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Abstract

This paper introduces an integrated local surface descriptor for surface representation and 3D object recognition. A local surface
descriptor is characterized by its centroid, its local surface type and a 2D histogram. The 2D histogram shows the frequency of occur-
rence of shape index values vs. the angles between the normal of reference feature point and that of its neighbors. Instead of calculating
local surface descriptors for all the 3D surface points, they are calculated only for feature points that are in areas with large shape var-
iation. In order to speed up the retrieval of surface descriptors and to deal with a large set of objects, the local surface patches of models
are indexed into a hash table. Given a set of test local surface patches, votes are cast for models containing similar surface descriptors.
Based on potential corresponding local surface patches candidate models are hypothesized. Verification is performed by running the Iter-
ative Closest Point (ICP) algorithm to align models with the test data for the most likely models occurring in a scene. Experimental
results with real range data are presented to demonstrate and compare the effectiveness and efficiency of the proposed approach with

the spin image and the spherical spin image representations.
© 2007 Elsevier B.V. All rights reserved.

Keywords: 3D object recognition; Local surface patch; Model indexing; Free-form surface registration; Range images

1. Introduction

3D object recognition, an important research field of
computer vision and pattern recognition, involves two
key tasks: object detection and object recognition. Object
detection determines if a potential object is present in a
scene and its location; object recognition determines the
object ID and its pose (Suetens et al., 1992). Researchers
have done an extensive research on recognizing objects
from 2D intensity images. It has been challenging to design
a system based on 2D intensity images which can handle
problems associated with changing 3D pose, lighting and
shadows effectively. The 3D data collected by a range sen-
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sor can provide geometric information about objects which
is less sensitive to the above imaging problems. As a result,
the design of a recognition system using 3D range data has
received significant attention over the years.

In 3D object recognition, the key problems are how to
represent free-form surfaces effectively and how to match
the surfaces using the selected representation. In the
early years of 3D computer vision (Besl and Jain, 1985;
Chin and Dyer, 1986), the representation schemes included
Wire-Frame, Constructive Solid Geometry (CSG),
Extended Gaussian Image (EGI), Generalized Cylinders
and planar faces (Bhanu, 1984; Faugeras and Hebert,
1986). Early work mainly dealt with the polyhedral objects.
It segmented curved surfaces into planar surfaces. How-
ever, the planar patch is not the most suitable representa-
tion for free-from surfaces and researchers have used a
number of representations, including B-Splines (Bhanu
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and Ho, 1987), surface curvatures, superquadrics (Solina
and Bajcsy, 1990) and deformable models to recognize
free-form objects in range images (Campbell and Flynn,
2001). Other recent surface representations include the
splash representation (Stein and Medioni, 1992), the point
signature (Chua and Jarvis, 1997), the spin image (Johnson
and Hebert, 1999), the surface point signature (Yamany
and Farag, 1999), the harmonic shape image (Zhang and
Hebert, 1999), the spherical spin image (Correa and Shap-
iro, 2001), the 3D point’s “fingerprint” (Sun and Abidi,
2001) and the 3D shape contexts and harmonic shape con-
texts (Frome et al., 2004).

In this paper, we introduce an integrated local surface
descriptor for 3D object representation. We calculate the
local surface descriptors only for the feature points which
are in the areas with large shape variation measured by
shape index (Dorai and Jain, 1997). Our approach starts
from extracting feature points in range images, then defines
the local surface patch at each of the feature points (Chen
and Bhanu, 2004). Next we calculate local surface proper-
ties of a patch. These properties are 2D histogram, surface
type and the centroid. The 2D histogram consists of shape
indexes and angles between the normal of the feature point
and that of its neighbors. The surface of a patch is classified
into different types based on the mean and Gaussian curva-
tures of the feature point. For every local surface patch, we
compute the mean and standard deviation of shape indexes
and use them as indexes to a hash table. By comparing
local surface patches for a model and a test image, and
casting votes for the models containing similar surface
descriptors, the potential corresponding local surface
patches and candidate models are hypothesized. Finally,
we estimate the rigid transformation based on the corre-
sponding local surface patches and calculate the match
quality between the hypothesized model and test image.

The rest of the paper is organized as follows. Section 2
introduce the related work and contributions. Section 3
presents our approach to represent the free-form surfaces
and matching the surface patches. Section 4 gives the
experimental results to demonstrate the effectiveness and
efficiency of the proposed approach and compares them
with the spin image and spherical spin image representa-
tions. Section 5 provides the conclusions.

