Computers & Graphics 37 (2013) 496-508

journal homepage: www.elsevier.com/locate/cag

Contents lists available at SciVerse ScienceDirect

OMPUTER
&GRAPHICS

Computers & Graphics

Special Section on 3D Object Retrieval

Efficient 3D object recognition using foveated point clouds ™

@ CrossMark

Rafael Beserra Gomes °, Bruno Marques Ferreira da Silva®, Lourena Karin de
Medeiros Rocha®*, Rafael Vidal Aroca®, Luiz Carlos Pacheco Rodrigues Velho b

Luiz Marcos Garcia Gongalves ®

@ Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
b Instituto Nacional de Matemdtica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil

ARTICLE INFO

Article history:

Received 30 October 2012
Received in revised form

18 March 2013

Accepted 27 March 2013
Available online 1 May 2013

Keywords:

Point cloud

3D object recognition
Moving fovea

ABSTRACT

Recent hardware technologies have enabled acquisition of 3D point clouds from real world scenes in real
time. A variety of interactive applications with the 3D world can be developed on top of this new
technological scenario. However, a main problem that still remains is that most processing techniques for
such 3D point clouds are computationally intensive, requiring optimized approaches to handle such
images, especially when real time performance is required. As a possible solution, we propose the use of
a 3D moving fovea based on a multiresolution technique that processes parts of the acquired scene using
multiple levels of resolution. Such approach can be used to identify objects in point clouds with efficient
timing. Experiments show that the use of the moving fovea shows a seven fold performance gain in
processing time while keeping 91.6% of true recognition rate in comparison with state-of-the-art 3D
object recognition methods.

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

With current developments experienced in hardware technologies,
computer vision systems would be ideally able to capture 3D data of
the world and process this data in order to take advantage of their
inherent depth information. However, nowadays, most current com-
puter vision systems are still based on 2D images while the use of 3D
data can offer more details about geometric and shape information of
captured scenes and consequently, of general objects of interest. In this
way, the development of 3D object recognition systems has been an
active research topic over the last years [1].

Recent technology advances have enabled the construction of
devices, as for example the Microsoft Kinect [2], that capture 3D data
from the real world. The Kinect is a consumer grade RGB-D sensor
originally developed for entertainment that has enabled several novel
works for research including robotics, commercial, and gaming
applications. Mobile phone manufactures have also started to ship-
ping smartphones with stereo vision cameras in the recent years.
Other manufacturers already announced camera sensors with depth
information as a 4th channel. Furthermore, the price reduction of
equipment is driving a wide adoption of 3D capture systems.

Although the amount of data provided by 3D point clouds is very
attractive for object recognition, it requires intensive computing

“To comment on this article, please join the discussion on the Collage Authoring
Environment Google Group https://groups.google.com/group/collage-authoring-
environment.

* Corresponding author. Tel.: +55 84 32153771.

E-mail address: lourena@gmail.com (L.K.d.M. Rocha).

algorithms that could render systems based on this type of data
computationally prohibitive, mainly if real time interaction is needed.
Hardware accelerators and optimizations are frequently used for real
time computing, however object recognition is still an open research
field with several challenging research opportunities, especially when
real time performance is desired. One software solution consists in
processing point clouds efficiently using algorithms that compute local
geometric traits. One example of such system is depicted in Section 4,
which enumerates advantages of correspondence grouping algorithms.

We are interested on accelerating object retrieval using 3D
perception tools and data acquisition from real images (not
synthetic images). For this purpose, we propose the usage of a
moving fovea approach to downsample 3D data and reduce the
processing of the object retrieval system from point clouds. An
example of foveated cloud can be seen in Fig. 1. Experimental
results show that our system offers up to seven times faster
recognition time computing without compromising recognition
performance. We also provide two web based tools to interactively
view and manipulate point clouds and to capture Kinect point
clouds without the need to install any software, which has been
used within the Collage Authoring System.

This article is structured as follows: Section 2 presents the
theoretical background used in this work with reviews of some
related works on 3D object retrieval and the moving fovea approach.
Section 3 describes 3D moving fovea applied to the object recognition
problem and its formulation in the context of our work. Section 4
depicts both the system that forms the base of our implementation
and also the proposed scheme, along with implementation considera-
tions. Section 5 describes the experiments, including a performance

0097-8493 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.cag.2013.03.005

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.03.005
http://dx.doi.org/10.1016/j.cag.2013.03.005
http://dx.doi.org/10.1016/j.cag.2013.03.005
dx.doi.org/http://dx.doi.org/10.1109/ICCVW.2011.6130296
dx.doi.org/http://dx.doi.org/10.1109/ICCVW.2011.6130296
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.03.005&domain=pdf
mailto:lourena@gmail.com
http://dx.doi.org/10.1016/j.cag.2013.03.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 497

Fig. 1. Example of an original point cloud and object detection in the foveated cloud.

evaluation that can be executed with the Collage authoring environ-
ment, while Section 6 closes the article with our final remarks.

2. Theoretical background

Three-dimensional object recognition is a multi-disciplinary
area of research, with major contributions originating from the
Pattern Recognition, Computer Vision, Robotics and Computer
Graphics communities. In this section, relevant contributions from
each of these subareas are briefly enumerated, emphasizing the
data acquisition method employed in each of them.

2.1. 3D multiresolution approaches

Vision is so far the most important sensing resource for
robotics tasks that can be executed based on devices like web
cameras and depth sensors. Unfortunately, the huge amount of
data to be processed is limited by the processing time that is a
restriction for doing reactive robotics. Several approaches repre-
sent image with non-uniform density using a foveated model that
mimics the retina mapping to the visual cortex in order to deal
with this amount of data [3-9]. The fovea is the area of retina with
greatest visual acuity, so foveated models have high resolution
nearby the fovea and decrease the resolution according to the
distance from the fovea.

The foveation process is performed either by subsampling in
software [3,4], by hardware with reduced sampling [10] or by
using a system with 2 or more cameras, where one is used for
peripheral vision and another one is used for foveated vision
[11,12]. The software foveation allows greater ease of modification
and easily implementable in conventional hardware, but is slower
than hardware solutions which are usually more expensive and
difficult to change. In terms of coverage, solutions that use specific
cameras to peripheral and foveated vision are more open to
stimuli of the whole environment by using a wide angle peripheral
camera, what would require a huge resolution camera in the case
of a single camera system due to high resolution fovea needs.
However, a camera specific for foveated vision requires movement
of physical devices and a large difference between peripheral and
fovea cameras suppress stimuli appearing on a intermediate level
of resolution because these are not in the fovea camera field of
view neither in the peripheral camera. In this work, the foveation
is performed by software. It is important to note that most of these
models allow free movement of the fovea, what does not happen
at the biological eye's retina. Otherwise, all the vision resources
should be moved in order to keep the object at foveal region.

In a dynamic and cluttered world, all information needed to
perform complex tasks are not completely available and not
processed at once. Information gathered from a single eye fixation

is not enough to complete these tasks. In this way, in order to
efficiently and rapidly acquire visual information, our brain deci-
des not only where we should look but also what is the sequence
of fixations [13]. This sequence of fixations, and therefore the way
the fovea is guided, is related to cognition mechanisms controlled
by our visual attention mechanism. Several works propose saliency
maps from which fixations can be extracted [14].

It is also known that the human vision system has two major
visual attention behaviors or dichotomies [15]. In the top-down
attention approach, the task in hand guides attention processing.
On the other hand, in bottom-up attention, external stimuli drive
attention. Text reading is an example of the top-down behavior of
attention, where visual fixations are done systematically, passing
through the paper in a character by character and line by line
movement. On the opposite, if a ball is thrown toward the same
reader, this bottom-up stimulus will make the reader to switch
attention to the dangerous situation.

Besides in robotic vision, several foveated systems are proposed
in order to reduce the amount of data to be coded/decoded also in
real-time video transmission [8,6]. In this kind of application, an
image should be encoded with foveation thus keeping higher
resolution in regions of interests. In a similar way, Basu [16]
proposes a foveated system to 3D visualization with limited
bandwidth restriction, where the fovea position controls the
objects’ texture quality and resolution.

