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Abstract 3D object detection and recognition is
increasingly used for manipulation and navigation
tasks in service robots. It involves segmenting the
objects present in a scene, estimating a feature descrip-
tor for the object view and, finally, recognizing the
object view by comparing it to the known object
categories. This paper presents an efficient approach
capable of learning and recognizing object categories
in an interactive and open-ended manner. In this paper,
“open-ended” implies that the set of object categories
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e Telemática de Aveiro, Universidade de Aveiro,
Aviero, Portugal
e-mail: seyed.hamidreza@ua.pt

M. Oliveira
e-mail: mriem@ua.pt

G. H. Lim
e-mail: lim@ua.pt

L. Seabra Lopes
e-mail: lsl@ua.pt

A. M. Tomé
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to be learned is not known in advance. The training
instances are extracted from on-line experiences of a
robot, and thus become gradually available over time,
rather than at the beginning of the learning process.
This paper focuses on two state-of-the-art questions:
(1) How to automatically detect, conceptualize and
recognize objects in 3D scenes in an open-ended
manner? (2) How to acquire and use high-level knowl-
edge obtained from the interaction with human users,
namely when they provide category labels, in order to
improve the system performance? This approach starts
with a pre-processing step to remove irrelevant data
and prepare a suitable point cloud for the subsequent
processing. Clustering is then applied to detect object
candidates, and object views are described based on
a 3D shape descriptor called spin-image. Finally, a
nearest-neighbor classification rule is used to predict
the categories of the detected objects. A leave-one-
out cross validation algorithm is used to compute
precision and recall, in a classical off-line evalua-
tion setting, for different system parameters. Also,
an on-line evaluation protocol is used to assess the
performance of the system in an open-ended setting.
Results show that the proposed system is able to inter-
act with human users, learning new object categories
continuously over time.

Keywords Open-ended learning · 3D object
recognition · Spin-image descriptor · Autonomous
robots
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1 Introduction

Following the recent release of inexpensive 3D sens-
ing devices such as Microsoft Kinect1 and ASUS
Xtion,2 which record RGB and depth information,
3D object detection, recognition and reconstruction
have become a widespread research topic. 3D object
detection and recognition have been addressed in both
robotics and human-robot interaction research com-
munities.

Although many object detection and recognition
methods for both 2D and 3D data have been pro-
posed [1], the research in this field is still active. In
most of the proposed systems, training and testing
are separated processes [18], and since limited sample
data are used for the training, the systems are unable
to adapt to dynamic environments [22]. Besides this,
these systems have other limitations such as the need
to undergo an exhaustive procedure of manually anno-
tating the training data-sets, or the inability to detect /
recognize new or unknown objects [1], as well as the
incapacity to handle object occlusion and scene clutter
[28]. Real 3D scenes generally consist of several
objects present in a scene. Therefore, two important
issues concerning 3D object recognition in complex
scenes are clutter and occlusion. Clutter is seen when
points that do not belong to the target object are
included in the segmentation, which affects the recog-
nition process. Also, because many objects are present
in the scene, some of them may be occluded by others.
Thus, many times, the information related to a partic-
ular object is partial [29]. To cope with both occlusion
and clutter, 3D data is used to facilitate the detection
of complex (i.e. free form) objects [3]. The reason
for this is that 3D data contains more information
about the spatial positioning of objects, which in turn
eases the process of segmentation. Moreover, depth
data is more robust than RGB data to the effects of
illumination [18]. 3D data can therefore be employed
to describe the surface of the object based on its
geometric properties.

Humans learn to recognize object categories cease-
lessly over time. This ability allows them to adapt
to new environments, by enhancing their knowledge

1http://www.xbox.com/en-US/kinect
2http://www.asus.com/Multimedia/Xtion PRO

from the accumulation of experiences and the con-
ceptualization of new object categories [11]. Taking
this as inspiration, an object perception system should
process visual information continuously, and perform
recognition and learning simultaneously [20].

In this paper, an interactive 3D object learning and
recognition approach [13] is presented. The approach
is designed to be integrated in an open-ended learning
system, which is used by an autonomous service robot
working in a restaurant scenario [9, 21]. This work
focuses on learning and recognizing table-top objects,
which can be manipulated by the robot.