2. Related work and contributions
2.1. Related work

Stein and Medioni (1992) used two different types of
primitives, 3D curves and splashes, for representation
and matching. 3D curves are defined from edges and they
correspond to the discontinuity in depth and orientation.
For smooth areas, splash is defined by surface normals
along contours of different radii. Both of the primitives
can be encoded by a set of 3D super-segments, which are
described by the curvature and torsion angles of a super-
segment. The 3D super-segments are indexed into a hash

table for fast retrieval and matching. Hypotheses are gener-
ated by casting votes to the hash table and false hypotheses
are removed by estimating rigid transformations. Chua and
Jarvis (1997) used the point signature representation, which
describes the structural neighborhood of a point, to repre-
sent 3D free-form objects. Point signature is 1D signed dis-
tance profile with respect to the rotation angle defined by
the angle between the normal vector of the point on the
curve and the reference vector. Recognition is performed
by matching the signatures of points on the scene surfaces
to those of points on the model surfaces. The maximum
and minimum values of the signatures are used as indexes
to a 2D table for fast retrieval and matching.

Johnson and Hebert (1999) presented the spin image (SI)
representation for range images. Given an oriented point on
a 3D surface, its shape is described by two parameters: dis-
tance to the tangent plane of the oriented point from its
neighbors and the distance to the normal vector of the ori-
ented point. The approach involved three steps: generating
a spin image, finding corresponding points and verifying
hypotheses. First, spin images are calculated at every vertex
of the model surfaces. Then the corresponding point pair is
found by computing the correlation coefficient of two spin
images centered at those two points. Next the corresponding
pairs are filtered by using geometric constraint. Finally, a
rigid transformation is computed and a modified Iterative
Closest Point (ICP) algorithm is used for verification. In
order to speed up the matching process, principal component
analysis (PCA) is used to compress spin images. Correa and
Shapiro (2001) proposed the spherical spin image (SSI)
which maps the spin image to points onto a unit sphere. Cor-
responding points are found by computing the angle between
two SSIs. Yamany and Farag (1999) introduced the surface
signature representation which is a 2D histogram, where one
parameter is the distance between the center point and every
surface point and the other one is the angle between the nor-
mal of the center point and every surface point. Signature
matching is done by template matching.

Zhang and Hebert (1999) introduced harmonic shape
images (HSI) which are 2D representation of 3D surface
patches. HSIs are unique and they preserve the shape and
continuity of the underlying surfaces. Surface matching is
simplified to matching harmonic shape images. Sun and
Abidi (2001) introduced 3D point’s “fingerprint” represen-
tation which is a set of 2D contours formed by the projec-
tion of geodesic circles onto the tangent plane. Each point’s
fingerprint carried information of the normal variation
along geodesic circles. Corresponding points are found by
comparing the fingerprints of points. Frome et al. (2004)
introduced two regional shape descriptors, 3D shape con-
texts and harmonic shape contexts, for recognizing 3D
objects. The 3D shape context is the straightforward exten-
sion of 2D shape contexts (Belongie et al., 2002) and the
harmonic shape context is obtained by applying the har-
monic transformation to the 3D shape context. Objects
are recognized by comparing the distance between the rep-
resentative descriptors.
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2.2. Contributions

The contributions of this paper are: (a) A new local sur-
face descriptor, called LSP representation, is proposed for
surface representation and 3D object recognition. (b) The
LSP representation is compared to the spin image (Johnson
and Hebert, 1999) and spherical spin image (Correa and
Shapiro, 2001) representations for its effectiveness and effi-
ciency. (c¢) Experimental results on a dataset of 20 objects
(with/without occlusions) are presented to verify and com-
pare the effectiveness of the proposed approach.

3. Technical approach

The proposed approach is described in Table 1. It has
two stages: offline model building and online recognition.