2.2. 3D object recognition

Early object recognition systems acquired data from expensive
and rarely available range sensors, such as laser scanners [17,18]
and structured light patterns [19]. Ashbrook et al. [17] describe an
object recognition system that relies on similarities between
geometric histograms extracted from the 3D data and the Hough
Transform [20]. Johnson and Hebert popularized the Spin Images
descriptor [18,19], which was used as the basis to an object
recognition algorithm that groups correspondences of Spin Images
extracted in a given query model and those extracted in the scene
data that share a similar rigid transformation between the model
and the scene [18]. Data from 3D scanners and also from synthetic
CAD 3D models are employed in the work of Mian et al. [21].

Until recently, 3D object recognition systems processed data
mostly in an off-line fashion, due to long computing times
involved [22]. This paradigm has started to shift as algorithms
have been proposed in the Robotics community [23,24] to enable
real-time manipulation and grasping for robotic manipulators. In
fact, algorithms designed to describe 3D surfaces through histo-
grams of various local geometric traits evaluated on point clouds
became a major trend in the last years [25-27,23]. Consequently,
faster and more accurate 3D object recognition systems based on
keypoint matching and descriptors extracted in the scene and in

498 R. Beserra Gomes et al. /| Computers & Graphics 37 (2013) 496-508

the sought object point clouds were developed. After being
established, point correspondences are grouped by hypotheses
sharing a common transformation, which is estimated by voting
[28,29], multi-dimensional clustering [30,31] or RANSAC [32] (also
used to detect shapes on 3D data [33]). The presence of the object
of interest is then inferred if certain conditions are met, such is the
number of votes, cluster size, or the number of RANSAC inliers.
With the wider availability of consumer-grade depth sensors such
as the Microsoft Kinect, several works on 3D object recognition are
proposed employing this class of sensor [34-38,24]. Aldoma et al.
[24] proposed the global feature coined Clustered Viewpoint Feature
Histogram (CVFH) to improve performance of object recognition for
robotics. Machine learning based approaches [37,38] were formu-
lated to perform 3D object recognition making heavy use of depth
information, without any computation on point clouds involved.
Aldoma et al. [34] highlight how algorithms that are part of the
Point Clouds Library (PCL) software package could be used to form
3D object recognition systems based on local and global features.
There are also 3D object classification/categorization systems, as in
the works of Wohlkinger et al. [35,36] and of Lai et al. [37]. In this
latter class of systems, every chair in a scene should be labeled as
the object of type “chair”, whereas in object recognition only the
specific chair being sought should be retrieved from the scene.

3. Foveated point cloud

This work proposes the use of a foveated point cloud in order to
reduce the processing time of object detection. The idea is that the
point density is higher nearby the fovea and that this density
decreases according to the distance from the fovea. In this way, it
is possible to reduce the total number of the points reducing also
the processing time at the same time that the density around the
fovea is enough to keep feasible the object detection. Parts of the
point cloud with reduced density may be useful in providing other
stimuli which may be part of a context of visual attention. For
example, a saliency map can be computed in the foveated cloud in
order to drive bottom-up or top-down stimulus. This can be very
useful in the context of robotic vision, since the robot can be aware
to multiple simultaneous stimuli in the environment.

3.1. Foveated point cloud model

The foveated point cloud proposed here is based on the 2D
foveated model proposed by Gomes [4]. This model transforms an
image into a set of smaller images with same size but with different
resolutions. In order to achieve that, the model defines image patches
from the original image that are arranged in a sequence of levels. The
first level is a mapping of the whole original image while the last one
is a mapping of a patch placed at the original image centered at a
fovea. This patch has the same size of each image level. The result is a
set of small images that composes a foveated image.

In the 3D case, instead of resampling concentric image patches,
the foveated point cloud is achieved by downsampling the original
point cloud using concentric boxes, each one representing a level as
shown in Fig. 2. Each box specifies a point cloud crop each one with a
different point cloud density. The outer box has one of its corners
placed at a specific 3D coordinate and it defines the model coordinate
system. See the axes in Fig. 2. All points outside this box are discarded.
Inside it, smaller boxes are linearly placed. The smallest box is
centered at a parameter called fovea: a 3D coordinate where the
point cloud density is maximum. A downsampling schema is applied
in this smallest box. Each bigger box is also downsampled but with a
level by level decreasing point cloud density up to the outer box,
where the point cloud density is minimum.

The proposed foveated point cloud is formalized as follows. We
define m+1 3D boxes of size SxeR?, with k=0, 1,...,m represent-
ing each level. Each level of the foveated point cloud model
changes the point cloud density. The first level (level 0) has a
density reduction by dy and the last one (level m) has a density
reduction by d,,. The density reduction of intermediate levels is
given by linear interpolation between dy and d,y,.

The largest box has three parameters: size (Sp), orientation and
position (denoted by A). Usually, if the whole point cloud should
be covered, it is possible to automatically set these three para-
meters as the bounding box of the entire scene. However in some
applications, it could be interesting to place it in a part of a huge
point cloud. The last two parameters determine the model
coordinate system.

The smallest box is guided by a fovea F at that box center. For
formalization convenience, the fovea coordinate system origin is
(0, 0, 0) at the largest box center. In this way, F=F-Sy/2, where F’
is the fovea at model coordinate system.

Let 6,cR> be the displacement of box at level k, then
80=1(0,0,0) and 6 + Sm/2=F.

The displacement of each box using linear interpolation is
given by

_ k(So—Sm + 2F)

B 2m

ey
Note that §; is defined only for m > 0; in other words, the foveated
model should have at least 2 levels.

The size of each k-th box using linear interpolation is given by

_ kSm—KkSg + mSy

Sk m

@

3.2. Fovea growth factor

Here, we introduce a fovea growth factor G = (s,sy,s,)eR>,
where sy,sy,s; are the scale factors applied to directions x, y and
z, respectively (see Fig. 3). As detailed in Section 4, this factor
increases the number of points by enlarging levels volumes.
Observe that this model behaves like there is no foveation when
G goes to «.

Fig. 2. Foveated model with 3 levels. Two different placements for the fovea were used in (a) and (b).

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 499

Fig. 4. Example of application of the foveated model: (a) original point cloud, (b) foveated with m=4, S, =(0.4, 0.4, 0.4), So =(1, 1, 1) and F=(-0.06, 0.11, -0.75) and

(c) foveated with m=4, S, =(0.2,0.2,0.2), So =(1,1,1) and F=(0.05,-0.11,-0.75).

In this way, each level is bounded by the lower limit of
maximum between §,-G and (0, 0, 0) and the upper limit of the
minimum between 6, + Sk +G and So. These minimum and
maximum limit the levels to the original point cloud boundary.

3.3. Downsampling

After foveated levels boundaries computation, the point cloud is
downsampled in order to change the point cloud density. In this step,
there are two possibilities of point cloud storage: to create a single
point cloud joining all the downsampled points from each level or to
store each downsampled point cloud from each level independently.
Note that both ways can be adopted simultaneously.

However, by joining all points in a single cloud leads to
geometric distortions, probably imperceptible on a visual inspec-
tion, if the downsampling algorithm modifies the points coordi-
nates. A possible solution to this issue is to join all points from a
level that do not belong to an inner level. This way points from a
level do not mix with points from another one. In order to ensure
the disjunction between levels, it is enough to test if the point
from a level k to be inserted in the foveated point cloud is not
inside the box k+1 (k+m) as depicted in Algorithm 1. Example of a
foveated cloud point can be seen in Fig. 4

Algorithm 1. Processing steps applied to foveate a point cloud.

Input: point cloud {P};,
Input: minimum density parameter dg
Input: maximum density parameter d,,
Output: point cloud {P}
Output: point cloud vector {L} of size m+1
|| Foveated Point Cloud
foreach level k do
dy, = do + k(dm=do)/m;
downsample {P};, into {L}; using d, as parameter;
foreach point p of {L};, do
if p is inside box k and is not inside box k+1 then
| add p to point cloud {P}y,,;
end
end
end

3.4. Fovea position

As explained before, one of the parameters of the foveated
point cloud is the fovea position vector. A dense point cloud is
more suitable to successful correspondence matching. If the object

500

is far from the fovea then fewer keypoints are extracted and less
correspondences are found. Thus, it is desirable to keep the fovea
near the object. In order to achieve better results, the proposed
architecture includes a visual attention module that guides the
fovea placement.

First, a function evaluates if the object is detected by the
system. If the object is detected, then the fovea is moved to the
object's centroid. Otherwise, if the object is not detected, then
some strategy may be applied in order to recover the fovea
position. A sequence of fixations can also be used along the time
or at once in order to detect where the object is. Once the object is
detected, a tracking module can be applied so that the fovea is
always in the desirable place.