The remainder of this paper is organized as follows:
next, related work is presented; a general overview
of the proposed interactive object learning and recog-
nition system is described in Section 3; the detailed
methodology is then explained in Sections 4 and 5;
an experimental evaluation is presented and discussed
in Section 6; finally, conclusions and future work are
presented in Section 7.

2 Related Work

Different approaches have been proposed to solve
the limitations of object learning and recognition sys-
tem over the past five decades [1]. Willow Garage
started a project named Object Recognition Kitchen
(ORK),3 a 3D object recognition system built on top
of the Ecto framework.4 ORK was designed to run
simultaneously several traditional object recognition
techniques, so that these can be combined for exam-
ple using a voting scheme. Ecto is a C++ / Python
computation graph framework, which can organize the
computation modules in a directed acyclic graph. This
means that there are some limitations in the system
configuration. In ORK, the training and recognition
are not simultaneous. Romea et al. [5], described an
object recognition and pose estimation system. In this
case, the system is decomposed into an off-line train-
ing stage and an on-line recognition stage. In the
training stage, for every object, a set of images are cap-
tured from different viewpoints. Then, SIFT features
are extracted for each image and stored in a database.

3http://wg perception.github.io/object recognition core/
4http://plasmodic.github.io/ecto/

http://www.xbox.com/en-US/kinect
http://www.asus.com/Multimedia/Xtion_PRO
http://wg_perception.github.io/object_recognition_core/
http://plasmodic.github.io/ecto/
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During the recognition stage, SIFT features are com-
puted for the current view and matched against the
training models. The authors use a Best Bin First algo-
rithm [2] for matching. Martinez et al. [17] proposed
a fast and scalable perception system for object recog-
nition and pose estimation. The authors employed
RANSAC [8] and Levenberg Marquardt algorithms to
segment objects and represent these based on SIFT
descriptors. Kootstra et al. [15] also proposed an active
perception system for recognizing objects that are
placed in cluttered and uncontrolled environments.
They used a mobile robot that explores the objects by
circling around them and capturing data. They also
used SIFT descriptors for learning and recognition
tasks.

Johnson and Herbert [12] proposed a spin-image
descriptor which represents the spatial distribution of
3D points around key points. Spin-image descriptors
efficiently encode the 3D geometry of the surface
patches they describe. This helps to cope with recog-
nition problems in complex scenes. Spin-images are
also known to be pose invariant. Dinh and Kropac [6]
proposed multi-resolution pyramids of spin images in
order to improve the discriminative power of the orig-
inal spin-images. This approach also speeds up the
matching process.

Some authors argued that comparing objects by
their local features is computationally expensive. The
key idea for fast 3D object recognition, is to use
mechanisms for representing objects in a highly com-
pact and distinctive way. One possible solution to
this problem is to employ a bag-of-words technique.
This has been proposed in recent years. Islam et al.
[10], described an object classification approach is
described, in which the object representation is based
on SIFT, SURF and color histograms. All these fea-
tures are compacted into a histogram of words. In this
case, authors use a naive Bayes classifier in the recog-
nition stage. Liu and Zha [16] used a bag-of-words
technique for optimizing the recognition process, as
well as memory usage. The authors investigated the
problem of efficient partial 3D shape retrieval. First,
a Monte-Carlo method used to select interest points
is proposed, and then, the spin-image descriptors
are used to encode the geometry around the inter-
est points. In the recognition stage, they proposed to
use a dissimilarity measure based on the asymmetric
Kullback-Leibler divergence.

In most of the proposed systems described above,
training and recognition are separate processes, which
do not occur simultaneously. However, off-line train-
ing is not suited for open-ended scenarios, because
the target categories are not known in advance. Sys-
tems limited to off-line training are unable to adapt
to dynamic environments. There are some approaches
which support incremental learning of object cate-
gories. Yeh and Darrell [30] developed novel meth-
ods for efficient incremental learning of SVM-based
visual category classifiers, and showed that, using
their framework, it is possible to adapt the classifiers
incrementally. Takamuku et al. [27] proposed a learn-
ing approach for object recognition based on physical
interaction. In this case, the system was capable of
classifying objects into three categories, according to
the joint angle data obtained while the robot shook the
objects. Human-robot interaction is essentially used
for the gathering of supervised experiences. In par-
ticular, it can be used for teaching object categories
in situations where either the object is unknown to
the system or when the system is misclassifying the
object. Kirstein et al. [14] proposed a lifelong learning
approach for interactive learning of multiple cate-
gories based on vector quantization and a graphical
user interface. The instructor could give the names of
objects using the graphical user interface. Using only
2D images, they showed the system could success-
fully learn 5 color categories and 10 shape categories
observed in 56 objects. Seabra Lopes and Chauhan
[25, 26] approached the problem of object experi-
ence gathering and category learning with a focus
on open-ended learning and human-robot interaction.
In their approach, learning is based on multiple rep-
resentations and classifiers, as well as combinations
of classifiers. A meta-learning component monitors
the performance of the classifiers, and reconfigures
the combination of classifiers in order to achieve the
best recognition performance. In addition to this, their
framework allowed the user to provide the names of
objects through pointing and verbal teaching actions.
The user could also ask questions about the cate-
gories of objects under shared attention and, if appro-
priate, provide corrective feedback for them. They
showed a system that starts with an empty vocabu-
lary and can incrementally acquire object categories
through the interaction with a human user. The authors
also proposed a teaching protocol for evaluating the
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performance of open-ended object learning and recog-
nition approaches.