3.1. Feature points extraction

In our approach, feature points are defined in areas with
large shape variation measured by shape index calculated
from principal curvatures. In order to estimate the curva-
ture of a point on the surface, we fit a quadratic surface
fix,y) =ax>+ by*+ cxy +dx + ey + f to a local window
centered at this point and use the least square method to
estimate the parameters of the quadratic surface, and then
use differential geometry to calculate the surface normal,

Table 1
Algorithms for recognizing 3D objects in a range image

(a) For each model object
{
Extract feature points (Section 3.1);
Compute the LSP descriptors for the feature points (Section 3.2);
for each LSP
{
Compute (u, o) of the shape index values and use them to index
a hash table;
Save the model ID and LSP into the corresponding entry in the
hash table; (Section 3.3)

}
(b) Given a test object
{
Extract feature points (Section 3.1);
Compute the LSP descriptors for the feature points (Section 3.2);
for each LSP
{
Compute (u,0) of the shape index values and use them to index
a hash table;
Cast votes to the model objects which have a similar LSP (Sec-
tion 3.4.1);
}
Find the candidate models with the highest votes (Section 3.4.2);
Group the corresponding LSPs for the candidate models (Section
3.4.2);
Use the ICP algorithm to verify the top hypotheses (Section 3.5);
}

(a) Algorithm for constructing the model database (offline stage).
(b) Algorithm for recognizing a test object (online stage).

Gaussian and mean curvatures and principal curvatures
(Bhanu and Chen, 2003; Flynn and Jain, 1989). We move
the local window around and repeat the same procedure
to compute the shape index value for other points.

Shape index (S;), a quantitative measure of the shape of
a surface at a point p, is defined by (1) where k; and k» are
maximum and minimum principal curvatures, respectively

_L o1 k) £ k(p)
Si(p)—z—%tan m

With this definition, all shapes are mapped into the
interval [0, 1] (Dorai and Jain, 1997). Larger shape index
values represent convex surfaces and smaller shape index
values represent concave surfaces (Koenderink and Doorn,
1992). Fig. 1 shows the range image of an object and its
shape index image. In Fig. la, the darker pixels are away
from the camera while the lighter ones are closer. In
Fig. 1b, the brighter points denote large shape index values
which correspond to ridge and dome surfaces while the
darker pixels denote small shape index values which corre-
spond to valley and cup surfaces. From Fig. 1, we can see
that shape index values can capture the characteristics of
the shape of objects, which suggests that shape index can
be used for feature point extraction. In other words, the
center point is marked as a feature point if its shape index
S; satisfies Eq. (2) within a w x w window

(1)

S; = max of shape indexes and S; > (1 + «) * g,
or S; = min of shape indexes and S; < (1 — f) = p,

M
where,u:%z&-(j) 0<a B<I. (2)
j=1

In Eq. (2) o,  parameters control the selection of feature
points and M is the number of points in the local window.
The results of feature extraction are shown in Fig. 2, where
the feature points are marked by red dots. From Fig. 2, we
can clearly see that some feature points corresponding to
the same physical area appear in both images.

Fig. 1. (a) A range image and (b) its shape index image. In (a), the darker
pixels are away from the camera and the lighter ones are closer. In (b), the
darker pixels correspond to concave surfaces and the lighter ones
correspond to convex surfaces.
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b

Fig. 2. Feature points location (-) in two range images, shown as gray
scale images, of the same object taken at different viewpoints.

3.2. Local surface patches (LSP)

We define a “local surface patch” as the region consist-
ing of a feature point P and its neighbors N. The LSP rep-
resentation includes its surface type 7, centroid of the
patch and a histogram of shape index values vs. dot prod-
uct of the surface normal at the feature point P and its
neighbors N. A local surface patch is shown in Fig. 3.
The neighbors N satisfy the following conditions:

N = {pixels N,||N —P| < &} and acos(n, e n,) <4, (3)

where o denotes the dot product between the surface nor-
mal vectors n, and 7, at the feature point P and at a neigh-
boring point of N, respectively. The acos denotes the
inverse cosine function. The two parameters €; and A are
important since they determine the descriptiveness of the
local surface patch representation. For every point N;
belonging to N, we compute its shape index value and
the angle 0 between the surface normals at the feature point
P and N;. Then we form a 2D histogram by accumulating
points in particular bins along the two axes based on Eq.
(4) which relates the shape index value and the angle to
the 2D histogram bin (4,,v,). One axis of this histogram
is the shape index which is in the range [0, 1]; the other is

Local surface patch

2D histogram
Shape index

; -

o

(2]

[e5)

SurfaceType Tp =1

Centroid:
(x=6.11, y=13.99, z=-938.74 )T

Fig. 3. Illustration of a local surface patch (LSP). Feature point P is
marked by the asterisk and its neighbors N are marked by the dots. The
surface type of the LSP is 1 based on Table 2.

