
 
Abstract 

This paper presents a new approach for recognition of 
3D objects that are represented as 3D point clouds. We 
introduce a new 3D shape descriptor called Intrinsic Shape 
Signature (ISS) to characterize a local/semi-local region of 
a point cloud. An intrinsic shape signature uses a view-
independent representation of the 3D shape to match shape 
patches from different views directly, and a view-dependent 
transform encoding the viewing geometry to facilitate fast 
pose estimation. In addition, we present a highly efficient 
indexing scheme for the high dimensional ISS shape 
descriptors, allowing for fast and accurate search of large 
model databases. We evaluate the performance of the 
proposed algorithm on a very challenging task of 
recognizing different vehicle types using a database of 72 
models in the presence of sensor noise, obscuration and 
scene clutter. 

1. Introduction 
3D object representation and matching has been a 

fundamental part of computer vision research with 
applications in modeling, visualization, recognition, 
classification, and scene understanding [3][4][12]. 
Descriptor based 3D recognition algorithms, which match 
two objects by matching local, semi-local regions or 
surfaces, have emerged as promising solutions for real 
world 3D applications due to their robustness to clutter and 
obscuration [5][6][7][8][9][14][18][20][21][23].  

The pioneering work on shape descriptors by Stein and 
Medioni [21] used local surface normals called “splashes” 
together with the curvature and “torsion” information of 3D 
curves to match 3D objects. Subsequently, the methods of 
“point-signatures” [5] and “principle curvature”, proposed 
by Chua and Jarvis, were also used to match local surfaces 
of 3D objects. The popular “spin images (SI)” were 
introduced by Johnson and Hebert [14] to recognize 3D 
surface meshes. The “spin image” at a vertex is a 2D 
histogram of the counts of 3D points in a surrounding 
supporting volume, established using the local surface 
normal as a reference for invariance. The spin images can be 
computed for local or semi-local surface regions, making it 
flexible in compromising between the locality for robustness 
to occlusion/clutter, and the requirement of sufficient 
surface coverage for increased discriminating power. 
However, the discriminating power of SI may be limited 
due to the possible loss of valuable differentiating 3D shape 
information when it is collapsed into a 2D histogram.  

Frome et al. [7] first used features preserving the 3D 
information for improved shape discrimination by extending 

the idea of 2D shape contexts to 3D. A 3D shape context 
(3DSC) at an oriented basis point is a 3D occupational 
histogram of the data points in a surrounding support 
sphere, with its north pole aligned to the surface normal. 
However, given only the surface normal as a reference, 
there is a gauge of freedom in the rotation around the axes 
that needs to be eliminated in order to define the 3D 
histogram.  This problem is worked around by uniformly 
sampling the reference rotation angle and computing one 
feature vector for each sample. This handling of the free 
rotation multiplies the computational and storage cost, and 
decreases the recognition performance due to the limited 
sampling of the rotation parameter. Mian et al. [15] also 
used feature descriptors maintaining 3D shape information 
to match surface meshes. They defined a 3D reference 
frame for a pair of oriented points (a vertex and its surface 
normal), and then computed a “tensor”, which is a Cartesian 
partition of the cubic volume centered at the origin of the 
defined frame. The shape feature consists of the intersected 
object surface area in each bin. The drawback of this 
approach is the combinatorial exploration of vertex pairs 
required to define a local frame.  

Most recently orthonormal frames using the principle 
component space of local neighborhood was used by Taati 
et al. [22] to extract invariant 3D property features. Mian et 
al. [16] also enhanced the “3D Tensors” using such 
reference frames to rid of the combinatorial exploration of 
vertex pairs. We have independently [24] used eigen 
analysis of local points to establish invariant reference to 
encode shape features. Different from [16] and [22], we 
noted that there are a total number of four distinguishing 
frames that can be derived from the PCA subspaces, with 
each frame transforming into another by rotating along one 
of its axis by 180o. There is a need to disambiguate these 
symmetries in order to compute highly discriminative shape 
descriptors. 

With the limitations of existing approaches in mind, we 
introduce a new 3D shape representation method called 
Intrinsic Shape Signatures (ISS) for 3D object recognition 
which is designed to be stable, repeatable, informative, and 
discriminative, ensuring highly accurate 3D shape matching 
and recognition. In the paper we make the following 
contributions:  

1. We introduce a new descriptor based shape 
representation for 3D objects: 

– We generalize the popular surface normal reference 
to provide a full 3D coordinate system for local shape 
descriptors. The z-axis of the frame is the surface normal 
widely used in the past to establish view-independent 
shape descriptors. In addition, we determine the x-, and y- 
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axes in the same systematic way as we compute the z- 
axis to establish a stable 3D reference enabling highly 
discriminative 3D shape descriptors. 

