

Copyright

by

Brian Erick O’Neil

2013

The Dissertation Committee for Brian Erick O’Neil Certifies that this is the

approved version of the following dissertation:

Object Recognition and Pose Estimation for Manipulation in Nuclear

Materials Handling Applications

Committee:

Sheldon Landsberger, Supervisor

Mitchell Pryor, Co-Supervisor

J.K. Aggarwal

Ashish Deshpande

Luis Sentis

Object Recognition and Pose Estimation for Nuclear Manipulation in

Nuclear Materials Handling Applicaions

by

Brian Erick O’Neil, B.S.; B.S.E.; M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2013

Dedication

To my family: Emily, Henry, and Ellen

 v

Acknowledgements

I would like to thank my wife, Emily whose patience and support made this

possible. I would also like to thank Dr. Mitch Pryor for his guidance and wisdom during

the writing process as well as Dr. Sheldon Landsberger, who works tirelessly to ensure

the success of his students.

This material is based upon work supported under a Department of Energy

Nuclear Energy University Programs Graduate Fellowship.

 vi

Object Recognition and Pose Estimation for Manipulation in Nuclear

Materials Handling Applications

Brian Erick O’Neil, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Sheldon Landsberger

Co-supervisor: Mitchell Pryor

This dissertation advances the capability of autonomous or semiautonomous

robotic manipulation systems by providing the tools required to turn depth sensor

measurements into a meaningful representation of the objects present in the robot’s

environment. This process happens in two steps. First, the points from depth imagery are

separated into clusters representing individual objects by a Euclidean clustering scheme.

Each cluster is then passed to a recognition algorithm that determines what it is, and

where it is. This information allows the robot to determine a pose of the object for grasp

planning or obstacle avoidance.

To accomplish this, the recognition system must extract mathematical

representation of each point cluster. To this end, this dissertation presents a new feature

descriptor, the Cylindrical Projection Histogram which captures the shape, size, and

viewpoint of the object while maintaining invariance to image scale. These features are

used to train a classifier which can then determine the label and pose of each cluster

identified in a scene. The results are used to inform a probabilistic model of the object,

that quantifies uncertainty and allows Bayesian update of the object’s label and position.

 vii

Experimental results on live data show a 97.2% correct recognition rate for a

classifier based on the Cylindrical Projection Histogram. This is a significant

improvement over another state-of-the art feature that gives an 89.6% recognition rate on

the same object set. With statistical filtering over 10 frames, the raw recognition rate

improve to 100% and 92.3% respectively. For pose estimation, both features offe

rrotational pose estimation performance from 12° to 30°, and pose errors below 1 cm.

This work supports deployment of robotic manipulation systems in unstructured

glovebox environments in US Department of Energy facilities. The recognition

performance of the CPH classifier is adequate for this purpose. The pose estimation

performance is sufficient for gross pick-and-place tasks of simple objects, but not

sufficient for dexterous manipulation. However, the pose estimation, along with the

probabilistic model, support post-recognition pose refinement techniques.