3 Overall System Architecture

In this paper, the problem of interactive open-ended
object learning is addressed, which enables a robot to
acquire information about unknown objects, and store
the information in a perceptual memory. From a global
perspective, the system is composed of several soft-
ware modules such as object detector, feature extrac-
tor, object conceptualizer, user interface and object
recognizer. The overall system architecture is depicted
in Fig. 1. The processing cycle is triggered when
the robot captures an image of the scene. The first
step is object detection, which involves distance filter-
ing, down-sampling, and clustering of object points.
The object detector periodically requests from another
software module called tabletop segmenter a list of all
the objects currently on top of the table. The object
detector module creates a new perception pipeline for

every newly detected object. Each pipeline includes
the object tracker, the feature extractor and the object
recognizer modules. The object tracker works based
on a particle filter [24] which uses geometric infor-
mation as well as color and surface normal data to
predict the next probable pose of the object. The object
tracker sends out the object point cloud to the fea-
ture extraction module. This object point cloud is used
by the feature extractor module to compute features
for the given object view using 3D shape descrip-
tors. The features of objects are kept in memory, and
the user can provide category labels for those objects.
Object labeling, handled via the user interface mod-
ule, triggers the object conceptualizer module. In such
situation, the object conceptualizer reads the current
object categories from memory, as well as a set of
features describing the labeled object, and creates or
improves an object category. During recognition sit-
uations, a nearest-neighbor classification rule is used
to estimate the category labels of the detected objects.
In the following sections, each module is explained in
detail.

Fig. 1 Overall architecture
of the proposed system
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Fig. 2 An example of the
pre-processing functions: a
graphical perspective
projection of the original
point cloud; b result of the
first preprocessing step

(a) (b)

4 Shape Feature Extraction

In this section, we discuss the process of extract-
ing 3D shape features, which are used both for
conceptualization as well as for recognition. In par-
ticular, we detail the pre-processing, object detection
and feature extraction components from Fig. 1. Note
that, in this paper, we describe in detail the concep-
tualizer and recognition components of the system.
For additional details on other system components see
[19].

4.1 Pre-Processing

Processing massive point clouds is one of the main
challenges of 3D perception systems. In dense 3D
point cloud data, considering all points is computa-
tionally too expensive, and real time processing is not
possible. The key idea for fast processing of mas-
sive point clouds is to use mechanisms for removing
unnecessary or irrelevant data. To accomplish this, we
use two separate filters that discard vast quantities of
unnecessary 3D points. The first filter defines a cubic
volume in 3D, which defines the region of interest in
which we consider relevant points should be. In our
current setup, we use a table which is approximately
one meter away from the camera / robot. Using this
information, we define the size of the cubic volume to
include a typical table in front of the robot. Figure 2
shows an example of this process. In Fig. 2a, the com-
plete point cloud is shown, along with the cube. In
Fig. 2b, the filtered point cloud is displayed. This fil-
ter enables a significant reduction of the number of
points.

The second filter in the pre-processing reduces the
spatial resolution of points, since our approach does
not require the full resolution of the sensor. To do this,
the point cloud is down sampled using a voxelized grid
approach.5 The advantage of this, apart from the fact
that the number of points is further reduced, is that the
spatial distribution of 3D points becomes uniform.