– We compute, at a 3D point, a highly discriminative 
shape feature as a weighted 3D occupational histogram of 
data points in its spherical neighborhood using a 3D 
partition that evenly divides the angular space. This 
choice of feature extraction ensures robustness w.r.t data 
noise as well as errors in computed reference frames. 
2. We present an efficient algorithm to match 3D point 

clouds using the proposed shape descriptor. It requires 
neither combinatorial exploration of match results of feature 
descriptors for the pose estimation [14], nor combinatorial 
exploitation of data points to compute view independent 
references [15]. As a result, we eliminate noise introduced 
by combinational exploitation of noisy input in the match 
process for better recognition accuracy.  

3. We present a highly effective and efficient index 
scheme to index feature descriptors for fast and accurate 
model-based recognition of large model databases. 

The ISS algorithm operates directly on 3D point clouds 
and requires neither surface meshing nor triangulation of the 
data points. These preprocessing steps are error prone for 
data in real applications which is typical of sensor noise, 
surface discontinuity due to obscuration and occlusion, and 
close proximity of objects. It also makes little assumptions 
about the sensor physics, or viewing geometry.  

The rest of the paper is organized as follows. We 
introduce the intrinsic shape signatures in Section 2. Section 
3 describes how to match and recognize 3D objects using 
intrinsic shape signatures. An indexing scheme for the high 
dimensional feature descriptors is proposed in Section 4. 
Section 5 presents the test data set and performance 
evaluation of the new algorithm, where we also compare its 
performance to the spin image and 3D shape context 
algorithms.  We draw conclusions in Section 6. 

2. Intrinsic shape signatures 
An intrinsic shape signature consists of an intrinsic 

reference frame enabling both view-invariant feature 
extraction and fast pose registration, and a highly 
discriminative feature vector encoding the 3D shape 
characteristics. 

2.1. Intrinsic reference frame  
It is desirable for shape descriptors to compute view 

independent representation of the local object shape. The 
invariance is accomplished by extracting features w.r.t a 
view independent reference. The surface normal vector of 
local surface patches has been the unanimous choice of 
reference to build view independent region/surface 
descriptors. Although it is popular, the surface normal 
vector alone is not sufficient to define a 3D coordinate 
system.  

We define an intrinsic reference frame iF  at a basis point 

ip  with a supporting radius framer  using the eigen analysis of 
the point scatter matrix as follows: 

1. Compute a weight for each point ip  inversely related 
to the number of points in its spherical neighborhood of 
radius densityr :     1/ { :| | }i j j i densityw p p p r .               (1)  

This weight is used to compensate for uneven sampling of 
the 3D points, so that points at sparsely sampled regions 
contribute more than points at densely sampled regions. 

2. Compute a weighted scatter matrix cov( )ip  for ip  

using all points jp  within a distance framer :      

| | | |
( ) ( )( ) /

j i frame j i frame

T
i j j i j i j

p p r p p r
COV p w p p p p w� �   (2) 

3. Compute its eigen values },,{ 321
iii   in the order of 

decreasing magnitude and their eigen vectors },,{ 321
iii eee ; 

4. Use ip  as the origin, use 1
ie , 2

ie , and their cross 

product 21
ii ee  as the x-, y-  and z- axes respectively to 

define a 3D coordinate system iF   at ip , which we call 
intrinsic reference frame (See Figure 1(a)). 
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Figure 1 For a scatter matrix with eigen vectors },,{ 321
iii eee   of 

decreasing magnitude of eigen values, four intrinsic 
reference frames are computed. 

   Since an eigen vector of the scatter matrix computes a 
direction in the 3D space based on the amount of point 
position variations, its orientation has a 180o ambiguity. 
Therefore, we have two choices for the orientation of each 
axis. As a result, we can only uniquely define the intrinsic 
reference frame at a basis point up to four variants as shown 
in Figure 1, i.e., Fi as described above, and three others, 
each obtained by rotating Fi along the x-, y-, or z- axes by 
180o  respectively (see Figure 1(b)-(d)).  Note that this 
ambiguity exists for the surface normal reference as well. It 
is possible to apply additional constraints to reduce the 
number of variants at a basis point. For example, if the 
position of the sensor is known, we can enforce the dot 
product of the z- axis of the intrinsic reference frame and the 
sensor direction to be positive to impose an 
“inside”/“outside” constraint and reduce the number of 
variants from four to two, as people do to remove the 
ambiguity in the surface normal. We do not impose the 
constraints here to make our algorithm sensor independent. 
However, when such information becomes available, it can 
be easily incorporated into our approach. 