 viii

Table of Contents

List of Tables ... xi

List of Figures .. xiii

Chapter 1: Introduction ...1

1.1 Background and Motivation ..2

1.1.1 Transitional levels of autonomy..3

1.1.2 Robotics in nuclear materials handling ...6

1.1.3 Object recognition and pose estimation ..9

1.2 Robot Operating System ..11

1.2.1 ROS overview ...11

1.2.2 ROS concepts and nomenclature ..12

1.3 Microsoft Kinect ..15

1.4 Scope and objective of research ...17

1.4.3 Original contributions ...18

1.5 Organization of this document ...19

Chapter 2: Related Work ..21

2.1 Modeling ..21

2.1.1 Deterministic modeling ...21

2.1.2 Probabilistic modeling ..24

2.1.3 Previous modeling work at NRG ..31

2.1.4 Summary and analysis of modeling techniques32

2.2 Visual recognition ..34

2.2.1 Interest point selection ..34

2.2.2 Feature selection ...38

2.2.3 Classification...48

2.2.4 Previous recognition work at NRG ...50

2.2.5 Visual recognition discussion ...52

2.3 Related work discussion ..54

 ix

Chapter 3: Methods...56

3.1 Probabilistic Object Model ..56

3.1.1 The model ...57

3.1.2 Bayesian update ..57

3.1.2 Sensor model ...58

3.2 The Cylindrical Projection Histogram ...59

3.2.1 CPH shape histogram ..59

3.2.2 Spatial Extents ..63

3.2.3 Comparison to VFH ..66

3.3 Discussion of methods ...67

Chapter 4: System Implementation ..69

4.1 System Description ..69

4.1.1 Classifier training ..69

4.1.2 Recognition pipeline ...70

4.3 Software implementation ...76

4.3 Implementation Review and Discussion ..83

Chapter 5: Experiments ..85

5.1 Datasets ..86

5.1.1 RGB-D dataset ..86

5.1.2 LANL dataset ..89

5.2 Recognition and pose estimation experiments95

5.2.1 RGB-D dataset results...96

5.2.2 LANL dataset results ..101

5.3 Probabilistic modeling results ..106

5.3.1 RGB-D dataset results...107

5.3.2 LANL dataset results ..110

5.4 Category-level recognition results ...113

5.5 Computational performance...115

5.6 Summary and discussion of experiments ...117

5.6.1 Chapter 5 summary ...117

 x

5.6.2 Multi-class recognition and pose estimation.............................118

5.6.3 Filtered recognition and pose estimation120

5.6.4 Category-level performance..122

5.6.5 Computational performance..122

Chapter 6: Application demonstrations ...124

6.1 Automated sorting workcell ...124

6.1.1 Demonstration workcell ..125

6.1.2 Task description and execution ...126

6.1.3 Demonstrated capability ...127

6.2 System user display demonstration at UT Austin129

6.3 Comments on demonstrations ...132

Chapter 7: Conclusion..133

7.1 Summary ..133

7.2 Recommendations for future work ..136

7.3 Concluding Remarks ..139

Appendix A: CPH recognition ROS package code ...141

Appendix B: Input probability tables ...166

Appendix C: Training data collection ..167

Appendix D: ROS recognition quickstart tutorial ...173

Appendix E: PCL code ..178

References ..183

Vita ...188

 xi

List of Tables

Table 1-1. INL’s dynamic autonomy modes5

Table 1-2. UT-NRG’s transitional levels of autonomy. ..6

Table 2-1. Classifier confusion matrix...51

Table 2-2. Point cloud feature comparison. ...53

Table 4-1. Nodes and the services they offer. ..83

Table 5-1. Confusion matrix for VFH feature on RGB-D dataset,

 σnoise = 1 mm. ..97

Table 5-2. Confusion matrix for CPH feature on RGB-D dataset,

 σnoise = 1 mm ...97

Table 5-3. Standard deviation in pose estimate (measured from ground truth)

 for VFH and CPH classifiers, σnoise = 1 mm.98

Table 5-4. Confusion matrix for VFH feature on RGB-D dataset, σnoise = 5 mm.100

Table 5-5. Confusion matrix for CPH feature on RGB-D dataset, σnoise = 5 mm.100

Table 5-6. Standard deviation in pose estimate (measured from ground truth)

 for VFH and CPH classifiers, σnoise = 5 mm.100

Table 5-7. Confusion matrix for VFH classifier on LANL dataset.103

Table 5-8. Confusion matrix for CPH classifier on LANL dataset.104

Table 5-9. Standard deviation in pose estimate on LANL dataset.104

Table 5-10. Confusion matrix filtered over 10 frames for VFH classifier,

 σnoise = 1 mm. ...107

Table 5-11. Confusion matrix filtered over 10 frames for CPH classifier,

 σnoise = 1 mm. ...107

 xii

Table 5-12. Standard deviation in pose estimate (measured from ground truth)