One straightforward strategy is to disable foveation until the
object is found. This temporarily increases the processing time, but
the original point cloud is used and, then, the object can be found
at foveated peripheral areas. Another strategy is to gradually
increase the growth fovea factor. By using this strategy, it is
possible to gradually increase the number of cloud points and
thus avoiding having a processing time peak. Another possible
strategy is to use a bottom-up attention strategy. In this case, the
fovea is moved to the most salient region, which can be computed
considering the class of objects to be found.

If the scene has more than one object, then it is possible to
foveate each object at a time and process them in sequence. In
other words, if two objects, for example, ask for top-down
attention, then the visual process pay attention to one in a frame
and to the another one in the next frame.

As some of these issues are not the main contribution of the
current work, we neglect it to be treated in a future work. We
just wanted to remark that it is possible to apply several
strategies based on visual attention in order to properly place
the fovea.

4. Proposed object recognition scheme

In this section, we discuss the core framework that our system is
based, the correspondence grouping algorithm [29]. After showing the
standard method, the foveated scheme to recognize objects is
presented, along with the modifications and implications that were
needed to maximize performance using multiresolution data.

a

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508

4.1. Searching objects in 3D point clouds

The proposed object recognition scheme works with point clouds
(set of 3D points referenced in a fixed frame) representing the object
model and the scene to be processed. Positions in this reference frame
supposedly having an instance of the sought object are given as
outputs. We note here that our system recognizes objects in a scene if
and only if the model of the query object is available, implying that it
does not perform object classification/categorization or retrieve
similar objects from a previously computed database (as is the case
of some systems enumerated on the work of Tangelder and Veltkamp
[22]). Put differently, the query object is searched in the scene and not
vice versa. As a consequence, this allows the system to find multiple
instances of the same object in a single scene.

We have chosen to build our system based on the local 3D
features framework, which exploits local geometric traits at key
positions in point clouds in order to extract discriminative
descriptors employed to establish point correspondences between
keypoints from the model and from the scene. These point
correspondences are further processed to infer possible presences
of the object. Moreover, this class of system presents some
desirable and important properties, such as robustness to occlu-
sion and scene clutter, dispensing the need to elaborate extensive
and cumbersome training stages (mandatory for machine learning
approaches) and ability to process point clouds acquired from
RGB-D sensors like the Kinect in an efficient manner.

The system is based on the correspondence grouping approach
of Tombari and Di Stefano [29] (with implementation publicly
available [39]), in which a model object is recognized in the scene
if, after keypoint correspondences being established, enough
evidence for its presence in a given position is gathered. This
scheme is shown in Fig. 5a. For the sake of completeness, every
step of the system is described as follows.

4.1.1. Extracting local 3D descriptors

The first step in the correspondence grouping algorithm is to
describe both the scene and model point clouds. For this, the
normal vector for each point is computed considering a surface
generated by a neighborhood of size k;,, around each point. Then, a
uniform downsampling algorithm is applied to extract keypoints
as the centroid of all points contained within a radius r,. After this,

e

=

Elmmrrr

Found Intances

T
JL 1
Normal Vector Keypoint L Keypoint Descriptor| | Local Reference Keypoint L Correspondence
Computation Extraction Extraction Frame Estimation Matching Grouping
1F
Query Object
Scene
b &
Scene g _
Foveation Found Instances
v 1
Normal Vector | _ (Foveated) Keypoint| _ | Keypoint Descriptor Local Reference Keypoint |,/ Correspondence
Computation Extraction Extraction Frame Estimation Matching Grouping
1F
Query Object

Fig. 5. Object recognition algorithm based on correspondence grouping: (a) Original scheme and (b) proposed foveated object recognition scheme. In (b), the scene is
downsampled through a foveation step, reducing considerably the number of points to be processed without compromising overall accuracy (see text).

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 501

SHOT (Signature of Histograms of OrienTations) descriptors [27] are
computed, assembling a histogram of the normals within a
neighborhood of radius rs as the signature of a keypoint. The last
step to fully describe point clouds is a very important stage
encompassing the estimation of a Local Reference Frame (LRF) for
keypoints of the model and scene. Thus, the principal axes
spanning a LRF within a neighborhood of radius r; in each keypoint
position are estimated robustly by the algorithm of Petrelli and Di
Stefano [40]. The result of this computation (three unit vectors for
each principal direction) is associated with each keypoint and will
be employed in the final stage of the object recognition scheme.
Different values for the parameters are set in the scene and in the
model, allowing more precise recognition tasks. For clarity, the process
which extracts descriptors for the model and scene is shown in
Algorithms 2 and 3 respectively, with parameters Kkum, T'un, I'sms Tim
used for the model and ks, 1y, I'ss, s used for the scene.

Algorithm 2. Processing steps applied to the model point cloud.
See text for parameter details.

Input: model point cloud {M}

Output: model keypoint {K},,

Output: model descriptors {D},,

Output: model LRFs {L},

|| Process model

foreach point of {M} do
compute the normal vectors {N},, within a neighborhood of
size knm;

end

from {M}, extract model keypoints {K},, by uniform

downsampling with radius ry;

foreach keypoint of {K},, do
compute the SHOT descriptors {D},, within a neighborhood
of size rgy, using normals {N},;;
compute the set of LRFs {L},, within a neighborhood of size
Tims

end

Algorithm 3. Processing steps applied to the scene point cloud.
See text for parameter details.

Input: scene point cloud {S}
Output: scene keypoint {K}
Output: scene descriptors {D}
Output: scene LRFs {L}
|| Process scene
foreach point of {S} do
compute the normal vectors {N}; within a neighborhood of
size kys;
end
from {S}, extract model keypoints {K}; by uniform
downsampling with radius ryg;
foreach keypoint of {K}; do
compute the SHOT descriptors {D}; within a neighborhood of
size 1 using normals {N};
compute the set of LRFs {L}; within a neighborhood of size ry;
end

4.1.2. Keypoint matching

For each keypoint and respective descriptor and LRF in the
model a match in the scene is searched by finding the closest
scene point (in the Euclidean sense) in the n-dimensional space
containing the SHOT descriptors. Search procedures are employed
in a kd-tree to handle the cumbersome routine involved. If the
squared distance between the SHOT descriptors is smaller than a

threshold d2,,,, a point correspondence is established. This process
is highlighted in Algorithm 4.

Algorithm 4. Keypoint matching. See text for parameter details.

Input: model and scene keypoints {K},, and {K}

Input: model and scene descriptors {D},, and {D}

Input: model and scene LRFs {L},, and {L},

Output: set of keypoint correspondences {C}

initialize correspondences {C} as empty;

/| Find keypoint correspondences

foreach keypoint of {K},, do
let d,,; be the descriptor of the current keypoint k,;;
using {K}; and {D};, find the nearest keypoint ky; with
descriptor dg;;
if euclidiangisgnce(dimi, dsj) < dmax then
| add pair of triplets (K, i, Irf) and (kg, dgj, Irf ;) to {C};
end

end

4.1.3. Correspondence grouping

Since each model and scene keypoint have a LRF associated, a
full rigid body transformation modeled by a rotation and a
translation can be estimated between the LRFs associated with
each keypoint correspondence. Accordingly, a 3D Hough Space is
used to gather evidence of the object presence through a voting
process. After the rigid body transformation is applied, the cell of
the Hough Space containing this 3D position is calculated and its
accumulator incremented. Finally, after repeating these steps for
all correspondences, object instances are deemed found at each
cell having the number of votes larger than a predefined threshold
Vi. The size of each cell is controlled by a parameter L. Algorithm 5
illustrates the object recognition scheme through correspondence
grouping.

Algorithm 5. Object recognition based on correspondence group-
ing. See text for parameter details.

Input: Correspondences set {C}
Output: set of object instances (I}
initialize Hough accumulator {H} with cell size Ly;
|| Group correspondences
foreach correspondence {C} do
estimate transformation T which aligns Irfy; to Irfy;
evaluate B = Tk,,; and find the cell h in {H} in which lies B;
increment number of votes of h;
end
foreach cell h of {H} do
if h has at least V), votes then
add the object instance located in the scene at h to {I};
end
end

4.14. Saving computation time

We note that the normal vectors are evaluated considering
neighborhoods formed by all points in the clouds, whereas the
SHOT descriptors and LRFs are computed at the neighborhoods of
the keypoints. In this way, computation time is saved, while the
local 3D geometric traits are still kept discriminative.