The intrinsic reference frame is a generalization of the 
classical surface normal reference for view independent 
shape feature extraction. The z- axis of the intrinsic 
reference frame, which is the eigen vector of the point 
scatter matrix with the smallest eigen value, is in fact the 
total least square estimate of the surface normal using the 
point data [17]. While the reference of the surface normal 
vector comes short of defining a 3D reference (which is 
necessary in encoding discriminative 3D shape 
information), the intrinsic reference frame determines the x-, 
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y-, and z- axes systematically to yield a 3D reference frame 
pertinent to the local object shape. With the intrinsic 
reference frames we can define unique (with four 
symmetries) and highly discriminative representations for 
local/semi-local 3D shapes patches. 

2.2. 3D shape feature extraction 
For an intrinsic reference frame Fi at a basis point pi, we 

extract an invariant feature vector w.r.t Fi to encode the 3D 
spatial shape characteristics in a local/semi-local support 
volume.  On one hand, it is desirable to maintain as much 
spatial shape information as possible to make the features 
discriminative to subtle shape differences. On the other 
hand, the features have to be robust to data noise from 
multiple sources: unrepeatable sampling of the object 
surface, sensor noise, errors in the estimated reference 
frames, scene clutter and obscurations, and variations in 
viewing geometries, etc. We construct the feature vector 
using a 3D occupational histogram of the supporting 
spherical neighborhood of radius rfeature centered at pi, based 
on a partition in the polar coordinate system ( ) 
aligned with Fi (see Figure 2(a)). A polar partition is 
preferred to a Cartesian partition because the latter is more 
vulnerable to rotation errors in the estimated reference 
frames.  

A straightforward way to partition the spherical surface 
for 3D occupational histograms is to evenly divide the 
azimuth and elevation [7]. However, this creates not only 
bins of drastically varying sizes which need to be 
compensated for, but also degenerating bins near the pole:  
as many as L (number of azimuth divisions) bins intersect at 
the pole which makes these bins extremely vulnerable to 
noise since a noisy data point near the pole can easily fall in 
any of these bins.  

Instead, we use a discrete spherical grid [10] recursively 
computed from a base octahedron (see Figure 2 (b)) to 
divide the spherical angular space ( into  relatively 
uniformly and homogeneously distributed cells (Figure 2 
(c))  Discrete spherical grids of increasing resolutions are 
generated as follows using the base octahedron: 

1. Divide each triangle in the polyhedron into four 
smaller triangles by adding the midpoint of each edge into 
the vertex set and connecting them; 

2. Extend the vector from the origin to each new vertex 
until it intersects the unit sphere, and replace the vertex with 
the intersected point on the sphere surface; 

3. Assign each point on the sphere surface to its nearest 
vertex to form a partition of the sphere surface, which is the 
discrete spherical grid. 

4. Repeat steps 1 to 3 to compute the discrete spherical 
grid at the next resolution level. 

Figure 2 (c) shows the discrete spherical grid at resolution 
level 3.  This grid partitions the angular space ( ) into 

66_ gridsphericalN   bins. We compute a lookup table 

gridsphericalLUT _
 to map each angle pair ( i i) to a bin label: 

}1,,1,0{),( __ gridsphericaliiigridspherical NlLUT � . During 
feature extraction, we use the discretized radial distance 

: 110 ,,, L� , and the spherical tessellation to partition 
the supporting spherical volume around a basis point into 

gridsphericalNLK _*)1(1  bins with no angular 

discrimination for 0:  

}}.),(,:),,({
},:),,({{

_1*)1(1

00

_
jLUTpP

pP

gridsphericaliijNi gridspherical

 

The sums of weights (Eq. 1) of all points that fall in each 
bin form the shape feature vector ),,( 1,10 iKiii ffff �  at a 

basis point ip . 
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Figure 2 Partition in a 3D polar coordinate system: (a) the polar 
coordinate system ( ) for intrinsic reference frame Fi, (b) the 
base octahedron used to construct the spherical grids, and (c) the 
spherical grid used to divide the angular space ( ). The bins of 
the 3D histogram are formed using discretized levels of and the 
spherical grid in (c).   