4.2 Object Detector

After pre-processing, the next step is to find objects in
the scene. Our approach assumes that objects should
be placed on top of the table in order to be detected.
The table is detected by finding the dominant plane
in the point cloud. This is done using a RANSAC
[8] algorithm. The algorithm starts by generating
plane hypotheses based on three unique non-collinear
points. Afterwards, distances from all points in the
point cloud to the plane are computed. The plane
hypotheses are then scored based on counting the
number of points whose distance to the plane falls
below a user-specified threshold, dt . The RANSAC
algorithm is repeated for a certain number of itera-
tions, N . In the current implementation, dt = 20mm

and N = 200. An example of the proposed table
detector algorithm is illustrated in Fig. 3b. With the
table detected, it is now possible to extract the points
which lie directly above it. The mechanism we use
to do this is called extraction of polygonal prisms.6

After this, we have a point cloud where all the objects

5http://pointclouds.org/documentation/tutorials/voxel grid.php
6http://docs.pointclouds.org/1.0.0/classpcl 1 1 extract
polygonal prism data.html

http://pointclouds.org/documentation/tutorials/voxel_grid.php
http://docs.pointclouds.org/1.0.0/classpcl_1_1_extract_polygonal_prism_data.html
http://docs.pointclouds.org/1.0.0/classpcl_1_1_extract_polygonal_prism_data.html
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Fig. 3 a An example of the
down sampling using a
voxel grid filter; b result of
the table detection

(a) (b)

that are on top of the table are included. To separate
each object into an individual point cloud, we use an
Euclidean cluster extraction algorithm.7 Each group
of points will be treated as an object candidate. An
example of the object detector module is shown in
Fig. 4. In Fig. 4a, the complete point cloud is shown.
Three objects are on top of the table. In Fig.f 4b, the
segmented object point clouds are shown. Note that
the point clouds of each object have different colors,
meaning that they have been correctly segmented.

4.3 Feature Extractor

We adopt an approach to object recognition in which
objects are described by local shape features called
spin-images [12]. The reason why we use spin images
rather than other 3D feature descriptors such as view-
point feature histogram [23] is that we are interested
in local features, rather than global. These features
are pose invariant, and therefore suitable for 3D per-
ception in autonomous robots. The feature extractor
module displayed in Fig. 1 consists of two main
phases: extraction of keypoints and the computation
of spin images. For efficiency reasons, the number of
keypoints in an object should be much smaller than the
total number of points. To do that, we use a voxelized
grid to subsample the object point cloud by taking only
the nearest neighbor point for each voxel center (see

7http://www.pointclouds.org/documentation/tutorials/cluster
extraction.php

[7] for an analysis of 3D descriptors). Figure 5a shows
an example of the keypoint extraction process.

In the second stage, spin-image descriptors are
computed for each keypoint in order to describe the
shape surrounding the keypoint. A spin-image is a
local shape histogram obtained by projecting the 3D
surface points onto the tangent plane of the keypoint.
The normal vector of the tangent plane is called sur-
face normal. Then, each point is represented by a pair
(α, β), where α is the distance to the surface normal of
the keypoint, i.e., the radius, and β is the perpendicular
distance from the point to the tangent plane:

α =
√

‖x − p‖2 − (n · (x − p))2, (1)

β = n · (x − p), (2)

where n is the surface normal for keypoint p. Every
spin-image bin counts, for a given neighborhood of
points around the keypoint, the number of neighbors
that fall in a given range of α and β. The procedure is
illustrated in Fig. 5c and d. To compute a spin-image,
the following parameters must be specified:8

– Image width (IW ): Defines the resolution of the
spin-image, which will be W + 1 bins in the
radius dimension and 2W + 1 bin in the distance
dimension.

8http://pointclouds.org

http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
http://pointclouds.org
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Fig. 4 An example of the
object detector module: a
original point cloud; b
segmented point clouds.
The red, green and blue
lines represent the local
reference frame of the
objects

(a) (b)

– Support length (SL): Determines the amount of
space swept out by a spin-image, which will have
a radius of L and height of 2L.

– Support angle (A): Maximum angle between the
surface normal at the keypoint and the surface
normal in other points to be included as neighbors.

In this work, based on off-line experiments described
in Section 6.1, we use the following spin-image
parameters: SL = 0.1m, A = π/2 and IW = 8.

5 Object Conceptualization and Recognition

The previous section addressed the extraction of 3D
shape features. In this section, we describe how those
features are used both for conceptualizing and rec-
ognizing objects. In addition to that, we present the

interface that allows a user to label objects. The con-
ceptualization is triggered when the user provides a
label to an object.