4.2. Object recognition in foveated point clouds

To enhance the 3D object recognition capabilities of the
correspondence grouping approach, the cloud foveation algorithm

502 R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508

is employed after some adaptations. A complete scheme of the
proposed 3D object recognition system is shown in Fig. 5b.

A foveated model is applied to the cloud acquired from the depth
sensor according to Algorithm 1 and the parameters of Table 2.
Normal estimation can be done before or after foveation. In the first
case, the computation is more expensive, but the captured geometric
traits of the scene are less distorted. In the current version of the
system, we opted to conserve scene geometry.

Since the keypoint extraction (uniform downsampling) would
extract keypoints with a single radius (originally i), the multi-
resolution of the scene cloud would not be respected, as shows
Fig. 6b. Consequently, we adapted the keypoint extraction to be also
dependent on different and specified levels of resolution, possibly
differing of the used downsampling radii dy...dy;. The correspon-
dence grouping algorithm was then modified to accommodate key-
point extraction with foveated point clouds. The scene points are
downsampled using a different radius r, for each level k=0, ..., m.
The first level (level 0) uses a radius of ry and the last (level m) uses a
radius of r,,,. All other radii from the intermediate levels are linearly
interpolated. Thus, keypoints can be extracted respecting each level of
the foveated scene resolution, as shows Fig. 6c¢.

There are two major consequences about this approach. First,
there is a considerable time saving due to the keypoint reduction both
in descriptors computation and correspondence step, since different
values for the extraction radius are employed instead of a (possibly
small) single value. Second, it is possible to greatly increase the
keypoint density near the fovea position without significantly
increasing the total number of original scene points. This peripheral
decrease and foveal increase in the number of points also reduces the
number of false descriptors correspondences, improving thus the
object detection success rate if the fovea is properly placed.

In the foveated version of the recognition scheme, Algorithm 3
(scene processing) would be modified to include the scene foveation

a

i gl

after the normal estimation and to extract keypoints using a radius
value ry, for each resolution level instead of the rys (see Fig. 5b).

5. Experiments and results
5.1. Implementation details

The proposed object recognition system is implemented in C++
on an Ubuntu Linux environment, making use of the functional-
ities provided by the Point Cloud Library (PCL) [34]. The experi-
ments are evaluated on a non-optimized version of the system
running at a laptop PC with an Intel Core i5 2.5 Ghz processor and
4 GB of RAM.

5.2. Ground truth generation

The availability of ground truth data allows a more in depth
evaluation of the proposed object recognition method by directly
comparing the object data with the algorithm output. Hence,
through the use of a model object that can be described analyti-
cally and also be accurately and easily identifiable on a given
scene, we can proceed with a more thorough analysis regarding
the number of instances of the query object found and its retrieved
position in the scene. To cope with this, an object model in the
form of a sphere is utilized as ground truth after some computa-
tion steps are executed in each scene to collect its actual position
in the global reference frame and also its radius. For this, a RANSAC
[41] procedure is applied aiming to fit a 3D sphere model in each
scene point cloud. Accordingly, this simple yet efficient procedure
is able to correctly identify the sphere in scenes with variable
levels of clutter and occlusion accurately enough to suffice our
needs. After carefully placing the sphere in the scene, we manually

Fig. 6. Keypoint extraction: (a) Foveated point cloud, (b) keypoints by uniform sampling and (c) keypoints by uniform sampling using different radii for each level.

a b

Fig. 7. Samples from different scene arrangements containing a sphere and the extracted sphere parameters (used as ground truth) highlighted in red. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this article.) From (a) to (d), each scene has an increasing level of clutter.

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 503

move a Kinect sensor, capturing a total of 12 frames of scenes with
increasingly level of clutter from different views, at the same time
that the parameters of the detected sphere are gathered and
annotated in a ground truth file. Fig. 7 shows 4 samples of the
acquired scenes and their respective ground truth.

5.3. Foveated object recognition experiment

In this experiment, the correspondence grouping 3D object
recognition method is compared with our proposed moving fovea
object recognition. As can be seen in Section 4.1, the standard
correspondence grouping algorithm has several parameters which
should be properly tuned according to the operation scenario for a
successful recognition procedure. This can be explained because
the scene/object dimensions should be taken into account and also
because there are not (yet) any methods allowing automatically
parameterization. Table 1 shows all parameters involved in the
process and their respective default values. These used default
values are determined empirically after executing the algorithm
for various scenes gathered with a similar sensor (3D Kinect),
setup (objects on a table top) and distances between the sensor
and the scene.

The foveated recognition scheme has parameters to be set,
specifying the region in 3D space and the desired resolution levels.
The moving fovea parameters are shown in Table 2.

We aim to show experimentally that the foveated approach
decreases the total running time per frame of the correspondence
grouping process while keeping high successful recognition rates.
For this, various foveated and non-foveated setups are instantiated
by varying the different parameters involved. These different
configurations are divided into 4 groups. The first group uses
three different sizes for the highest resolution level S;, keeping
constant values for the downsampling radii, ro = 0.01 and rp, = 0.5.
All three setups are shown in Table 3. The second group (Table 4)
employs three possibilities for r, with S;=(0.1,0.1,0.1) and
ro=0.01. Three different configurations varying 1o, with
Sn =(0.25,0.25,0.25) and r,;, = 0.3 were used for the third group
of fovea settings, as shows Table 5. All these foveated configura-
tions are built with three resolution levels (m=2). The last group is
composed by five non-foveated setups. We decide to keep all the
parameters of the standard correspondence grouping constant,
employing different values only for the radius to choose the scene
keypoints, 1. Table 6 summarizes the last group.

Since no object recognition methods are free of resulting in
false detections (false positives), some criterion to classify a
detection as successful (true positive) or not has to be established.
To comply with this, the Euclidean distance between the ground
truth sphere position and the detected sphere position is mea-
sured. The sphere is stated as detected if this distance is below a
given threshold. It is important to note that the used correspon-
dence grouping algorithm (standard and foveated) is able to detect
multiple instances of the same object in the scene. Thus, if
multiple detections are triggered within a given radius around
the ground truth position, only one is counted. Both distance
thresholds were set with a value of 8 cm. The object detection
configurations are run in all 12 scenes with the number of true
positives and false positives per configuration being kept. There is
only one instance of the sought object in each scene, summing up
a total of 12 true positives.

The results for all the 14 configurations in the 12 scenes are
shown in Table 7. For the first group (having varying fovea size
Sm), only the configurations with ID 1 and 2 were able to
successfully detect the object. The small fovea size (10 cm in each
box dimension) and large r, (50 cm) used in the configuration
0 severely degrades the scene resolution to a point that becomes
impossible to extract relevant local features and descriptors.

Table 1
List of parameters of the correspondence grouping algorithm and their default
values (see text for details). All parameters are given in scene units (meters).

Parameter Descriptor Default value
Kns K-Neighbors normals scene 10
Tks Radius keypoints scene 0.03
Tss Radius SHOT scene 0.02
Tis Radius LRF scene 0.015
Knm K-Neighbors normals model 10
Tkm Radius keypoint model 0.01
Tsm Radius SHOT model 0.02
Tim Radius LRF model 0.015
. Correspondence threshold 0.25
Ly Size of Hough cell 0.01
Vi Voting threshold 5
Table 2

List of parameters of the moving fovea and their default values (see text for details).
All parameters are given in scene units (meters).

Parameter Descriptor Default value
m Number of res. levels - 1 3
So Lowest density box size (3.0, 3.0, 3.0)
Sm Highest density box size (0.5, 0.5, 0.5)
F Fovea position (-0.07, 0.02, 0.6)
A Outer box position (-2.9, -1.9, -1.3)
To Lowest density keypoint radius 0.08
T'm Highest density keypoint radius 0.02
Table 3
Group 1 of settings for the foveated recognition—change in Sp,.
ID S To T'm
0 (01,01, 0.1) 0.01 0.5
1 (0.25, 0.25, 0.25) 0.01 0.5
2 (04, 04, 04) 0.01 0.5
Table 4
Group 2 of settings for the foveated recognition—change in r,.
ID Sm To T'm
3 (0.1,01, 0.1) 0.01 0.02
4 (0.1,01,01) 0.01 0.08
5 (0.1,0.1, 0.1) 0.01 0.14
Table 5
Group 3 of settings for the foveated recognition—change in r.
ID Sm To T'm
6 (0.25, 0.25, 0.25) 0.02 0.3
7 (0.25, 0.25, 0.25) 0.08 0.3
8 (0.25, 0.25, 0.25) 0.14 0.3

Table 6
Group 4 of settings for the non-foveated recognition—change in rys.