 for filtered VFH and CPH classifiers, σnoise = 1 mm.108

Table 5-13. Confusion matrix filtered over 10 frames for VFH classifier,

 σnoise = 5 mm. ...109

Table 5-14. Pose estimation results for both classifiers at σnoise = 5 mm.109

Table 5-15. Confusion matrix for LANL datset filtered over 10 frames for VFH

classifier. ...111

Table 5-16. Confusion matrix for LANL dataset filtered over 10 frames for CPH

classifier. ...112

Table 5-17 Standard deviation in pose estimate on LANL dataset filtered over 10

frames. ...112

Table 5-18. Category-level recognition rates for CPH feature

 with SVM classifier. ...115

Table 5-19. Average feature computation time on the RGB-D dataset.116

Table 5-20. Recognition and pose estimation summary (RGB-D data)118

Table 5-21. Recognition and pose estimation summary (LANL data)119

Table 5-22. Filtered results summary for RGB-D data..121

Table 5-23. Filtered results summary for LANL data. ..121

Table C-1. Pan/tilt Bill of Materials ..167

 xiii

List of Figures

Figure 1-1. Effect of environmental and task uncertainty on feasible task

 autonomy...4

Figure 1-2. Robots for nuclear materials handling. ...8

Figure 1-3. Manipulator control system diagram. ...10

Figure 1-4. Microsoft Kinect for XBOX 360. ...16

Figure 1-5. Examples of objects found in a glovebox ...17

Figure 2-1. OSCAR/Kinematix Workcell model...23

Figure 2-2. Graphical world model ..31

Figure 2-3. Effect of image width. ...42

Figure 2-4. Effect of support angle. ...42

Figure 2-5. Different 3D binning schemes and the resulting histograms.43

Figure 2-6. Point Feature Histogram normal differencing scheme44

Figure 2-7. Computation of the extended FPFH component of the VFH

 feature ..46

Figure 2-8 Computation of the viewpoint component of the VFH feature............47

Figure 2-9. Full VFH feature. ..47

Figure 2-10. Procrustes matching results ...51

Figure 3-1. Orientation of projection cylinder ...60

Figure 3-2. Example of histogram construction. ...61

Figure 3-3. Baseline histogram for CPH feature. ..63

Figure 3-4. Full CPH feature on a coffee cup, showing the addition of spatial

 extents and rescaling. ..64

Figure 3-5. Comparison of CPH features for objects of different sizes65

 xiv

Figure 3-6. Samples of features extracted on different objects.67

Figure 4-1. Recognition pipeline ...70

Figure 4-2. Results of plane model segmentation and Euclidean clustering. 72

Figure 4-3. Graph of the ROS recognition system implementation.76

Figure 5-1. Example images from Lai’s RGB-D dataset87

Figure 5-2. Objects from the RGB-D dataset ..88

Figure 5-3. Objects in the LANL dataset. ..90

Figure 5-4. Samples of CPH features extracted on different objects.91

Figure 5-5. Servo-driven pan/tilt table for data collection92

Figure 5-6. ROS data collection software diagram. ...93

Figure 5-7. Example of a challenging category-level problem.113

Figure 5-8. Receiver Operating Characteristics for category-level recognition with

CPH feature and SVM classifier. ..115

Figure 5-9. Feature computation time vs. cluster size ...117

Figure 6-1. Demonstration workcell, exterior view. ..125

Figure 6-2. Schematic workspace layout. ..126

Figure 6-3. Application demonstrion. ..128

Figure 6-4. User display showing label with probability estimate and pose with

deviation estimate. ..130

Figure 6-5. User display showing light clutter...131

Figure D-1. Rviz display during data collection. ...175

Figure D-2. Rviz display during testing ...177

 1

Chapter 1: Introduction

Since the dawn of the industrial revolution, machines have increasingly replaced

or augmented human labor in almost every conceivable physical task. Humans put down

their shovels and pick axes and mounted steam shovels and excavators. Needles and

thread gave way to sewing machines. Engineers designed and built automated mechanical

systems to mass produce everything from lug nuts to light bulbs. Advances in mechanical

system design and control engineering have made product manufacturing cheaper, faster,

and of higher quality than ever before. While machines rapidly replaced human legs,

arms, hands, and fingers, none of them could replace the human brain. Each machine

required a human operator to do the thinking.

By the time the first industrial robot began service in 1962, the idea of machines

that think for themselves had already become a staple of science fiction. But for the first

time, advances in science and engineering held the promise that thinking machines were

just beyond the horizon. In the 1960’s, computer scientists started actively pursing the

idea of Artificial Intelligence (AI). Computers learned to play (and win) chess games

against humans. HAL debuted in 2001: A Space Odyssey. Rosie the robot did all the

cooking and cleaning for the Jetsons. The coupling of machine intelligence to mechanical

systems held the promise of relieving human beings of the tedium of work that was dull,

dirty or dangerous.

Now, decades later, that promise has gone unfulfilled. We don’t have robot maids

cleaning up after us. We still have to drive our own cars, do our own laundry, and

(thankfully) open our own pod bay doors. In fact, despite continual strides in machine

learning, machine perception, and machine intelligence, the promise of a machine that

can reason and move about in its environment like a human seems as near to the horizon

 2

now as it did five decades ago. While the promise of fully autonomous robots remains

unfulfilled, we can leverage advanced autonomous technologies to improve robotic

systems if we allow the intelligence of a human operator to remain in the loop. But to do

so we must accept that our robots will not be like what science fiction has suggested. We

must think about how to integrate machine intelligence with human intelligence to make

the take advantage of the relative strengths of each.