the cosine of the angle (cos0) between the surface normal
vectors at P and one of its neighbors in N. It is equal to
the dot product of the two vectors and it is in the range
[—1,1]. In (4), |f] is the floor operator which rounds f down
to the nearest integer; (/. v,) are the indexes along the hor-
izontal and vertical axes respectively and (b,, b,) are the bin
intervals along the horizontal and vertical axes, respec-
tively. In order to reduce the effect of the noise, we use
bilinear interpolation when we calculate the 2D histogram.
One example of the 2D histogram is shown as a gray scale
image in Fig. 3; the brighter areas in the image correspond
to bins with more points falling into them. Note that in the
2D histogram in Fig. 3 some of the areas are black since no
points are falling into those bins

S; _ |cosO+1
A ®

The surface type 7, of a LSP is obtained based on the
Gaussian and mean curvatures of the feature point using
Eq. (5) (Besl and Jain, 1988; Bhanu and Nuttall, 1989)
where H are mean curvatures and K are Gaussian curva-
tures. There are eight surface types determined by the signs
of Gaussian and mean curvatures given in Table 2. The
centroid of local surface patches is also calculated for the
computation of the rigid transformation. Note that a fea-
ture point and the centroid of a patch may not coincide.

In summary, every local surface patch is described by a
2D histogram, surface type 7T, and the centroid. The 2D
histogram and surface type are used for comparison of
LSPs and the centroid is used for grouping corresponding
LSPs and computing the rigid transformation, which will
be explained in the following sections. The local surface
patch encodes the geometric information of a local surface

T,=1+43(1+sgn, (H))+(1-sgn, (K)),

+1 if X > ¢,
sen, (X)={ 0 if [¥] < e, (5)
-1 if X <e,.

3.3. Hash table building

Considering the uncertainty of location of a feature
point, we also calculate descriptors of local surface patches

Table 2
Surface type T, based on the signs of mean curvature (/) and Gaussian
curvature (K)

Mean curvature H Gaussian curvature K

K>0 K=0 K<0

H<0 Peak Ridge Saddle ridge
T,=1 T,=2 7,=3

H=0 None Flat Minimal
T,=4 T,=5 T,=6

H>0 Pit Valley Saddle valley
T,=1 T,=8 T,=9
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Fig. 4. Structure of the hash table. Every entry in the hash table has a linked list which saves information about the model LSPs and the accumulator

records the number of votes that each model receives.

for neighbors of a feature point P. To speed up the retrieval
of local surface patches, for each LSP we compute the
mean (u=13"; Si(p,)) and standard deviation (o? =
ﬁZL] (Si(p,) — n)?) of the shape index values in N where

L is the number of points on the LSP under consideration
and p; is the /th point on the LSP. Then we use them to
index a hash table and insert into the corresponding hash
bin the information about the model LSPs. Therefore,
the model local surface descriptors are saved into the hash
table. For each model object, we repeat the same process to
build the model database. The structure of the hash table is
explained in Fig. 4, where every bin in the hash table has an
associated linked list which saves the information of the
model surface descriptors in terms of model ID, 2D histo-
gram, surface type and the centroid; and the accumulator
keeps track of the number of votes that each model
obtains.

3.4. Recognition

3.4.1. Comparing local surface patches

Given a test range image, we extract feature points and
get local surface patches. Then we calculate the mean and
stand deviation of the shape index values in N for each
LSP, and cast votes to the hash table if the histogram dis-
similarity between a test LSP and a model LSP falls within
a preset threshold ¢, and the surface type is the same.
Since a histogram can be thought of as an approximation
of a probability density function, it is natural to use the
y* — divergence function (6) to measure the dissimilarity
(Schiele and Crowley, 2000)

For) =y Ut (6)

i

where Q and V are the two normalized histograms and ¢;
and v; are the numbers in the ith bin of the histogram for
Q and V, respectively.

From (6), we know the dissimilarity is between 0 and 2.
If the two histograms are exactly the same, the dissimilarity
will be zero. If the two histograms do not overlap with each
other, it will achieve the maximum value 2.