ID Tks
9 0.01
10 0.02
11 0.05
12 0.08
13 0.14

504 R. Beserra Gomes et al. /| Computers & Graphics 37 (2013) 496-508

Consequently, not enough point correspondences could be stabi-
lized to detect the object.

Though we use the smallest fovea size of the first group in all
configurations of the second group, smaller values for r,,, are set,
enabling correct detections, except for the configuration 5. A relatively
large (14 cm) for r,;, explains this fact. The setup number 3 detected
the sphere in all 12 scenes and the setup 4 in only 3 of them. This is
expected because a smaller r,;, value decreases the uniform sampling
radius from intermediate levels (interpolated between ry and ry,).
Also, it increases the number of keypoints throughout the levels and
thus increases the number of successful detections.

In the third group, only configuration number 6 triggered the
detection of the sought object in the scenes, though in not all of them
(11 out of 12). A larger ro was set, resulting in overly downsampled
point clouds and thus, no detections for setups 7 and 8.

Table 7
Results for a total of 14 configurations for the foveated (0-8) and non-foveated
(9-13) recognition methods, after recognizing the ground truth objects in 12 scenes
with varying levels of clutter. The average processing time is shown, along with the
number of true positive detections (with distance to the true position below
0.08 m).

ID Time (s) True positive False positive
0 0.166 0 0
1 1.058 12 1
2 2.612 12 2
3 1.582 12 1
4 0.364 3 0
5 0.251 0 0
6 0.507 11 1
7 0.244 0 0
8 0225 0 0
9 25.748 12 2

10 7.201 12 0

1 1.935 0 0

12 1.341 0 0

13 1.004 0 0

Only the non-foveated configurations 9 and 10 detect the object.
This latter setup detect the sphere in all scenes without any false
detections, and hence can be elected the gold standard against which
we can compare our algorithm. Curiously, the configuration that
results in the largest number of false detections is the non-foveated
with the highest resolution (configuration 9) and the foveated with
the largest fovea size (configuration 2). In some sense, we could state
that the overall downsampling process applied by the fovea plays an
important role possibly removing redundancy and undesired features
from the scene point cloud. The largest recognition rate achieved by
foveated setups is also 12 true detections, but with one false positive
(setups 1 and 3) and two false positives (setup 2).

Although the configuration number 10 has had the best
recognition performance in terms of detection ratio, it is the
second slowest of all setups, with an average of 7.201 s per scene.
A successful recognition in the foveated scenario is achieved with
an average of 0.364 s per frame by the setup 4, but with only
0.33% of success ratio. The fastest average processing time
achieved (0.507 s) with recognition rates higher than 50% is
computed by the setup 6, with 91.6% of true positive rate and
only 8.3% of false positive rate. This setup is also the fastest
showing the smallest false positive rate with at least 50% of
success. The setup showing the fastest computing times with true
positive rate at 100% is the setup 1, with an average of 1.058 s per
frame and false positive rate of 8.3%. Of all foveated configura-
tions, the worst average belongs to the setup 2. In terms of gain in
computation performance, the fastest setup shows an increase of
19.78x, while the most accurate offers 6.8x and the slowest is still
2.75x faster than the better standard correspondence grouping
configuration.

Obviously, the slowest average computation time of all config-
urations is computed with the non-foveated which has used the
smallest radius to extract the scene keypoints. Also, we can see
that as the scene resolution degrades, what is dictated mainly by
the two interpolating radii rather than the fovea size, the compu-
tation times and recognition rate decrease.

These results emphasize that using the moving fovea, one can
opt to dramatically decrease recognition times providing a small
increase in false detections (if acceptable) or to decrease recogni-
tion times keeping false detections to a minimum.

T T T T gletup;
t . .
12 | T
—_ Setup 6
L S Y e S Setup 10
S 10}]
5
=2
»
c
S gt _
B
@
I5)
o°
2 6f |
173
Q
Q
o
?
Y 4 + B
o
@
o
E
z 2r 1
O 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06

Distance threshold used to classify a sphere recognition as true positive

Fig. 8. The number of true positives detected by each setup in function of the threshold (meters) considered to classify a detection as successful.

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 505

25 T T T T T T T
Setup1 —
Setup2
Setup 3 - :
Setup 6
Setup 10

%)

c

kel

©

9]

< i

°

]

@0

8

ks

@ N

el

€

S

P4

& ‘
0 1 I I I Py I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Distance threshold used to classify a sphere recognition as false positive

Fig. 9. The number of false positives detected by each setup in function of the threshold (meters) considered to classify a detection as false.

| | | I I Scer'1e1 -
Scene 2 -
Scene 3 -
Scene 4
Yes |
ie]
©
[0}
©
D - —
>
@
Q
o
o
=}
(D - —
No 1 .) I I |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Distance from ground truth sphere center and fovea

Fig. 10. Successful detections in each of four scenes by varying the distance between the fovea and the ground truth position.

5.4. Detection sensitiveness

Due to the criterion used in stabilizing an object detection as true
positive and false positive, we show in Figs. 8 and 9 how sensitive to
the detection threshold (distance between the detected object and the
ground truth) are the best four foveated setups (IDs 1, 2, 3 and 6) and
the best non-foveated one (10). As it can be seen in Fig. 8, the best
foveated setup in terms of overall confiability is also the most capable
to detect the object closer to the ground truth position. In fact, it is
even less sensitive to the threshold than the gold standard configura-
tion, being able to recognize the object in all 12 scenes using as
threshold 2.5 cm, while the best non-foveated only recognized the
same number with the threshold set as 3.8 cm. In Fig. 9, we analyze

the threshold employed to classify a detection as false positive also for
the top five configurations. We note that using a low value (e.g. 1 cm),
all object detection setups find multiple instances of the same object
around its true position. The non-foveated setup required the smallest
threshold (4 cm) to avoid false detections while the setup number
three was the foveated configuration which required the smallest
value. The most reliable foveated setup stopped triggering false
detections only after 13.5 cm.

5.5. Varying the fovea distance to the object of interest

We also analyze how the fovea placement in the scene would
influence the overall object detection performance. For this, we have

506 R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508

chosen 4 samples scenes with varying amount of clutter and run the
foveated correspondence grouping algorithm with varying distances
between the ground truth position and the fovea position along one
axis. Distances in the range of 0-35 cm were used. The fixed foveated
parameters were m=2, S;=(0.3,0.3,0.3), S¢=(1.0,1.0,1.0),
ro =0.01 and rp, = 0.06. The results of the experiments can be seen
in Fig. 10. For each scene, the figure shows if detection of the sphere
succeeded or not, according to the distance being discussed. Clearly, as
the fovea moves far from the (true) object center, less correct
correspondences are found, resulting also in less true object detec-
tions. Nevertheless, with all other parameters kept constant, the
moving fovea method correctly recognizes the object if it is positioned
within a distance of at most 18 cm.

5.6. Experiments available at the collage authoring environment

Experiments available to the user are built using the Collage
Authoring Environment for Executable Papers from Elsevier, allowing
a complete and interactive experience of the proposed 3D object
recognition method directly from the web. Functionalities such as data
acquisition, data visualization through an interactive 3D point cloud
visualizer, modification of algorithm parameters, execution of the
object recognition system and code editing are readily available. If
desired, the source codes can be downloaded to be used with other
systems.

We verify that users frequently find difficulties while trying to
execute their first tests with 3D models, specially related to
capture and visualization. In light of this, besides the executable
system that is available from Collage, we also offered two minor
contributions to this authoring environment to help users to start
experiment with 3D object capture and manipulation quickly and
easily: a data acquisition module and a tool to manipulate and
visualize 3D point clouds.

5.6.1. Point cloud acquisition

We have developed a data acquisition module that allows visua-
lization and capture of 3D point clouds using the Microsoft Kinect
Sensor by simply using a web browser, so users do not need any
specific software installed on their machine (with the exception of the
Kinect sensor device drivers). This system can be easily used to
generate 3D models of the scenes and objects of interest for further
processing.