1.1 BACKGROUND AND MOTIVATION

Improving robotic system capability is not just about bringing science fiction to

life or avoiding house chores. It is about protecting and preserving human life by

relieving humans of hazardous tasks. Robots can respond to disaster situations by

collecting data and locating survivors in locations that humans cannot access either

because of physical limitations or severe hazards. Robots can be used to inspect and

disarm bombs and improvised explosive devices. Robots can handle toxic or

radiologically hazardous materials. In fact, robots are used in many of these scenarios.

But there were no robots on hand to inspect the Fukushima reactors after a tsunami

disabled cooling systems causing a fuel meltdown. The emergency response was delayed

by the delivery of foreign robots and subsequent training on their operation. This is in the

same country that brought us ASIMO, a bipedal robot that can autonomously perceive

and navigate its environment. Soldiers deploy robots to disarm IED’s, but they

teleoperate the robot through the entire procedure, hoping they can finish before someone

starts shooting at them. Undoubtedly they’ve seen videos on the internet of robots in

research labs perceiving and manipulating objects not unlike roadside bombs with better

speed and dexterity than their teleoperated systems provide. Workers at Los Alamos

National Laboratory handle toxic and radioactive materials through rubber gloves inside

 3

gloveboxes. Gloves do occasionally tear in these facilities, unnecessarily exposing

workers to significant radiological and toxic hazards. There are also ergonomic injuries

due to the awkwardness of trying to work though fixed gloveports. Meanwhile, in another

facility at the same lab, robots are doing all of the work in gloveboxes.

This disconnect between what robots can do and what they actually do is that

despite all of the technological advances, machine intelligence alone is not robust enough

to be adopted in most robotic applications outside of the research lab. Robots do well on

the factory floor where all of the uncertainty in the environment and the task can be

designed away through sound mechanical and industrial engineering. But post-accident

reactor investigation, rendering safe an IED, and working in a glovebox designed for

humans are applications where the uncertainty cannot be avoided, and this prevents

robots from acting autonomously in these environments. However, this document rejects

the notion that autonomy is an either/or proposition. Rather, there exists a spectrum of

autonomous robot behavior between pure teleoperation and complete autonomy.

1.1.1 Transitional levels of autonomy

The idea of robots exhibiting behavior somewhere on an autonomy spectrum is

not new. This behavior is often called semi-autonomous behavior. The level of autonomy

at which a robot can operate is closely correlated with the level of uncertainty in the

environment and the task specification. Environmental uncertainty refers to uncertainty in

the position of the robot within its environment or uncertainty of the positions of other

objects and agents in the environment. Task uncertainty describes the level of uncertainty

in the motions that the robot must execute. As the level of structure in the task or the

environment decreases, autonomous behaviors become more difficult and less robust. But

uncertainty is not a static quantity. As the state of the environment changes, so does the

 4

uncertainty, and the level of autonomous initiative that the robot exhibits must change as

well. Figure 1-1 shows a qualitative depiction of where certain tasks lie in

environment/task uncertainty space.

Figure 1-1. Effect of environmental and task uncertainty on feasible task autonomy.

Idaho National Laboratories built the idea of an autonomy spectrum into their

mobile robotics suite, the Robot Intelligence Kernel (RIK) [Bruemmer, 2002]. They

describe five regimes of dynamic autonomy shown in Table 1-1. The separation of

autonomous behaviors into 5 regimes clearly illustrates the different levels of autonomy

as well as the advantages of using partial autonomy even when full autonomy is not

feasible. At the lowest level, the operator is responsible for motivating all robot motions.

The robot’s control system does not augment the human’s intelligence in any way. In safe

mode, the robot monitors its proximity to other objects and stops the motion if a collision

becomes imminent. In Shared mode, the robot will execute its own motions to assist the

operator in teleoperated tasks. Examples would be obstacle avoidance or reactive path

planning. In collaborative tasking mode, high-level tasks are still commanded and

supervised by the operator. For example, the user requests that an object be moved, and

 5

the robot moves it without further input, assuming all of the collision detection, motion

planning, and safety functions.

Table 1-1. INL’s dynamic autonomy modes [Bruemmer, 2002].