2.3. Intrinsic shape signatures 
The intrinsic shape signature (ISS) Si={Fi, fi} at a basis 

point pi  consists of two components: 
1. The intrinsic reference frame }},,{,{ z

i
y
i

x
iii eeepF   

where ip  is the origin, and },,{ z
i

y
i

x
i eee  is the set of basis 

vectors described in subsection 2. We should point out that 
the intrinsic frame is a characteristic of the local object 
shape and independent of viewpoint. Therefore, the view 
independent shape features can be computed using the 
frame as a reference. However, its basis },,{ z

i
y
i

x
i eee , which 

specifies the vector of its axes in the sensor coordinate 
system, are view dependent and directly encode the pose 
transform between the sensor coordinate system and the 
local object-oriented intrinsic frame, thus enabling fast pose 
calculation and view registration. 

2. The 3D shape feature vector ),,( 1,10 iKiii ffff � , which 
is a view independent representation of the local/semi-local 
3D shape. These features can be compared directly to 
facilitate the matching of surface patches or local shapes 
from different objects. 

Due to the fact that there are four symmetries for the 
intrinsic reference frame at a basis point (Figure 1), we 
compute four intrinsic shape signatures at a basis point for 
one of the two point clouds to be matched. When 
recognizing 3D objects, we store four intrinsic shape 
signatures for each basis point from objects in the model 
database, and compute only one intrinsic shape signature for 
each basis point from the query point clouds. For a query 
point and its corresponding database counterpart, the query 
descriptor will most likely match, among the four database 
descriptors, the one computed using the same reference 
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frame the best. This best match is then retained to compute 
the pose transform and assess the confidence of the match. 
Although we encode four descriptors for each database 
point, the matching process is very expedited thanks to a 
novel similarity based indexing scheme to prune most of the 
“less similar” database features, which may arise due to 
different shape characteristics or inconsistent reference 
frames, from ever being compared to a query descriptor. 

2.4. Matching intrinsic shape signatures 
Two intrinsic shape signatures are matched by comparing 

the view independent shape feature vectors. Since the 
feature vector consists of weighted counts of points in the 
volume partitioning bins, we use 2 statistics to compute the 
distance between two shape feature vectors 

),,( 1,10 iKiii ffff �  and ),,( 1,10 jKjjj ffff � :  
  )/()(),( 2

1,0
jkikjk

Kk
ikji ffffffdist � .     (3) 

2.5. Pose estimation 
The introduction of the intrinsic reference frame for each 

shape descriptor greatly simplifies the pose estimation 
process for 3D object matching and recognition. Unlike 
most other methods, which require two or more matching 
descriptor pairs to generate a pose hypothesis, the rotation 
and translation between two matching intrinsic shape 
signatures can be directly computed using their intrinsic 
reference frames.  For a matching pair of intrinsic shape 
signatures }}},{,{{ i

z
i

y
i

x
iii feeepS  and 

}}},{,{{ j
z
j

y
j

x
jjj feeepS , the pose transform (R,T)  is readily 

available via simple matrix and vector operations: 

   
ij

t
ij

RppT
RR ,                (4) 

where  z
i

y
i

x
ii eee  and z

j
y
j

x
jj eeeR .   

3. 3D matching/recognition using ISS 
In this section we describe how to match two 3D point 

clouds using intrinsic shape signatures.  

3.1. Representing 3D point clouds using intrinsic 
shape signatures 

  First, we select a set of salient basis points for which we 
compute the intrinsic shape signatures to represent the 
object / point cloud. These basis points, rich in 3D structure 
in its surrounding volume, are computed as the data points 
which possess large three dimensional point variations in 
their neighborhood. These variations are measured using the 
smallest eigen value of the point scatter matrix of its 
spherical neighborhood of radius rsalient. As the 3D reference 
frames can become ambiguous when two of the eigen values 
for the scatter matrix are equal, we also impose an 
additional constraint on the ratios of the eigen values  

32
23

21
12 /,/ iiii

 to exclude frames of ambiguous axes at 
points of local symmetries. Resolution control is enforced to 
extract at most one basis point from a cubic volume of size 
dvoxel. Such extracted key points are shown in Figure 3 (b) 

for a query point cloud and its reference (model) point cloud 
(Figure 3 (a)). Once the basis points are determined, we then 
compute the intrinsic shape signatures as described in Sec. 
2. The set of computed intrinsic shape signatures forms the 
representation for the point cloud / 3D object of interest, 
which is later used for matching and recognition. 