Fig. 5 and Table 3 show an experimental validation that
the local surface patch is view-invariant and has the dis-
criminative power to distinguish shapes. We do experi-
ments under two cases: (1) a local surface patch (LSP1)
generated for an object is compared to another local sur-
face patch (LSP2) corresponding to the same physical area
of the same object imaged at a different viewpoint; a low
dissimilarity (*(LSP1,LSP2) =0.24) is found between
LSP1 and LSP2 and they have the same surface type. (2)
LSP1 is compared to LSP3 which lies in a different area
of the same object; the dissimilarity (;*(LSP1,LSP3)=
1.91) is high even though they happen to have the same sur-
face type. The experimental results suggest that the local
surface patch representation provides distinguishable fea-
tures and it can be used for distinguishing objects. Table
3 lists the comparison of LSPs. We observe that the two
similar local surface patches (LSP1 and LSP2) have close
mean and standard deviation of the shape index values
(compared to other combinations); they can be used for
fast retrieval of local surface patches.

Table 3
Comparison results for three local surface patches shown in Fig. 5

Mean Std. Surface type

LSP1 0.672 0.043 9
LSP2 0.669 0.038 9
LSP3 0.274 0.019 9

2 .
y~ — divergence

22(LSP1,LSP2) = 0.24
¥*(LSP1,LSP3) = 1.91

Fig. 5. Demonstration of discriminatory power of local surface patches. The 2D histograms of three LSPs are displayed as gray scale images. The axes for
the LSP image are the same as shown in Fig. 3. Note that LSP1 and LSP2 are visually similar and LSP1 and LSP3 are visually different.
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3.4.2. Grouping corresponding pairs of local surface patch

After voting by all the LSPs contained in a test object,
we histogram all hash table entries and get models which
receive the highest votes. From the casted votes, we know
not only the models which get higher votes, but also the
potential corresponding local surface patch pairs. Note
that a hash table entry may have multiple items, we choose
the local surface patch with the minimum dissimilarity and
the same surface type as the possible corresponding patch.
We filter the possible corresponding pairs based on the geo-
metric constraint,

deyc, = |d5|~52 - dM]-,M2| < &, (7)

where ds, s, and dy, », are the Euclidean distances between
centroids of the two surface patches. The constraint (7)
guarantees that the distances ds, s, and dy, », are consis-
tent. For two correspondences C;={S;,M;} and
C, = {85, M>} where S is the test surface patch and M is
the model surface patch, they should satisfy (7) if they
are consistent corresponding pairs. Therefore, we use the
simple geometric constraint (7) to partition the potential
corresponding pairs into different groups. The larger the
group is, the more likely it contains the true corresponding
pairs.

Given a list of corresponding pairs L = {C, C5,...,C,},
the grouping procedure for every pair in the list is as fol-
lows: (a) Use each pair as a group of an initial matched
pair. (b) For every group, add other pairs to it if they sat-
isfy (7). (c) Repeat the same procedure for every group. (d)
Select the group which has the largest size.

Fig. 6 shows one example of partitioning corresponding
pairs into groups. Fig. 6a shows the feature point extrac-
tion results for a test object. Comparing the local surface
patches with the LSPs on the model objects and querying
the hash table, the initial corresponding LSP pairs are
shown in Fig. 6b and c, in which every pair is represented
by the same number superimposed on the test and model
object images. We observe that both of true and false
corresponding pairs are found. After applying the geomet-
ric constraint (7), the filtered largest group is shown in
Fig. 6d and e, in which the pairs satisfying the constraint
(7) are put into one group. We observe that true correspon-
dences between the model and the test objects are obtained
by comparing local surface patches, casting votes to the
hash table and using the simple geometric constraint.

3.5. Verification

Given the v corresponding LSPs between a model-test
pair, the initial rigid transformation, which brings the
model and test objects into coarse alignment, can be esti-
mated by minimizing the sum of the squares of alignment
errors (X =137 |U —RxM, — T|*) with respect to the
rotation matrix R and the translation vector 7 where U;
and M; are the centroids of a corresponding LSP pair
between the test LSP U, and the model LSP M,. The rota-
tion matrix and translation vector are computed by using

a

Fig. 6. An example of corresponding LSPs. (a) Feature points marked as
dots on the test object. (b) Test object with matched LSPs after hashing.
(c) A model object with matched LSPs after hashing. (d) Test object in (b)
with matched LSPs after applying the geometric constraint (7). (e) The
model object in (c) with matched LSPs after applying the geometric
constraint (7).

the quaternion representation (Horn, 1987). Given the esti-
mate of initial rigid transformation, the Iterative Closest
Point (ICP) algorithm (Besl and Mckay, 1992) determines
if the match is good and to find a refined alignment
between them. If the test object is really an instance of
the model object, the ICP algorithm will result in a good
registration and a large number of corresponding surface
points between the model-test pair will be found. Since
ICP algorithm requires that the test data set be a subset
of the model set, we use the modified ICP algorithm pro-
posed by Zhang, 1994 to remove outliers based on the dis-
tance distribution.