In order to be able to capture data from the Kinect Sensor, we
developed a web based Kinect capture system, which relies on the
Java Web Start (JWS) technology to allow anyone to use it with a
single click on a web page. We used the OpenNI library [42] and
Java Native Interface (JNI) abstractions to be able to connect to the
Kinect sensor plugged on the user's computer.

The system generates 3D point clouds in the PCD (point cloud
data) file format, a portable, simple and open format for 3D data
introduced by the Point Cloud Library (PCL) [34]. It consists of a
standard ASCII text file containing a 3D point information per each
line in a format separated by spaces (X Y Z RGB), so any point and
its color can be represented by a single line of ASCII numbers.

5.7. Point cloud manipulation and visualization

Another contribution is the PCD point cloud opener for Collage.
We have adapted and worked with the Collage team to deploy a
PCL web viewer (kindly granted to use by the PCL development
team) on Collage, so any Collage Experiment can open and
manipulate point clouds with a simple and intuitive interface.
The PCL viewer uses the WebGL system, a recent standard for 3D
object rendering directly on web pages. WebGL is supported on
most modern browsers, thus, in order to view and interact with
the point clouds, a browser with WegGL support must be used.

User File System

—_—

v

Object
Segmentation

\J \J \
Scene Object Scene Object
PCD PCD PCD PCD
Interactive Object Recognition Experiment

Collage Environment

Fig. 11. Workflow of the object recognition experiment available at the Collage
Authoring Environment.

5.8. Interactive object recognition

The object recognition experiment available (Fig. 11) to the user
in the Collage Environment is now explained in detail.

In order to provide his/her own input point clouds to our
experiment, users are able to use the data acquisition module
described in Section 5.6.1. Observe that this module is completely
independent from the Collage Authoring Environment.

Our Collage Experiment contains two experiments: Model Seg-
mentation Experiment and Object Recognition Experiment. The first
one is responsible for taking one point cloud representing a scene
composed by only one object lying on a table. The Model Segmenta-
tion Experiment then generates the Model Point Cloud, containing
only the point cloud representing the object. The Object Recognition
Experiment takes as input the Model Point Cloud generated by
the previous experiment and a point cloud of a scene containing
this object, among others. Then, it executes the Correspondence
Grouping and the Foveated Point Cloud approaches. The user is able
to see the visual result of this execution and also text files with details
about it.

The workflow presented in the Model Segmentation Experiment
will be followed, in order to capture and segment the object model
(according to Sections 5.6.1 and 5.8.1 respectively). A readmel.txt text
file with general instructions on how to use the system is available as
Experiment Data Item 1, while a readme2.txt (Experiment Data
Item 2) explains how to proper acquire and segment the object
model. The scene captured containing only the object of interest upon
a table is then shown in the Experiment Data Item 3, an interactive
point cloud visualizer (see Section 5.7). Experiment Data Item 4 shows
the source code files. The Experiment Code Item 1 contains Bash
commands used to compile and execute the source code. After
performing the actual segmentation process, the resulting point cloud
containing the model data is shown in another interactive window at
the Experiment Data Item 5, with textual output from the program
shown at the Experiment Data Item 6. If desired, the source code
(Experiment Data Item 4) of the segmentation procedure can be
edited (or downloaded). In the case that the user chooses not to
capture data, a previously specified PCD file penguin.pcd is used as
default value for the Experiment Data Item 3. Alternatively, a PCD file
assumed to be already stored in the user's file system can also be
supplied by modifying the Experiment Data Item 4. We note here
that this PCD file should contain the object point cloud already
segmented.

R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508 507

Fig. 12. Algorithm showing each step of the object segmentation scheme, used to extract points in a scene point cloud belonging to an object of interest. From top to bottom,
left to right, the two images show the original scene, points after filtering by distance, points after plane removal and object points. (a) A toy car is extracted and (b) a box is

segmented.

After the model acquisition and segmentation, the actual Object
Recognition Experiment can be executed. A text file readme3.txt
(Experiment Data Item 7) instructs the user on how to proceed,
while the source code can be visualized, edited or downloaded by
manipulation of the Experiment Data Item 9. The user can supply a
scene containing the object to be recognized or use the default scene.
pcd through the Experiment Data Item 8. The experiment executes
the correspondence grouping algorithms in its default version (Section
41) and foveated version (Section 4.2), resulting in two outputs
presented for each execution: a point cloud visualization of the
recognition result, highlighting the recognized instances in the scene
and also the object of interest and a textual output, printing
important information of the execution such as correspondences
founds and execution time. These two outputs can be inspected in the
Experiment Data Item 10 and Experiment Data Item 11 (default
visualization and text output) and Experiment Data Item 12 and
Experiment Data Item 13 (foveated visualization and text output).

5.8.1. User supplied object segmentation

In the case that the user opts to supply the object point cloud
via the Kinect, an object segmentation procedure has to be applied
to the data, aiming to extract only the points belonging to the
object of interest. To this end, after positioning the model object
over a plain surface (e.g. a table) without any other object on the
field of view of the sensor, the point cloud is processed by:

1. removing points that are at a distance z,q, from the sensor;

2. removing remaining points classified as contained on a plane
until a given fraction Fyeines Of all points is reached through
RANSAC [41] plane segmentation;

3. clustering remaining points by Euclidean Distance, implying
that starting from a single point, points with distance smaller
than a threshold d,ser are grouped together.

This simple procedure was verified experimentally to work
well for several objects, as can be seen in Fig. 12a and b.

User collaboration in placing the object as indicated is neces-
sary to reduce the number of points to be processed and also to
avoid points from the object model being incorrectly discarded.
Some shortcomings such as incorrect point clouds as results can
easily be solved with proper parameter tuning.

6. Conclusions

We have presented in this article the usage of the moving fovea
approach to efficiently execute 3D object recognition tasks. We

note that although this paper explores the usage of the foveated
approach to a specific object recognition algorithm, the proposed
technique is well suitable to be used with any other 3D object
recognition or retrieval system.

One key feature of the proposed approach is the usage of a
multiresolution scheme, which uses several levels of resolution
ranging from the highest resolution, possibly equal to the resolu-
tion of the original scene, to lower resolutions. Lower resolutions
are obtained by reducing the point cloud density according to the
fovea level, which consequently reduces the processing time. This
setup is similar to the human vision system, which focus attention
and processing on objects of interests at the same time that keeps
attention and processing to peripheral objects, but with lower
resolution.

Experimental analysis shows that the proposed method dra-
matically decreases the processing time used to recognize 3D
objects on scenes with considerable level of clutter, while keeping
accuracy loss to a minimum. In comparison to a state-of-the-art
recognition method, a true positive recognition rate of 91.6% was
achieved with an improvement of seven fold performance gain in
terms of average recognition time per frame. These results are well
suitable for usage on mobile and embedded systems with low
computational resources or on applications that need faster object
recognition processing time, such as robotics.

As a future work, we plan to explore the usage of the foveated
multiresolution system to best find the fovea position according to
possible objects identified on lower scales. As the object is found
on the lower scale, then the fovea can focus and process detailed
information of the object at the best fovea position.

Acknowledgements

The authors would like to thank the support from the National
Research Council (CNPq), Brazilian sponsoring Agency for research
and also the PCL development team that has allowed the use of
PCL web viewer tool.

Appendix. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2013.03.005.

Note from publisher: this material was originally submitted as
part of the Collage Executable Paper pilot, please visit http://www.
elsevier.com/executablepaper for more information.

http://dx.doi.org/10.1016/j.cag.2013.03.005

508 R. Beserra Gomes et al. / Computers & Graphics 37 (2013) 496-508

References

[1] Campbell R], Flynn PJ. A survey of free-form object representation and
recognition techniques. Comput Vis Image Underst 2001;81(2):166-210,
http://dx.doi.org/10.1006/cviu.2000.0889.

[2] Microsoft. Microsoft kinect. (http://www.xbox.com/KINECT); 2012. Online;
accessed 26-October-2012.

[3] Chang EC, Yap CK. A wavelet approach to foveating images. In: Proceedings of

the thirteenth annual symposium on computational geometry. New York, NY,

USA: ACM. ISBN 0-89791-878-9; 1997. p. 397-9. http://doi.acm.org/10.1145/

262839.263024.

