 69.76 43.86 �1.27 82.40 24.70 �0.26 �26.17
3 84.00 0.10 55.25 54.57 0.07 77.66 �0.58 �1.19 �1.81
4 95.00 0.10 21.49 62.73 11.58 66.31 0.75 �0.23 �0.61
5 95.60 0.08 28.75 61.11 0.11 67.54 0.22 �0.43 �0.35
6 93.10 0.10 29.11 61.23 0.01 67.80 0.63 �0.64 �0.19

Fig. 12. Result of the pairwise alignment of the template in Fig. 9h to cluster 2 in
Fig. 11b.

Fig. 11. Experimental test used to quantitatively assess the performance of the alignment.
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are shown in Table 4. For each cluster, the value of the Std.Dev
parameter provided by the IMAlign module is reported: ΔTx, ΔTy,
ΔTz, ΔRoll, ΔPitch and ΔYaw are the differences between para-
meters Tx, Ty, Tz, Roll, Pitch and Yaw estimated by the IMAlign
module and by our procedure respectively. The values shown in
this table clearly confirm that the performance of the proposed
procedure is suitable for bin picking applications.

As far as the elaboration time is concerned, the following con-
siderations can be done: the acquisition of the 3D point cloud is very
fast: the 3D Ranger D50 device is able to acquire one profile/ms. In
realistic situations, where the work area might be up to 1�1m2, a 3D
point cloud of 1230�780 can be acquired in one second, scanning at a
speed of 1 m/s, with a resolution of 1 profile/mm, provided that the
Region of Interest of the camera is reduced to 64 rows. This
limitation can be removed using a more performing device, like
the 3D Ranger E50. Resolutions along x and z are scaled propor-
tionally depending on the optical layout.



Table 4
Performance of the developed procedure. Cluster: the number of the clusters in
Fig. 11b and c; Std.Dev: standard deviation parameter output by the IMAlign
module; ΔTx, ΔTy, ΔTz, ΔRoll, ΔPitch and ΔYaw: differences between parameters Tx,
Ty, Tz, Roll, Pitch and Yaw estimated by the IMAlign module and by our procedure
respectively.

Cluster Std.DEV
(mm)

ΔTx
(mm)

ΔTy
(mm)

ΔTz
(mm)

ΔRoll
(1)

ΔPitch
(1)

ΔYaw
(1)

1 0.05 �1.10 1.12 �0.15 0.97 �0.45 �9.99
2 0.04 �1.46 6.12 0.50 �12.50 0.50 �2.02
3 0.03 0.12 �0.04 0.04 �0.06 0.93 3.89
4 0.07 �1.67 2.40 0.03 �0.78 �0.17 �19.39
5 0.08 �0.23 0.18 0.01 �0.28 0.05 �1.95
6 0.08 �0.63 0.11 0.11 �0.68 0.26 �2.52
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The elaboration time required by the segmentation procedure
mainly depends on the dimension of point cloud Pf. In our
preliminary tests, where the filtered clouds had about 110,000
points, average values of 2 s, on a Intel Core i5 3350P hardware,
have been observed.

The object identification procedure is the most demanding. In
fact, the time required for a single T–Q alignment depends on both
the template shape and the position of the template with respect
to the cluster: in our tests, we observed that, on average, this time
is 70 ms. The overall time depends on the number of T–Q
alignments that must be carried out by the Match 3D tool. The
most favourable situation (which in practice is also the most
common) occurs when a single topology of objects is considered,
like in the test presented in Fig. 11. In this case, only the templates
in Fig. 9c, f and h have been matched to the four clusters in Fig. 11b
at the first iteration, and to the two clusters in Fig. 11c at the
second iteration, for an overall time of 0.84 ms and 0.42 ms
respectively. In case the objects are of different topology, the time
required to identify them increases: referring to the scene in
Fig. 3a, the time required by the procedure is 7.8 s, since the
number of matches is 13�8¼104, being thirteen the clusters in
Fig. 8, and eight the templates in Fig. 9.
7. Conclusions

A novel method for the identification of free-form objects in
scenes affected by clutter and occlusions has been presented. It can
be proposed as a satisfactory compromise between effectiveness
and complexity for the bin picking problem.

The implemented method consists of three stages: the genera-
tion of the 3D cloud by means of triangulation-based laser
scanning, the segmentation based on filtering and calculation of
distance between point pairs, followed by a matching process
realized starting from a commercial tool and a database of model
clouds. We illustrated the features and the goal of these algorithms
and we evaluated the performance generating random scenes
with different types of objects.

The set of experiments demonstrated the accuracy and the
reliability of the method for the identification and localization of
randomly placed objects in the work area without prior assump-
tions about their shape and the need of neglecting the occluded
ones. We are aware that the presented results are preliminary: a
more complete assessment of the procedure is under develop-
ment, using a robot gripper for picking-up objects randomly
disposed in a bin. The performance of the whole system will be
the subject of a subsequent paper.
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