5.1 User Interface

The open-ended object recognition system will be
more flexible if it is able to learn new object cate-
gories from its end-users. Once an unknown object is
detected, the category of the object must be learned
by the system with the help of a human user. The user
interface supports the interaction with an instructor for
labeling objects. A skeleton tracker library tracks the
pose of the instructor over time. This data is given to
a gesture recognizer algorithm, which computes the
pointing direction. Currently, the pointing direction is
assumed as the direction of the right forearm. The
User Interface contains a global state of the scene. It

β bins

α 
bi

ns

1 2 3 4 5 6

1

2

3

4

5

6

(d)(c)(b)(a)

Fig. 5 Computation of the spin-image for a flask: a extraction of keypoints; b the estimated surface normals; c a schematic of how
the α and β parameters are computed for a keypoint p; d the computed spin image
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Fig. 6 A 3D visualization of the object labeling mechanism

compares the pointing direction against the position of
all detected objects, and decides if an object is being
pointed at by the instructor. A menu used for object
labeling is provided by the user interface. It appears
in front of the table in the 3D visualization of the
scene. To produce a valid object category label, the
pointing detection must occur simultaneously with the
object labeling from the menu. In this way, the false
positives possibly produced by the pointing detection
mechanism, are ignored. The user interface is shown
in Fig. 6.

5.2 Object Conceptualizer

We propose an open-ended 3D object learning and
recognition approach based on interactive teaching,
in which the set of object categories to be learned
is not known in advance. The training instances are
extracted from actual experiences of a robot, and thus

become gradually available, rather than being avail-
able at the beginning of the learning process. The
perception system processes point cloud data con-
tinuously, and the instructor may choose to point to
an object and provide a category label for it. Such
situation provides an opportunity to collect a train-
ing instance (an experience) for learning. Therefore,
an instance-based learning approach is adopted in
the current system, i.e. object categories are repre-
sented by sets of known instances (Fig. 7). One of
the advantages of this approach is to facilitate incre-
mental learning. The object conceptualizer module is
activated when the instructor provides a category label
for an object. The object conceptualizer retrieves the
current object category from memory, as well as a set
of features describing the labeled object, and creates a
new (or updates the existing) object category by com-
puting the Intra-Category Distance (ICD). To compute
the ICD, first a distance between two object views, U
and V, is computed as follows:

D(U, V) =
∑

l min
k

d(ul , vk)

q
, (3)

where, ul are the spin-images, l = 1, . . . , q, are the
spin-images of the object view U, vk represents a spin-
image of the object view V, and d(·) is the Euclidean
distance. It should be noted that D(·) is not symmetric
(i.e. D(U, V) �= D(V, U)). Finally, the Intra-Category
Distance is computed based on the following formula:

ICD(C) =

∑
U∈C

∑
V∈C,U�=V

D (U, V)

n · (n − 1)
, (4)

(a) (b)

Fig. 7 Object learning: a example point cloud of a scene containing a teapot; b six views of the segmented teapot from different
perspectives
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where n is the total number of instances in the cate-
gory, U and V are two different known instances of
category C.

5.3 Object Recognizer

The object recognizer module is capable of discarding
false object candidates as well as objects of unknown
categories. It should be noted that the described func-
tionalities for feature extraction and object conceptu-
alization are used in both the learning and recognition
situations. The dissimilarity between a target object
and an object from the model is estimated based on
Eq. 3. The minimum distance between the target
object, T, and the instances, O, of a certain category,
C, is considered as the object-category distance:

OCD(T, C) = min
O∈C

D(T, O). (5)

Because in some categories, instances are more
spread than in others, the object-category distance
OCD(T, C) should be normalized to prevent miss-
classification of “unknown” objects into “known” cat-
egories. Normalizing the object category distance by
the corresponding ICD seems to be a suitable strategy
to avoid this problem. Therefore, the normalized dis-
tance of target object T to the category C, ND(T, C),
is computed based on following:

ND (T, C) = OCD(T, C)

ICD(C)
. (6)

The target object is classified based on the min-
imum normalized distance to the object. If, for all

Fig. 8 An example of the 3D object recognition

categories, the normalized distance is larger than a
given classification threshold, CT (e.g. CT = 1.0),
then, the object is classified as unknown:

Category(t) =
⎧
⎨
⎩

unknown, if min
C

ND (T, C) > CT

argmin
C

ND (T, C) , otherwise .