Gomes RB, Goncalves LMG, Carvalho BM. Real time vision for robotics using a

moving fovea approach with multi resolution. In: IEEE international confer-

ence on robotics and automation; 2008. p. 2404-9.

Gomes HM, Fisher R. Learning and extracting primal-sketch features in a log-

polar image representation. In: Proceedings of Brazilian symposium on

computer graphics and image processing. IEEE Computer Society; 2001. p.

338-45.

[6] Cagatay Dikici, Bozma HI. Attention-based video streaming. Signal Process: Image
Commun 2010;25(10):745-60, http://dx.doi.org/10.1016/j.image.2010.08.002.

[7] Lee S, Bovik A. Fast algorithms for foveated video processing. IEEE Trans
Circuits Syst Video Technol 2003;13(2):149-62, http://dx.doi.org/10.1109/
TCSVT.2002.808441.

[8] Itti L. Automatic foveation for video compression using a neurobiological
model of visual attention. IEEE Trans Image Process 2004;13(10):1304-18,
http://dx.doi.org/10.1109/TIP.2004.834657.

[9] Wang Z, Lu L, Bovik A. Foveation scalable video coding with automatic fixation
selection. IEEE Trans Image Process 2003;12(2):243-54, http://dx.doi.org/10.1109/
TIP.2003.809015.

[10] Bernardino A, Santos-Victor J. A binocular stereo algorithm for log-polar
foveated systems. In: Proceedings of the second international workshop on
biologically motivated computer vision. London, UK: Springer-Verlag. ISBN
3-540-00174-3; 2002. p. 127-36.

[11] Olof Eklundh]. Attending, foveating and recognizing objects in real world
scenes. In: British machine vision conference — bmvc04; 2004.

[12] Chen K, Lin C, Chiu T, Chen M, Hung Y. Multi-resolution design for large scale
and high-resolution monitoring. IEEE Trans Multimedia 2011;PP(99):1256-68,
http://dx.doi.org/10.1109/TMM.2011.2165055.

[13] Wang W, Chen C, Wang Y, Jiang T, Fang F, Yao Y. Simulating human saccadic
scanpaths on natural images. In: IEEE conference on computer vision and
pattern recognition (CVPR); June 2011. p. 441-8. http://dx.doi.org/10.1109/
CVPR.2011.5995423.

[14] Butko N, Movellan JR. Infomax control of eye movements. IEEE Trans Autonomous
Mental Dev June; 2(2):91-107. http://dx.doi.org/10.1109/TAMD.2010.2051029.

[15] Gongalves LMG, Grupen RA, Oliveira AA, Wheeler D, Fagg A. Tracing patterns
and attention: humanoid robot cognition. Intelligent Syst Appl 2000;15
(4):70-7.

[16] Basu A, Cheng |, Pan Y. Foveated online 3d visualization. In: Proceedings of the
16th international conference on pattern recognition, vol. 3; 2002. p. 944-7.
http://dx.doi.org/10.1109/ICPR.2002.1048193.

[17] Ashbrook AP, Fisher RB, Robertson C, Werghi N. Finding surface correspondance
for object recognition and registration using pairwise geometric histograms. In:
Proceedings of the 5th European conference on computer vision-volume II-
volume II. ECCV '98; London, UK, UK: Springer-Verlag. ISBN 3-540-64613-2; 1998.
p. 674-86. URL (http://dl.acm.org/citation.cfm?id=645312.648923).

[18] Johnson AE, Hebert M. Surface matching for object recognition in complex 3-d
scenes. Image Vision Comput 1998;16:635-51.

[19] Johnson A, Hebert M. Using spin images for efficient object recognition in
cluttered 3d scenes. IEEE Trans Pattern Anal Mach Intell 1999;21(5):433-49,
http://dx.doi.org/10.1109/34.765655.

[20] Hough P. Methods and means for recognizing complex patterns. 1962. US
Patent 3069654.

[21] Mian A, Bennamoun M, Owens R. Three-dimensional model-based object
recognition and segmentation in cluttered scenes. IEEE Trans Pattern Anal
Mach Intell 2006;28(10):1584-601, http://dx.doi.org/10.1109/TPAMI.2006.213.

[22] Tangelder JW, Veltkamp RC. A survey of content based 3d shape retrieval
methods. Multimedia Tools Appl 2008;39(3):441-71, http://dx.doi.org/
10.1007/s11042-007-0181-0.

[23] Rusu R, Bradski G, Thibaux R, Hsu]. Fast 3d recognition and pose using the
viewpoint feature histogram. In: IEEE/RS] international conference on

[4

[5

intelligent robots and systems (IROS), 2010; 2010. p. 2155-62. http://dx.doi.
org/10.1109/IR0S.2010.5651280.

[24] Aldoma A, Vincze M, Blodow N, Gossow D, Gedikli S, Rusu R, et al. Cad-model
recognition and 6dof pose estimation using 3d cues. In: 2011 IEEE interna-
tional conference on computer vision workshops (ICCV workshops); 2011. p.
585-92. http://dx.doi.org/10.1109/ICCVW.2011.6130296.

[25] Hetzel G, Leibe B, Levi P, Schiele B. 3d object recognition from range images
using local feature histograms. In: Proceedings of the 2001 IEEE Computer
Society conference on computer vision and pattern recognition, 2001. CVPR
2001; vol. 2; 2001. p. 1I-394-9. http://dx.doi.org/10.1109/CVPR.2001.990988.

[26] Rusu R, Blodow N, Marton Z, Beetz M. Aligning point cloud views using
persistent feature histograms. In: IEEE/RS] international conference on intel-
ligent robots and systems, 2008. IROS 2008; 2008. p. 3384-91. http://dx.doi.
org/10.1109/IR0S.2008.4650967.

[27] Tombari F, Salti S, Di Stefano L. Unique signatures of histograms for local surface
description. In: Proceedings of the 11th European conference on computer vision
conference on computer vision: part Ill. ECCV'10; Berlin, Heidelberg: Springer-
Verlag. ISBN 3-642-15557-X, 978-3-642-15557-4; 2010. p. 356-69. URL ¢http://dl.
acm.org/citation.cfm?id=1927006.1927035).

[28] Chen H, Bhanu B. 3d free-form object recognition in range images using local
surface patches. Pattern Recogn Lett 2007;28(10):1252-62, http://dx.doi.org/
10.1016/j.patrec.2007.02.009.

[29] Tombari F, Di Stefano L. Object recognition in 3d scenes with occlusions and
clutter by Hough voting. In: 2010 Fourth pacific-rim symposium on image and
video technology (PSIVT); 2010. p. 349-55. http://dx.doi.org/10.1109/PSIVT.
2010.65.

[30] Mian A, Bennamoun M, Owens R. On the repeatability and quality of keypoints
for local feature-based 3d object retrieval from cluttered scenes. Int] Comput
Vision 2010;89(2-3):348-61, http://dx.doi.org/10.1007/s11263-009-0296-z.

[31] Zhong Y. Intrinsic shape signatures: a shape descriptor for 3d object recogni-
tion. In: 2009 IEEE 12th international conference on computer vision work-
shops (ICCV Workshops); 2009. p. 689-96. http://dx.doi.org/10.1109/ICCVW.
2009.5457637.

[32] Papazov C, Burschka D. An efficient RANSAC for 3d object recognition in noisy
and occluded scenes. In: Proceedings of the 10th Asian conference on
computer vision - volume part I. ACCV'10; Berlin, Heidelberg: Springer-
Verlag. ISBN 978-3-642-19314-9; 2011. p. 135-48. URL ¢(http://dl.acm.org/
citation.cfm?id=1964320.1964334).

[33] Schnabel R, Wahl R, Klein R. Efficient ransac for point-cloud shape detection.
Comput Graphics Forum 2007;26(2):214-26.

[34] Aldoma A, Marton Z, Tombari F, Wohlkinger W, Potthast C, Zeisl B, et al.
Tutorial: point cloud library: three-dimensional object recognition and 6 dof
pose estimation. IEEE Robotics Autom Mag 2012;19(3):80-91, http://dx.doi.
org/10.1109/MRA.2012.2206675.

[35] Wohlkinger W, Vincze M. Shape-based depth image to 3d model matching
and classification with inter-view similarity. In: IEEE/RS] international con-
ference on intelligent robots and systems (IROS), 2011; 2011. p. 4865-70.
http://dx.doi.org/10.1109/IR0S.2011.6094808.