3.2. Matching two point clouds 
Having represented the 3D point clouds using the 

intrinsic shape signatures, we next establish one to one 
correspondences between likely matching intrinsic shape 
signatures from two 3D point clouds: 

1. For the ith intrinsic shape signature Si from query 
cloud Q, compute its distance to each intrinsic shape 
signature k

jS  for each model basis point jp  in the 
model/reference point cloud P, where k indexes one of the 
four variants at the basis point:  

           ),(min),(
4,1

k
jikji ffdistSSD ,       (5) 

where k
jf  is the shape feature vector of the k-th intrinsic 

shape signature at pj. If this distance is less than a 
threshold value tf, add the matching score and the point 
pair (D(Si,Sj),i,j,k)  in a result list; 

2. Sort the results in order of increasing distance value.  
3. Starting from the front of the sorted match result list, 

save a result if the two basis points for the result have not 
been used yet, and mark the two points as used. 
Otherwise, remove this result from the list so that each 
basis only counts at most once toward valid matches. 
Advance to the next match result in the list and repeat the 
operation until the end of the result list is reached.  

 

 
  (a)      (b)      (c) 
 

             
  (d)     (e)      (f) 

Ry 

Rx
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Figure 3 Matching two point clouds using ISS. (a) query point 
cloud of the partial view of a car in blue and the model point cloud 
in yellow; (b) extracted salient basis points marked in red, (c) 
matching descriptor pairs between query and model, (d) rotation 
estimates from pairs of matching descriptors: each point 
corresponds to one rotation “observation” from a pair of matching 
intrinsic shape descriptors, with the color indicating the density at 
the estimate (green for low density and red for high density), (e) 
matching descriptor pairs corresponding to the largest pose cluster, 
and (f) aligning model overlaid on query using estimated pose. 
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The outcome from the above process is a set of 
correspondences between intrinsic shape signatures with 
similar shape properties, which we denote as 

allpairmatch __
.  

The ISS at each basis point is used at most once in 
allpairmatch __

 to avoid one-to-many matching which may 
degrade the matching accuracy. This set of corresponding 
descriptor pairs will later be used to measure the shape 
similarity and the pose transform between the two point 
clouds. We show in Figure 3(c) the computed matching 
correspondences for the two point clouds in Figure 3(a), 
with the grey lines connecting the basis points of the 
matching ISS descriptors. 

3.3. Pose transform estimation  
One major advantage of the proposed approach is that a 

pose hypothesis can be generated from one pair of matching 
intrinsic shape signatures as opposed to two or more 
matching descriptor pairs required by most other methods. 
This eliminates the combinational exploitation of the 
matching pairs, not only reducing the computational cost but 
also suppressing noise in the generated pose hypotheses for 
robust pose estimation and verification. This is because the 
probability in repeatedly selecting the same two or three 
descriptors is much less than the probability in selecting the 
same one descriptor for accurate matching.  

Equation 4 computes the rotation and translation between 
two intrinsic shape signatures, which is the pose transform 
between the local object oriented reference frames of 
represented surface patches/regions. If two point clouds do 
match, the pose transform between two corresponding local 
surface patches/regions is the same as the global pose 
transform between the two point clouds. As a result, the 
pose transforms computed from matching descriptor pairs 
for two matching point clouds are expected to cluster in the 
6D pose space near the true pose transform   

),,,,,( gt
z

gt
y

gt
x

gt
z

gt
y

gt
x TTTRRR  between the two point clouds. By 

matching intrinsic shape signatures and computing the pose 
transforms between the matched pairs, we are able to obtain 
direct “observations” of the pose transform between two 3D 
objects, and estimate it by finding the mode or the largest 
cluster of computed pose observations from the plausible 
matching descriptor pairs in 

allpairmatch __
. We further 

simplify the search in 6D pose space by using two 3D 
searches: to determine first the 3D rotation and then the 3D 
translation.  The rotation between two point clouds is 
estimated as follows: 

1. Compute a 3D histogram for rotation angles for all 
matched descriptor pairs in 

allpairmatch __
 using (4). 

2. Gaussian smooth the histogram; 
3. Find the bin with the maximum vote; 
4. The cluster center/size  is the Gaussian weighted 

average of all poses/counts in its neighborhood; 
The cluster center gives the maximum likelihood 

estimation )ˆ,ˆ,ˆ( zyx RRR  of the rotation between the two 
objects. The size of the cluster, which is the number of 
matching intrinsic shape signature/surface patch pairs voting 
for this concerting rotation, provides a confidence measure 

for the match. We use rotationpairmatch __   to denote the set of 
matching intrinsic shape descriptor pairs whose rotation 
belong to the largest cluster. 

rotationpairmatch __
 is the set of 

local shape regions satisfying the same global rotation 
constraint. Figure 3(d) shows the rotation space for all 
rotations computed from the matching intrinsic shape 
descriptors representing the two point clouds in Figure 3(a). 
Each point corresponds to one rotation “observation” from a 
pair of intrinsic shape descriptors as shown in Figure 3(c), 
with the color indicating the density at the point (green for 
low density and red for high density). The rotation between 
the two point clouds is apparent in the rotation space as the 
dense cluster of points in red indicating high density. 