Mode
Defines Task

Goals
Supervises
Direction

Motivates
Motion

Prevents
Collision

Teleoperation Operator Operator Operator Operator

Safe Mode Operator Operator Operator Robot

Shared Mode Operator Operator Robot Robot

Collaborative
Tasking Mode

Operator Robot Robot Robot

Autonomous Mode Robot Robot Robot Robot

At full autonomy, the robot will determine what tasks need to be completed and execute

them. This is only practical in very limited applications. An important aspect of the RIK

autonomy levels is that the robot does not operate at a fixed level, but can move between

autonomy regimes as changes occur in the task or the environment (hence dynamic

autonomy).

 RIK is first and foremost a framework for mobile robotics. The dynamic

autonomy levels in RIK concisely demonstrate the advantages of multiple levels of

autonomy, but are tailored to the needs of mobile robotics. The University of Texas

Nuclear Robotics Group (UT-NRG) uses its own dynamic autonomy scheme that is a bit

more esoteric, but better meets the needs of unstructured manipulation. Like the RIK

levels, UT-NRG’s transitional levels of autonomy are dynamic. The manipulator can

move between levels during operation. Table 1-2 shows the seven levels of the UT-NRG

transitional levels of autonomy framework. The levels are defined without regard to the

current state of technology. In practice, the maximum level of autonomy is dictated by

the current state of the art in machine perception and intelligence. The current state of the

art permits operation at level 5 if the uncertainty in the task and environment can be kept

 6

low. Levels above 5 require that the robot react in uncertain situations, so robust

operation above 5 is much more difficult to achieve.

Table 1-2. UT-NRG’s transitional levels of autonomy.

Autonomy
Level

System behavior

0 Joint space teleoperation

1 End effector frame teleoperation

2 Teleoperation with collision detection and/or avoidance

3 Plans and executes motions to locations of interest.

4 Plans and execute object grasps.

5 Completes high-level tasks involving multiple sub-tasks

6 Responds appropriately to non-operator external events.
(oven timer, abnormal system operation, low battery)

7 Anticipates and completes future tasks.

The continuum of behaviors between zero autonomy and full autonomy provides

the foundation for shared initiative between human and robot. Human/robot collaboration

under this system does not deal with the manner in which a human interacts with a

robotic system. Rather, it considers the human and robot part of the same system. On a

factory floor, you may see humans performing some physical tasks while robots perform

others. The physical labor is divided between human and robot according to what each

does well. Dynamic autonomy does the same at the supervisory level. Humans are very

good at planning and reacting in uncertain environments whereas robot controllers have

more difficulty. As uncertainty increases, dynamic autonomy allows the robot control

system to transfer more control functions to the human.

1.1.2 Robotics in nuclear materials handling

An integral part of the safety culture among nuclear professionals is the ALARA

principle. ALARA states that radiation dose to humans should be kept As Low As

 7

Reasonably Achievable (ALARA). In fact, in addition to hard annual dose limits on

radiation workers, ALARA is a Nuclear Regulatory Comission (NRC) requirement under

10 CFR Part 20 which defines ALARA as “making every reasonable effort to maintain

exposures to radiation as far below the dose limits in this part as is practical consistent

with the purpose for which the licensed activity is undertaken, taking into account the

state of technology, the economics of improvements in relation to state of technology, the

economics of improvements in relation to benefits to the public health and safety, and

other societal and socioeconomic considerations, and in relation to utilization of nuclear

energy and licensed materials in the public interest.” An important consequence of this

requirement is that if a robotic system can feasibly and economically reduce human dose,

its use becomes compulsory under NRC regulation.

It comes as no surprise then, that the nuclear industry has made extensive use of

robotics throughout its history. The first teleoperated robots were developed for nuclear

materials handling when the first nuclear weapons were being developed. They were

directly coupled mechanical master/slave systems that bear little resemblance to modern

industrial manipulators or electromechanical teleoperated systems. Figure 1-2 (a) shows

an operator using one of these systems. These systems allowed operators to safely handle

materials from an adjacent room, shielded from the radiation hazard. More advanced

teleoperated systems like the one shown in Figure 1-2 (b) are used in highly radioactive

“hot cell” environments for unstructured manipulation tasks.