Starting with the initial transformation obtained from
the coarse alignment, the modified ICP algorithm is run
to refine the transformation by minimizing the distance
between the randomly selected points of the model object
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and their closest points of the test object. For each object in
the model database, the points are randomly selected
and the modified ICP algorithm is applied to those points.
The same procedure with random selection of points is
repeated 15 times and the rigid transformation with the
minimum root mean square (RMS) error is chosen. The
object at the top of the sorted list of model objects with
the minimum RMS error is declared as the recognized
object. In the modified ICP algorithm, the speed bottleneck
is the nearest neighbor search. Therefore, the kd-tree struc-
ture is used in the implementation.

4. Experimental results
4.1. Data and parameters

We use real range data collected by Ohio State Univer-
sity (OSU, 1999). There are 20 objects in our database and
the range image of the model objects are shown in Fig. 7.
The parameters of our approach are ¢, = 6.5mm, 4 = n/
3,6,=0.756=94mm, 0 =0.35 f=0.2,and e =ex =
0.003. For the LSP computation, the number of bins in the
shape index axis is 17 and the number of bins in the other
axis is 34. The total number of LSPs calculated for the
model objects is about 34,000. The average size of local sur-
face patch is 230 pixels and the average number of pixels on
an object is 11,956. We apply our approach to the single-
object and the two-object scenes. The model objects and
scene objects are captured at two different viewpoints. All
the 20 model-test pairs are 20° apart except the pairs of
object 3, 14 and 19 that are 36° apart.

We have also used a large UCR ear database (pose var-
iation +35°) of 155 subjects with 902 images (UCR, 2006).
In addition, we have used images with large pose variation

from the UND dataset (UND, 2002). We have used all
three datasets (OSU, UCR, UND) to evaluate the robust-
ness and rotation invariance of the LSP representation (see
Section 4.4).

4.2. Single-object scenes

These test cases show the effectiveness of the voting
scheme and the discriminating power of LSPs in the
hypothesis generation. For a given test object, feature
points are extracted and the properties of LSPs are calcu-
lated. Then LSPs are indexed into the database of model
LSPs. For each model indexed, its vote is increased by
one. We show the voting results (shown as a percentage
of the number of LSPs in the scene which received votes)
for the 20 objects in Fig. 8. Note that in some cases the
numbers shown are larger than 100 since some LSPs may
receive more than one vote. We observe that most of the
highest votes go to the correct models. For every test
object, we perform the verification for the top three models
which obtained the highest votes. The verification results
are listed in Table 4, which shows the candidate model
ID and the corresponding RMS registration error. From
Table 4, we observe that all the test objects are correctly
recognized. In order to examine the recognition results
visually, we display the model object and test object in
the same image before and after the alignment for four
examples. The images in Fig. 9a show test objects and their
corresponding model objects before alignment; the images
in Fig. 9b show test objects and the correctly recognized
model objects after alignment. We observe that each model
object is well aligned with the corresponding test object and
the test cases with large pose variations are correctly han-
dled. Since the proposed LSP representation consists of

Fig. 7. The range images of objects in the model database. The object IDs (0-19) are labeled from left to right and top to bottom.
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Fig. 8. Voting results, shown as a percentage of the number of LSPs in the
scene which received votes, for twenty models in the single-object scenes.
Each row shows the voting results of a test object to 20 model objects. The
maximum vote in each row is bounded by a box.