The translation estimate is then computed from the 
matching intrinsic shape signature pairs in 

rotationpairmatch __
 

using the rotation estimate )ˆ,ˆ,ˆ(ˆ
zyx RRRR . The translation 

for each pair of the descriptors with the concerting rotation 
in 

rotationpairmatch __
 is determined by substituting the 

estimated rotation R̂  in Eq. 4. These translation 
“observations” are then clustered and the center of the 
largest cluster is the estimate for the translation )ˆ,ˆ,ˆ(ˆ

zyx TTTT  
between the two point clouds. The size of the cluster, 

CN , is 
the number of matching surface patch pairs with concerting 
rotation R̂   and translation T̂ . We denote the set of 
matching intrinsic shape descriptor pairs in this cluster as 

posepairmatch __ , as shown in Figure 3(e). This is the set of all 
matching descriptors with concerting poses, including both 
rotation and translation.  R̂  and T̂  form the estimated pose 
transform between two point clouds. Figure 3(f) shows the 
reference point cloud (in yellow) in Figure 3(a) after 
applying the pose transform computed from the matched 
intrinsic shape signature pairs, which is overlaid with the 
query point cloud (in aqua-blue). 

3.4. Criteria to match two 3D objects 
A similarity measurement between two point clouds P 

and Q is the percentage of intrinsic shape signatures with 
matching descriptor pairs that comply with the estimated 
global pose transform between the two point clouds. It 
measures the similarity as the proportion of the object 
surface that matches globally: 

    
QPc NNNQPSimilarity /),( ,        (6) 

where PN  and QN  are the number of basis points for 

P  and Q  respectively and 
posepairmatchcN __

 is the 

number of matching descriptors with consistent pose 
transforms. 

An alternative error measurement is the position residual 
between the aligned pairs of matching basis points by 
applying the estimated pose to transform the model basis 
points to the query coordinate system: 

  
cjiqpjiresidual NqTpRQPE

posepairmatchji
/)ˆˆ(),( 2

},{,, __
� .   (7) 

This provides a stricter and more detailed error 
measurement between two point clouds. 
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We use a match error ),( QPE ivecomprehens , combining the 
above distance / similarity measurements to measure the 
matching error between two point clouds P and Q. It is 
defined as follows: 

 
),(

),(),(
QPSimilarity

QPEQPE residual
ivecomprehens

.        (8) 

A small value in the comprehensive error, implying a 
large number of matching descriptor pairs voting for the 
same global pose transform, and/or a small position 
misalignment using the estimated pose, indicates a good 
match between the two point clouds.  

4. Indexing 
We propose a new indexing scheme called “Locality 

Sensitive Trees (LST)”, inspired by the popular “Locality 
Sensitive Hashing (LSH)” [11] approach, to rapidly retrieve 
the approximate nearest neighbors of a query feature in 
order to search large databases efficiently. An LST tree is a 
randomized binary tree [1] with which all its leaf nodes 
form a partition of the feature space and each the internal 
nodes contains its own data-dependant random test to assign 
incoming feature vectors to one of its two children. 
Although variants [2][13] of LSH have been proposed to 
address the rigidity of LSH by using data-adaptive  hash 
functions, LST provides even greater data-adaptivity as the 
former can be considered as a subset of random binary trees 
with the constraint that nodes of the same depth use the 
same random test.  LST has the following properties:  

1. Each internal node selects its own random test based 
on the data distribution at this node to reflect the conditional 
distribution of feature vectors.  

2. The structure of the tree adapts to the feature 
distribution. The leaf nodes may have varying depths.  

3. The LST distributes database feature points relatively 
evenly among the leaf nodes to maximize its capacity. 

 We use a sequential method to construct an LST tree for 
the database features. Starting with an empty root/leaf node, 
we proceed as follows: 

1. Randomly select without replacement a database point, 
i. Drop it down the tree until it reaches a leaf node 

based on the tests of the non-leaf nodes it encounters; 
ii. Split the leaf node if all of the following hold: a) the 

number of features at the node exceeds a pre-specified 
capacity K, b) the depth of the leaf is less than a pre-
specified depth threshold Tdepth, and c) the leaf is split-
able using the following method:  

– Select a random dimension i and perform a zero 
check of the i-th component fji of each feature fj at the leaf 
node. This degenerated test checks for the occupancy at 
the i-th bin of the 3D histogram for the shape feature. The 
test divides the features at this node into two groups 

}0:{ jij ff  and }0:{ jij ff . If each group contains 

more than K /3 feature points, split the leaf node into two 
child leaf nodes, one for each group, and save the test for 
this now non-leaf node. Otherwise, repeat the random 
dimension selection and test until a successful split or all 
dimensions are tested. 
2. Repeat 1 until all feature points are inserted in the tree. 