(7)

This procedure is illustrated in Fig. 8.

6 Experimental Results

Three types of experiments were carried out to eval-
uate the proposed approach. First, an off-line quan-
titative evaluation for the object recognition system
is presented. Secondly, a qualitative analysis of the
complete interactive open-ended object recognition
system is shown. In this case, a four minute demon-
stration session is described, where users manipulate
objects on a table and interact with the perception
system. Finally for performance evaluation in open-
ended learning, we use a simulated teacher designed
to assess the performance of open-ended category
learning systems in a systematic and reproducible
way [4]. The simulated teacher emulates the inter-
action of a real human user with the learning sys-
tem for the purpose of teaching object categories.
It successively presents new categories to the learn-
ing system, and provides corrective feedback in the
case there is a misclassification. All tests were per-
formed with an i7, 2.40GHz processor and 16GB
RAM.

6.1 Off-Line Evaluation

Experiments were carried out to evaluate the proposed
approach in terms of precision and recall,9 using real
world data. A restaurant object dataset was acquired,
which contains 341 views of one instance of 10 cate-
gories from different categories (Bottle, Bowl, Flask,
Fork, Knife, Mug, Plate, Spoon, Teapot, and Vase) and
30 views of false or unknown objects (e.g. points that
belong to the instructor’s hands). These objects were
extracted from 100 views of table-top scenes by run-
ning the object detector and storing the segmented

9http://en.wikipedia.org/wiki/precision and recall

http://en.wikipedia.org/wiki/precision_and_recall
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Fig. 9 Objects used for the experiments

point clouds. All segmented point clouds, i.e. the
object views, were hand annotated with the respective
category labels (Fig. 9).

To examine the performance of different config-
urations of the proposed approach, a leave-one-out
cross validation algorithm was used (see Algorithm
1). In each iteration, one instance of a certain cate-
gory is used for testing, and the remaining data are
used as training data. This procedure is repeated until
each instance of all the known categories has been
used once as test sample. In case the system predicts
a category that is not the true object category, both a
false negative (true object category not detected) and
a false positive (predicted object category not correct)
are accounted for. A total of 96 experiments were per-
formed for different values of four parameters of the
system, namely the voxel size (VS) which is related to
number of key points extracted from each object view,
the image width (IW) and support length (SL) of spin
images, and the classification threshold (CT). Results
are presented in Table 1. The parameters that obtained

Table 1 Average object recognition performance for different
parameters

Parameters Values Average F1

VS 0.02 0.46

0.04 0.46

0.06 0.49

0.08 0.45

IW 4 0.46

8 0.48

SL 0.025 0.24

0.050 0.23

0.075 0.67

0.100 0.74

CT 0.5 0.42

0.75 0.49

1 0.50

the best average F1 score selected as the default sys-
tem parameters. They are the following: VS = 0.06,
IW = 8, SL = 0.1 and CT = 1. The F-measure of the
proposed system with the default configurations was
0.81 percent. It shows that the overall performance of
the recognition system is promising and that the spin-
image descriptor is capable of collecting distinctive
traits of the local surface patches of each object. In
addition, this configuration displays a good balance
between recognition performance, memory usage,and
processing speed. Further details of the processing
time analysis is available in [19]. The results pre-
sented in Sections 6.2 and 6.3 are computed using this
configuration.

6.2 Scenario Based Tests

To show the functionalities of the system, a four
minutes long session is used, where several users
interacted with the system. During the session, users
presented objects to the system and provided the
respective category labels. Therefore, throughout this
session, the system must be able to detect, conceptu-
alize and recognize new objects, as well as to detect
pointing gestures used for labeling them. Initially, the
system had no prior knowledge. Figure 10 and the fol-
lowing explanation illustrate the behavior of the main
modules of the system, from user and object tracking
to learning and recognition. A video of this session is
available at: http://youtu.be/XvnF2JMfhvc.