Table 4
Verification results for single-object scenes

Test objects Results (top three matches)

0 (0, 0.624) (2, 4.724) (11, 1.529)
1 (11, 3.028) (1, 0.314) (8, 3.049)
2 (2, 0.504) (10, 2.322) (8, 2.148)
3 (3, 0.913) (12, 2.097) (11, 1.335)
4 (4, 0.632) (8, 2.372) (10, 1.781)
5 (5, 0.217) (17, 2.081) (10, 3.146)
6 (6, 0.5632) (2, 3.840) (18, 4.692)
7 (7, 0.214) (10, 2.835) (19, 3.901)
8 (8, 0.426) (10, 1.326) (11, 2.691)
9 (9, 0.459) (8, 2.639) (18, 4.745)
10 (10, 0.263) (19, 2.451) (8, 3.997)
11 (11, 0.373) (19, 3.773) (12, 1.664)
12 (12, 0.525) (11, 1.698) (19, 4.149)
13 (13, 0.481) (1, 1.618) (2, 4.378)
14 (8, 2.694) (2, 4.933) (14, 0.731)
15 (15, 0.236) (1, 2.849) (16, 4.919)
16 (8, 3.586) (16, 0.306) (11, 1.499)
17 (17, 0.252) (5, 2.033) (11, 2.494)
18 (18, 0.395) (10, 2.316) (8, 2.698)
19 (19, 0.732) (10, 2.948) (8, 3.848)

The first number in the parenthesis is the model object ID and the second
one is the RMS registration error. The unit of registration error is milli-
meters (mm).

histogram of shape index and surface normal angle, it is
invariant to rigid transformation. The experimental results
shown here verify the view-point invariance of the LSP
representation.

4.3. Two-object scenes

We created four two-object scenes to make one object
partially overlap the other object as follows. We first prop-

Fig. 9. Four examples of correctly recognized model-test pairs. Each row
shows one example. The test objects are shaded light gray while the
recognized model objects are shaded dark gray and overlaid on the test
objects. (a) Model and test objects before alignment. (b) Model and test
objects after alignment. For the range images of model objects, the lighter
pixels are closer to the camera and the darker pixels are away from the
camera. In example 1, the rotation angle is 20.4° and the axis is
[0.0319,0.9670,0.2526]". In example 2, the rotation angle is 35.9° and the
axis is [—0.0304, —0.5714,—0.1660]". In example 3, the rotation angle is
14.1° and the axis is [0.0187,0.2429,0.0046]". In example 4, the rotation
angle is 36.2° and the axis is [0.0691,0.9724,0.2128]".

erly translated objects along the x- and y-axes, and then
resampled the surface to create a range image. The visible
points on the surface are identified using the Z-buffer algo-
rithm. Table 5 provides the objects included in the four
scenes and the voting and registration results (similar to
the examples in Section 4.2) for the top six candidate model
objects. The candidate models are ordered according to
the percentage of votes they received and each candidate
model is verified by the ICP algorithm. We observe that
the objects in the first three scenes objects are correctly rec-
ognized and the object 12 is missed in the fourth scene since
it received a lower number of votes and as a result was not
ranked high enough. The four scenes are shown in Fig. 10a
and the recognition results are shown in Fig. 10b. We
observe that the recognized model objects are well aligned
with the corresponding test objects.
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Table 5

Voting and registration results for the four two-object scenes shown in Fig. 10a

Test Objects in the image Voting and registration results for the top six matches

Scene 0 1, 10 (10, 137, 0.69) (1, 109, 0.35) (11, 109, 1.86) (2, 102, 5.00) (12, 100, 1.78) (19, 98, 2.14)
Scene 1 13, 16 (11, 72, 2.51) (8, 56, 2.69) (2, 56, 3.67) (13, 56, 0.50) (10, 51, 1.98) (16, 48, 0.53)
Scene 2 6,9 (6, 129, 1.31) (2, 119, 3.31) (18, 79, 3.74) (8, 76, 2.99) (9, 56, 0.55) (12, 52, 1.97)
Scene 3 4,12 (4, 113, 0.81) (8, 113, 2.09) (11, 88, 1.69) (2, 86, 3.05) (10, 81, 1.89) (19, 74, 3.85)

The first number in the parenthesis is the model object ID, the second one is the voting result and the third one is RMS registration error. The unit of

registration error is millimeters (mm).

-

( F ™ 1
B

Fig. 10. Recognition results for the four two-object scenes. Each row
shows one example. The test objects are shaded light gray while the
recognized model objects are shaded dark gray. (a) Range images of the
four two-object scenes. (b) Recognized model objects overlaid on the test
objects with the recovered pose. For the range images of model objects,
the lighter pixels are closer to the camera and the darker pixels are away
from the camera. Note that in the last row one object is missed.