L randomized trees are constructed similar to LSH.  
During the search, a query feature is dropped down each 

LST tree until it reaches a leaf and all stored database 
feature vectors at these leaf nodes are retrieved.  The query 
feature is only compared to features in the union of retrieved 
feature vectors from the L trees, which often counts for a 
tiny fraction of all the database features to drastically reduce 
that matching time.  

      

    

       

         
Figure 4 Sample models from the database of 72 vehicles. 

5. Experiments 
In order to evaluate the recognition performance of the 

proposed algorithm, experiments were carried out using a 
database of 72 vehicle models from the Princeton Shape 
Benchmark (PSB) [19] to recognize different vehicle types. 
It is a very challenging problem to identify the vehicle types 
accurately because that, as shown in Figure 4, many of the 
vehicles are highly similar in shape. For example, the first 
two cars shown in Figure 4 are almost identical except for a 
small part in the rear of the vehicles. Since the original 
models from PSB are of different scales, we rescaled each 
model to 4.2m in the direction of the principle axis of the 
largest eigen value to make each 3D model approximately 
the size of an actual car. 

We adopted the experiment settings similar to [7] to 
evaluate the performance of the ISS algorithm in the 
presence of sensor noise, obscuration and clutter. A fan 
beam 3D LADAR simulator was used to generate model 
and query point clouds from the CAD models. The point 
clouds for the database models were generated by scanning 
each model noise-free with the sensor at 400m away, with a 
45o declination angle. On the other hand, the query point 
clouds were rendered at a 30o declination angle and azimuth 
angles that were at least 15o apart from the model scans. 
Table 1 lists the parameter values used in the experiments. 

In all experiments, the performances of ISS were 
compared to that of well established 3D recognition 
algorithms including Spin Image and 3D Shape Context. We 
used the publically available SI software 
(http://www2.cs.cmu.edu/~vmr/software/meshtoolbox/downloads.html) 
and implemented 3DSC algorithm according to [7]. We 
used conforming parameters including the supporting 
radius, its discretization level, the size of the volume used to 
compute the reference frames, etc. Shape correlation of 
uncompressed spin images was used to obtain the best 
recognition performance [14]. The same angular partition 
parameters as in [7] were used for 3DSC, which created 
feature vectors of 1320 dimensions. While basis points were 
only extracted at locations with salient shape information 
for the ISS approach, one basis point was extracted from 
every non-empty voxel of size dvoxel for the 3DSC approach. 
No indexing was applied to SI and 3DSC. 
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5.1. Sensor noise 
The first set of experiments assesses the effects of sensor 

noise on the performance of the algorithm. Two noise free 
model scans were acquired for each vehicle, one from the 
front left and the other from the front right, resulting a total 
number of 144 model scans in the database. We rendered 
two query clouds of each vehicle at azimuth angles that 
were 15o apart from the model scans. Gaussian sensor noise 
with a zero mean and standard deviations of 0.05m, 0.10m, 
and 0.15m, were added in the direction of the LADAR beam 
(Figure 5). Each query cloud was then matched against the 
model database, and the best model was retrieved. Each 
model scan consisted of 600 to 4,000 points, where about 
350 to 1000 basis points were selected. Four ISS descriptors 
were encoded for each model basis point to yield a database 
of ~480,000 595-dimensional feature vectors for the 144 
models. The query clouds contained between 1,200 to 2,600 
points, with between 980 to 1,700 key points extracted.  

LST was used to index the feature database.  A total 
number of L =40 randomized trees were constructed where 
the capacity for the leaf nodes was K =50. With the LST 
indexing, only about 0.4% of the matches between feature 
vectors were performed comparing to the exhaustive match, 
pruning away 99.6% of the pair wise feature comparisons. 
Even with the drastic reduction in computations, the LST 
indexing still yielded recognition accuracy almost the same 
as the one using the exhaustive matching method. In a 
separate study, we investigated a more generalized indexing 
scheme which used a random test to evenly distribute points 
to the child nodes instead of the degenerated occupancy test 
as in LST and found it achieving more than 95% nearest 
neighbor accuracy by examining less than 1% database 
points for several high dimensional datasets. 