[36] Wohlkinger W, Aldoma A, Rusu R, Vincze M. 3dnet: large-scale object class
recognition from cad models. In: 2012 IEEE international conference on
robotics and automation (ICRA); 2012. p. 5384-91. http://dx.doi.org/10.1109/
ICRA.2012.6225116.

[37] Lai K, Bo L, Ren X, Fox D. A large-scale hierarchical multi-view rgb-d object
dataset. In: 2011 IEEE international conference on robotics and automation
(ICRA); 2011. p. 1817-24. http://dx.doi.org/10.1109/ICRA.2011.5980382.

[38] Blum M, Springenberg J, Wulfing], Riedmiller M. A learned feature descriptor
for object recognition in rgb-d data. In: 2012 [EEE international conference on
robotics and automation (ICRA); 2012. p. 1298-303. http://dx.doi.org/10.1109/
ICRA.2012.6225188.

[39] Point Cloud Library. 3d object recognition based on correspondence grouping.
(http://pointclouds.org/documentation/tutorials/correspondence_grouping.
php#correspondence-grouping; 2012. Online; accessed 26-October-2012.

[40] Petrelli A, Di Stefano L. On the repeatability of the local reference frame for
partial shape matching. In: 2011 IEEE international conference on computer
vision (ICCV); 2011. p. 2244-51. http://dx.doi.org/10.1109/ICCV.2011.6126503.

[41] Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Commun ACM
1981;24(6):381-95, http://dx.doi.org/10.1145/358669.358692.

[42] OpenNIL. OpenNI library. ¢http://openni.org); 2012. Online; accessed 26-
October-2012.

http://dx.doi.org/10.1006/cviu.2000.0889
http://dx.doi.org/10.1006/cviu.2000.0889
http://dx.doi.org/10.1006/cviu.2000.0889
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0005
http://www.xbox.com/KINECT
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0010
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0010
http://doi.acm.org/10.1145/262839.263024
http://doi.acm.org/10.1145/262839.263024
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0015
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0015
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0015
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0020
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0020
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0020
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0020
http://dx.doi.org/10.1016/j.image.2010.08.002
http://dx.doi.org/10.1016/j.image.2010.08.002
http://dx.doi.org/10.1016/j.image.2010.08.002
http://dx.doi.org/10.1109/TCSVT.2002.808441
http://dx.doi.org/10.1109/TCSVT.2002.808441
http://dx.doi.org/10.1109/TCSVT.2002.808441
http://dx.doi.org/10.1109/TCSVT.2002.808441
http://dx.doi.org/10.1109/TIP.2004.834657
http://dx.doi.org/10.1109/TIP.2004.834657
http://dx.doi.org/10.1109/TIP.2004.834657
http://dx.doi.org/10.1109/TIP.2003.809015
http://dx.doi.org/10.1109/TIP.2003.809015
http://dx.doi.org/10.1109/TIP.2003.809015
http://dx.doi.org/10.1109/TIP.2003.809015
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0025
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0025
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0025
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0025
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0030
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0030
http://dx.doi.org/10.1109/TMM.2011.2165055
http://dx.doi.org/10.1109/TMM.2011.2165055
http://dx.doi.org/10.1109/TMM.2011.2165055
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0035
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0035
dx.doi.org/http://dx.doi.org/10.1109/CVPR.2011.5995423
dx.doi.org/http://dx.doi.org/10.1109/CVPR.2011.5995423
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0040
dx.doi.org/http://dx.doi.org/10.1109/TAMD.2010.2051029
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref15
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref15
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref15
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0045
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0045
dx.doi.org/http://dx.doi.org/10.1109/ICPR.2002.1048193
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0050
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0050
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0050
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0050
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0050
http://dl.acm.org/citation.cfm?id=645312.648923
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref18
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref18
http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/34.765655
http://dx.doi.org/10.1109/34.765655
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0055
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0055
http://dx.doi.org/10.1109/TPAMI.2006.213
http://dx.doi.org/10.1109/TPAMI.2006.213
http://dx.doi.org/10.1109/TPAMI.2006.213
http://dx.doi.org/10.1007/s11042-007-0181-0
http://dx.doi.org/10.1007/s11042-007-0181-0
http://dx.doi.org/10.1007/s11042-007-0181-0
http://dx.doi.org/10.1007/s11042-007-0181-0
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0060
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0060
dx.doi.org/http://dx.doi.org/10.1109/IROS.2010.5651280
dx.doi.org/http://dx.doi.org/10.1109/IROS.2010.5651280
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0065
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0065
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0065
dx.doi.org/http://dx.doi.org/10.1109/ICCVW.2011.6130296
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0070
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0070
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0070
dx.doi.org/http://dx.doi.org/10.1109/CVPR.2001.990988
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0075
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0075
dx.doi.org/http://dx.doi.org/10.1109/IROS.2008.4650967
dx.doi.org/http://dx.doi.org/10.1109/IROS.2008.4650967
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0080
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0080
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0080
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0080
http://dl.acm.org/citation.cfm?id=1927006.1927035
http://dl.acm.org/citation.cfm?id=1927006.1927035
http://dx.doi.org/10.1016/j.patrec.2007.02.009
http://dx.doi.org/10.1016/j.patrec.2007.02.009
http://dx.doi.org/10.1016/j.patrec.2007.02.009
http://dx.doi.org/10.1016/j.patrec.2007.02.009
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0085
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0085
dx.doi.org/http://dx.doi.org/10.1109/PSIVT.2010.65
dx.doi.org/http://dx.doi.org/10.1109/PSIVT.2010.65
http://dx.doi.org/10.1007/s11263-009-0296-z
http://dx.doi.org/10.1007/s11263-009-0296-z
http://dx.doi.org/10.1007/s11263-009-0296-z
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0090
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0090
dx.doi.org/http://dx.doi.org/10.1109/ICCVW.2009.5457637
dx.doi.org/http://dx.doi.org/10.1109/ICCVW.2009.5457637
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0095
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0095
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0095
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0095
http://dl.acm.org/citation.cfm?id=1964320.1964334
http://dl.acm.org/citation.cfm?id=1964320.1964334
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref33
http://refhub.elsevier.com/S0097-8493(13)00045-9/sbref33
http://dx.doi.org/10.1109/MRA.2012.2206675
http://dx.doi.org/10.1109/MRA.2012.2206675
http://dx.doi.org/10.1109/MRA.2012.2206675
http://dx.doi.org/10.1109/MRA.2012.2206675
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0100
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0100
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0100
dx.doi.org/http://dx.doi.org/10.1109/IROS.2011.6094808
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0105
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0105
dx.doi.org/http://dx.doi.org/10.1109/ICRA.2012.6225116
dx.doi.org/http://dx.doi.org/10.1109/ICRA.2012.6225116
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0110
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0110
dx.doi.org/http://dx.doi.org/10.1109/ICRA.2011.5980382
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0115
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0115
dx.doi.org/http://dx.doi.org/10.1109/ICRA.2012.6225188
dx.doi.org/http://dx.doi.org/10.1109/ICRA.2012.6225188
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0120
http://pointclouds.org/documentation/tutorials/correspondence_grouping.php#correspondence-grouping
http://pointclouds.org/documentation/tutorials/correspondence_grouping.php#correspondence-grouping
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0125
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0125
dx.doi.org/http://dx.doi.org/10.1109/ICCV.2011.6126503
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0130
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0130
http://dx.doi.org/10.1145/358669.358692
http://refhub.elsevier.com/S0097-8493(13)00045-9/othref0135
http://openni.org

	Efficient 3D object recognition using foveated point clouds
	Introduction
	Theoretical background
	3D multiresolution approaches
	3D object recognition

	Foveated point cloud
	Foveated point cloud model
	Fovea growth factor
	Downsampling
	Fovea position

	Proposed object recognition scheme
	Searching objects in 3D point clouds
	Extracting local 3D descriptors
	Keypoint matching
	Correspondence grouping
	Saving computation time

	Object recognition in foveated point clouds

	Experiments and results
	Implementation details
	Ground truth generation
	Foveated object recognition experiment
	Detection sensitiveness
	Varying the fovea distance to the object of interest
	Experiments available at the collage authoring environment
	Point cloud acquisition

	Point cloud manipulation and visualization
	Interactive object recognition
	User supplied object segmentation

	Conclusions
	Acknowledgements
	Supporting information
	References