4.4. Robustness and rotation invariance of LSP
representation

In order to show that the proposed LSP representation
is robust and rotationally invariant, we tested it on a data-
set of 3D ears collected by ourselves called the UCR data-
set. The data are captured by Minolta Vivid 300 camera.
The camera outputs a 200 x 200 range image and its regis-
tered color image. There are 155 subjects with a total of 902
shots and every person has at least four shots. There are
three different poses in the collected data: frontal, left
and right (within +35° with respect to the frontal pose).
Fig. 11 shows side face range images of three people col-

Fig. 11. Examples of side face range images of three people in the UCR
dataset. Note the pose variations, the earrings and the hair occlusions for
the six shots of the same person.

lected in the UCR dataset. The pose variations, the ear-
rings and the hair occlusions can be seen in this figure.
The dataset is split into a model set and a test set as fol-
lows. Two frontal ears of a subject are put in the model
set and the rest of the ear images of the same subject are
put in the test set. Therefore, there are 310 images in the
model set and 592 test scans with different pose variations.
The recognition rate is 95.61%.

In addition, we also performed experiments on a subset
of the UND dataset Collection G (UND, 2002), which has
24 subjects whose images are taken at four different poses,
straight-on, 15° off center, 30° off center and 45° off center.
Four range images of a subject with the four poses are
shown in Fig. 12. For each of the straight-on ear images,
we match it against rest of the images at different poses.
The recognition rate is 86.11%. From the above two exper-
iments, we conclude that the LSP representation can be
used to recognize objects with a large pose variation (up
to 45°).

4.5. Comparison with the spin image and the spherical spin
image representations

We compared the distinctive power of the LSP represen-
tation with the spin image (SI) (Johnson and Hebert, 1999)
and the spherical spin image (SSI) (Correa and Shapiro,
2001) representations. We conducted the following experi-
ments. We take 20 model objects, compute feature points
as described in Section 3.1 and calculate the surface
descriptors at those feature points and their neighbors.
Given a test object, we calculate the surface descriptors
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Fig. 12. Four side face range images of a subject at four different poses (straight-on, 15° off, 30° off and 45° off) in the UND dataset.

Table 6
The timing in seconds for the three representations

ta [17 [( 9-
LSP 21.46 0.8 67.16 89.42
SI 95.26 0.67 66.14 162.07
SSI 83.63 0.66 66.28 150.57

LSP denotes the local surface patch descriptor; SI denotes the spin image
(Johnson and Hebert, 1999); SSI denotes the spherical spin image (Correa
and Shapiro, 2001).

for the extracted feature points, find their nearest neigh-
bors, apply the geometric constraint and perform the veri-
fication by comparing it against all the model objects. In
the experiments, both of the size of the spin image and
the spherical spin image are 15x 15. We achieved 100%
recognition rate by the three representations. However,
the average computation time for the three representations
are different. The total time () for recognizing a single
object consists of three timings: (a) find the nearest neigh-
bors 7, (b) find the group of corresponding surface descrip-
tors ¢, and (c) perform the verification z.. These timings, on
a Linux machine with a AMD Opteron 1.8 GHz processor,
are listed in Table 6. We observe that the LSP representa-
tion runs the fastest for searching the nearest neighbors
because the LSPs are formed based on the surface type
and the comparison of LSPs is based on the surface type
and the histogram dissimilarity.

5. Conclusions

We have presented an integrated local surface patch
descriptor (LSP) for surface representation and 3D object
recognition. The proposed representation is characterized
by a centroid, a local surface type and a 2D histogram,
which encodes the geometric information of a local surface.
The surface descriptors are generated only for the feature
points with larger shape variation. Furthermore, the gener-
ated LSPs for all models are indexed into a hash table for
fast retrieval of surface descriptors. During recognition,
surface descriptors computed for the scene are used to
index the hash table, casting the votes for the models which
contain the similar surface descriptors. The candidate mod-
els are ordered according to the number of votes received
by the models. Verification is performed by running the
Iterative Closest Point (ICP) algorithm to align models
with scenes for the most likely models. Experimental results
on the real range data have shown the validity and effec-
tiveness of the proposed approach: geometric hashing

scheme for fast retrieval of surface descriptors and compar-
ison of LSPs for the establishment of correspondences.
Comparison with the spin image and spherical spin image
representations shows that our representation is as effective
for the matching of 3D objects as these two representations
but it is efficient by a factor of 3.79 (over SSI) to 4.31 (over
SI) for finding corresponding parts between a model-test
pair. This is because the LSPs are formed based on the
surface type and the comparison of LSPs is based on the
surface type and the histogram dissimilarity.
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