(a) The system works in scenario where a table is
in front of the robot and there is no knowledge
about any category. The graphical menu in front
of the table is the interactive menu that enables
teaching new object categories. The instructor
puts a Mug on the table. Tracking is initialized
with track ID 1 (TID 1). The gray bonding box
signals the pose of the object as estimated by the
tracker. TID 1 is classified as Unknown because
mugs are not known to the system;

http://youtu.be/XvnF2JMfhvc
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(b) Instructor labels TID1 as a Mug. The system
conceptualizes the category;

(c) The Mug is correctly classified. The instructor
places a Vase on the table. Tracking is initial-
ized with TID 2. The Vase is unknown to the
system; this frame shows that the system is able
to detect and track multiple object in the scene.
Moreover, it demonstrates that both the tracking
and recognition work when the user is holding
the objects;

(d) The instructor labels TID 2 as a Vase. This label-
ing is done using a different interaction modality:

the instructor points at track ID 2, and labels this
object as Vase;

(e) The Vase is properly recognized. An additional
Mug is placed at the center of the table. Track-
ing is initialized with TID 3. This particular Mug
had not been previously seen, but the system
can correctly recognize it, because the Mug cat-
egory was previously taught. This shows that the
system is capable of using prior knowledge to
recognize new objects in the scene;

(f) Another instructor arrives; once he sits on front
of the robot, he will be considered as the system’s

Fig. 10 Sequence of events in the experiment
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instructor. This frame shows instructor detection
and tracking;

(g) The instructor will remove all objects from the
scene; no objects are visible;

(h) A Plate enters the scene. It is detected and
assigned to TID 4. Because there is no prior
knowledge about plates, TID 4 is classified as
Unknown. TID 4 is labeled as a Plate and the
system conceptualized the category.

This sequence shows that the proposed architecture is
capable of detecting new objects, tracking and recog-
nizing those object in various positions. Moreover, it
shows capability of human-robot interaction based on
a graphical interface and pointing gesture recognition.

6.3 Open-Ended Evaluation

These tests were conducted using the teaching pro-
tocol proposed in [4, 25]. Algorithm 2 shows the
pseudo-code for the teaching protocol. A simulated
teacher was developed to follow the teaching proto-
col and autonomously interact with the system using
teach, ask and correct actions. For each newly taught
category, the average sucess of the system should be
computed. To do that, the simulated teacher repeatedly
picks object views of the currently known categories
from a database and presents them to the system for
checking whether the system can recognize them. If
not, the simulated teacher provides corrective feed-
back. The database used in these experiments is the
one described and used in Section 6.1. Data of false
and unknown objects are not used, as they are not
required by the teaching protocol.

In the experiments that will be presented, the sys-
tem begins with zero knowledge and the training
instances become gradually available according to
the teaching protocol. Therefore, the system incre-
mentally builds object category models. Although
the teaching protocol is designed to test the system
on categories that have been previously taught, the

system can still reply that a given object belongs to
an unknown category. Therefore, classification suc-
cess must be evaluated in terms of precision and recall,
leading to the use of F-measure as the measure of clas-
sification success. Average success is computed using
a sliding window of size 3n, where n is the number
of categories that have already been introduced. If k,
the number of iterations since the last time a new cat-
egory was introduced, is less than 3n, all results are
used. In case the recognition fails to predict the cor-
rect category, both a false negative and a false positive
are accounted for. Classification success is used as the
indicator that a new category can be taught. Accord-
ing to the protocol, the system is ready to learn a
new object category when the success is higher that
a certain threshold, and at least one instance of every
known category has been tested, i.e., k ≥ n. When
an experiment is carried out, learning performance is
evaluated based on several measures, namely number
of categories learned, number of question / correc-
tion iterations, average number of stored instances
per category, global success and average classification
success. Global success is the percentage of correct
classifications made throughout the experiment. Aver-
age classification success is the average of all classifi-
cation success values over all the question / correction
iterations. Since the order of introduction of new cate-
gories may have a large impact on the performance of
the system, five experiments were carried out in which
categories were introduced in random sequences (see
Table 2). In all experiments, the system learned all
10 categories. Figure 11 shows the performance of
the system throughout the first experiment, which was
completed in 56 question/correction iterations.