   (a) (b) (c) (d) 
Figure 5 Experiments with sensor noise. (a) the model scan from 
front left, (b-d) are query scans with Gaussian noises of sigma 
equal to 0.05m, 0.10m, and 0.15m respectively. 

The recognition performances of the three algorithms in 
the presence of sensor noise are presented in Figure 7(a), 
where we plot the percentage of correctly recognized query 
clouds against the number of top models retrieved, at each 
of the noise level. ISS performs the best at every noise level. 
As we can see that at moderate sensor noise level when 

=0.05m, all three algorithms work very well. However, as 
the noise level increases to =0.10m, the performance of SI 
deteriorates sharply, while 3DSC correctly recognizes near 
94% of the query with the top match. ISS achieves over 
97% accuracy with the best match, and 100% accuracy with 
the top three matches.  Even at a very severe noise level of 

=0.15m, the ISS approach still performs very decently 
with an accuracy of 85% using only the top match, and 93% 
and 96% using the top two and three matches respectively. 

5.2. Obscuration and clutter 
    The second set of experiments evaluates the performance 

of the algorithm in the presence of obscuration and clutter. 
We integrated four noise free individual model scans 
acquired at a 90o azimuth interval apart to form one model 
cloud for each vehicle type. One such model cloud is shown 
in Figure 6(a). Each vehicle were placed in a cluttered scene 
consisting of a house and trees as shown in Figure 6 (b), and 
two query scans from the front left and the front right were 
acquired. We used as query clouds, the data points within a 
6mx4mx3m box enclosing the vehicle from these scans (see 
Figure 6 (c-d)), and matched them to the 72 models.   

 (a)     (b)   (c)    (d)  
Figure 6 Experiments with obscuration and clutter. (a) A model 
point cloud; (b) the CAD model of a scene; (c) a query point cloud 
from the front left view, and (d) a query from the front right view. 

About 700 to 1000 basis points were selected for each 
model cloud to yield a database of ~307,000 595-D feature 
vectors for the 72 models. The LST index of this database 
took less than 100 seconds on a 2.0GHz PC. The 
recognition of one query point cloud, including the feature 
extraction, and the matching to the database of 72 vehicles, 
took an average of 25/13 seconds for the front left/right 
view, which consisted of between 5200~5700/2200~3000 
3D data points and about 1200~1900/440~900 extracted 
basis points. The LST indexing speeded the recognition 
process by a factor of 50x comparing to the ISS recognition 
using exhaustive matching. On the other hand, it took the 
Spin Image software about 6~8/3~4 hours to process a 
query cloud from the left/right view. 

The performance curves for the three algorithms are 
shown in Figure 7(b). The ISS approach again demonstrated 
superior performance in the presence of both occlusion and 
clutter. It correctly recognized all but one and two of the 72 
query clouds for the left front view and right front view 
respectively, using only the top one match. 100% accuracy 
was achieved when the top three models were retrieved. The 
spin image approach appeared to be much more vulnerable 
to obscuration and clutter, performing with a recognition 
accuracy of 65% and 45% for the two views using the top 
matched model. We found the application of 3DSC to 
cluttered scenes ad hoc due to its inability to both 
distinguish the object from its background and integrate this 
knowledge into the objective function. We used the sum of 
the smallest 50% of the distances from the query points to 
the reference set as score for a cluttered query [7]. Ideally 
this percentage should reflect the amount of background in 
the scene which is rarely available in real applications.  

Parameter value description 
rdensity 0.3m support radius for point density 
rframe 0.3m support radius for intrinsic frame 
rfeature 1.5m support radius for shape feature vector 
L 10 radial distance discretization level 
Nsperical grid 66 # of bins for discrete spherical grid 
dvoxel 0.1m grid size for resolution control 
r21 ,r32 0.975 Saliency threshold  

Table 1 Parameter values for the ISS algorithm. 
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                                                (a) 

                                                 (b) 
Figure 7 Recognition accuracy versus the rank of retrieved models: 
(a) Recognition accuracy at different sensor noise levels, and (b) 
Recognition accuracy in the presence of obscuration and clutter. 

6. Conclusions 
This paper presents a descriptor based approach called 

Intrinsic Shape Signatures for general 3D object 
representation and recognition. The ISS approach enables 
both highly discriminative shape matching and efficient 
pose estimation and registration for 3D point clouds. In 
addition, we introduce an efficient and effective indexing 
scheme for fast and accurate search/retrieval of large 
databases using ISS. We believe that the sound underlying 
concepts, and the sensible implementations of these ideas, 
both carefully crafted to ensure the discriminativeness, 
descriptiveness, and robustness to noise, make the algorithm 
one of the best 3D recognition algorithms up to date.   
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