At the beginning of the evaluation procedure two
categories (Mug and Bowl) are introduced to the
system. In question/correction iterations, the classi-
fication of the presented instances was correct and
thus maximum success (1.0) was achieved in the min-
imum number of iterations (k = n = 2). Then,the

Table 2 Sequences of
introduction of categories
for the five experiments

Exp# Introduction Sequence

1 Mug, Bowl, Spoon, Fork, Knife, Bottle, Teapot, Plate, Flask, Vase

2 Spoon, Teapot, Fork, Plate, Vase, Mug, Bowl, Flask, Knife, Bottle

3 Bowl, Plate, Fork, Teapot, Bottle, Flask, Mug, Vase, Spoon, Knife

4 Vase, Spoon, Fork, Mug, Bottle, Bowl, Teapot, Knife, Plate, Flask

5 Bottle, Vase, Flask, Mug, Fork, Spoon, Teapot, Plate, Bowl, Knife
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simulated teacher introduced a third category (Spoon).
The simulated teacher presented a randomly selected,
previously unseen instance of each of the taught cat-
egories, and the system classified them correctly.
Therefore, the success remained at 1.0. Next, the sim-
ulated teacher presented the Fork category. Since the
fork has a very similar shape to the spoon, a misclas-
sification occurred, and the success dropped to 0.66.

Then, the simulated user provides a corrective feed-
back in order to increase the recognition success. At
iteration 9, this value is above the threshold and a
new object category (Knife) is presented to the sys-
tem. When the knife is introduced, success started at
1.0, then dropped to 0.8. The simulated teacher pro-
vided corrective feedback and success starts going up
again. Afterwards, the simulated teacher presented the

Fig. 11 Evolution of
classification success versus
number of iterations
(Experiment 1)
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Bottle and the Teapot categories. The success dropped
for some iterations and recovered again after receiv-
ing corrective feedbacks. For the next two categories
(Plate and Flask), maximum success was obtained,
therefore, no corrective feedback was required. After-
wards, the simulated teacher presented the Vase cat-
egory. At 50th iteration, a misclassification occurred,
and the success starts going up after receiving cor-
rective feedback. Finally, the experiment finished
because no more categories were available to learn.
The system successfully learned 10 categories in 54
question/correction iterations. This illustrates the pro-
cess of acquiring categories in an open-ended fashion
using the simulated teacher.

In the additional four experiments, these categories
were used again with different introduction sequences,
which are reported in Table 2. Figure 12 presents the
results obtained for all these experiments, and Table 3
provides a summary.In all experiments the system was
able to learn all 10 object categories. By compar-
ing all experiments, it is visible that in the first and
second experiments the number of iterations required
to learn 10 object categories was greater than other
experiments.

In the case of experiment 3, the success remained
for the most part above the threshold. Results showed
that both evaluation measures (global success and
average classification success) for this experiment

Fig. 12 Evolution of classification success versus number of question/correction iterations for a success threshold of 0.67 (marked by
the horizontal line)
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Table 3 Summary of experiments(1)

Exp# Threshold #Iterations #Categories #Instances GS ACS

1 0.67 54 10 3.7 0.87 0.87

2 0.67 65 10 4.3 0.81 0.84

3 0.67 54 10 3.6 0.94 0.95

4 0.67 56 10 4.2 0.78 0.81

5 0.67 77 10 4.9 0.75 0.80

(1)Exp#, experiment number; Threshold, success threshold (s in Algorithm 2); #Iterations, total number of iterations in the experiment;
#Categories, total number of categories learned; #Instances, average number of instances per category at the end of the experiment;
GS, global success; ACS, average classification success.

are higher than in all other cases. In addition, this
experiment and the first one, were the experiments
that learned all 10 categories faster (54 iterations,
see Table 3). The underlying reason for different
performances of these experiments is that categories
were introduced to the system in a different order,
which has a significant influence on the evolution of
the learning performance.

7 Conclusions and Future Work

This paper presented an open-ended 3D object recog-
nition approach based on interactive learning of mul-
tiple object categories. In open-ended settings, the
set of object categories to be learned is not known
in advance, which leads to the fact that training

instances must be extracted from on-line robot expe-
riences, rather than being available at the beginning
of the learning process. To support open-ended learn-
ing, we have developed a system that allows the user
to label objects by pointing at them and selecting
the corresponding category from a menu interface.
This approach was tested on a PR2 robot as shown
in Fig. 13. Results showed that the proposed system
obtains good precision and recall figures in the off-
line evaluation. The on-line evaluation proved that the
system can incrementally learn new object categories.
For future work, the evaluation of the system using
additional table-top scenarios is considered. We would
like to investigate the possibility of improving per-
formance using other 3D shape descriptors or more
compact representation such as in the bag-of-word
approach.

Fig. 13 The proposed
system being tested on the
PR2 robot
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