One of the most ambitious robotic systems in the Department Of Energy (DOE)

comples is the Advanced Recovery and Integrated Extraction System (ARIES) line at Los

Alamos National Laboratory (LANL). . The ARIES system was created to demonstrate

the feasibility of an integrated process for dismantling nuclear weapons, reclaiming the

plutonium and converting it to a form suitable to disposition and long-term storage. A

 8

key aspect of the technology developed under ARIES has been significant automation of

many glovebox functions traditionally performed by humans. ARIES is therefore a

unique example of robotic glovebox automation. Figure 1-2 (c) shows the Robotic

Integrated Packaging System (RIPS) component of ARIES [Coonley, 2008].

Figure 1-2. Robots for nuclear materials handling. (a) Mechanical master/slave robot. (b)

Hot cell teleoperation system (c) RIPS on ARIES line.

A noticeable trend in robotic systems for nuclear materials handling is that they

take an either/or approach to autonomy. For unstructured manipulation, telerobotic

systems are preferred. Autonomous robotic systems are only used when the process can

be tightly controlled thorough process design and appropriate fixturing as seen in Figure

1-2 (c). All three robotic components of the ARIES line are fully autonomous systems in

which the uncertainty usually encountered in a glovebox has been designed out of the

system. Because most glovebox facilities have not been designed and built with

automation in mind, the environment cannot be controlled tightly enough to deploy

ARIES-like systems. Most gloveboxes were designed solely for human use. For robots to

 9

augment human performance in these environments, they must be able to operate in the

presence of dynamic and uncertain environments.

As the state of the art in robot perception and machine intelligence advances,

deployment of robot manipulators in gloveboxes designed for humans becomes more

feasible both technically and economically. At some point, technical advances in robotics

move them into the domain of ALARA where they can and must be used to reduce

radiation dose to workers. Additional benefits from the use of robots to augment human

performance in nuclear facilities include reduced worker fatigue and reduced incidence of

ergonomic injury. The work presented in this document supports operation of

manipulators in uncertain environments under transitional autonomy in order to deploy

robots to reduce radiological and ergonomic injury to glovebox workers.

1.1.3 Object recognition and pose estimation

For any dynamic autonomy framework to be useful, the system must be able to

switch between autonomy modes when appropriate. A primary motivation of the current

work is that the main criterion that determines the appropriate level of autonomy is

uncertainty. When the task and environment are deterministic, full autonomy is possible.

But as the positions of important objects and collision hazards become less certain, a

human must provide more guidance. For the system to choose an autonomy level, it must

therefore be able to quantify the uncertainty in the environment. Therefore as sensors

update the state of the environment, the control system must also track how much

uncertainty is introduced to the model through noisy and imperfect sensing.

In a nuclear materials glovebox, a large source of uncertainty is in the location

and types of objects present. Because the gloveboxes are used by humans, different

objects may be in different locations any time that the robot is given a task to perform.

 10

The robot’s control system must therefore be able to identify the objects present in the

glovebox through a sensing system. Figure 1-3 shows a generic control system

framework for a manipulator control system.

Figure 1-3. Manipulator control system diagram.

The current work involves the Sensor Suite block, the World Model block, and the

reasoning block between them. The sensor used is a depth camera that provides a 3D

point cloud representing the entire scene. The world model is a list of objects in the

environment described by a discrete probability distribution over possible object classes

and 4D Gaussian pose estimates. The reasoning block includes an object recognition and

pose estimation pipeline. These three components provide key pieces of information that

allow the system to run under the dynamic autonomy paradigm. They are described in

detail in Chapters 3 and 4.

 11

1.2 ROBOT OPERATING SYSTEM

Robots are incredibly complex systems. Software development for a robotic

system spans several abstraction layers from low-level device driver software to high-

level decision making and everything in between. This is a difficult problem in robotics

research because of the sheer amount of code that must be written just to get a system to

function properly before a researcher can even begin to think about making an original

contribution. Robotic systems frequently consist of several pieces of hardware assembled

to address a specific problem or application area. For example, in the past two years UT-

NRG’s laboratory has had three types of depth imager, four different grippers, four

different manipulators from three different manufacurers, two force/torque sensors, and

an Arudino-controlled servo table. In the near future, UT NRG plans to add prismatic

actuators to the manipulator bases. These components have been assembled in various

configurations and code reuse has been difficult because the system integration details

change slightly over time, and inevitably the code gets entangled with the specific

application. This process becomes exhausting for researchers who feel like they spend

more time porting old code to new systems than actually doing research. This also makes

research collaboration difficult because every lab uses its own software architecture

custom built for whatever system is in their lab.

1.2.1 ROS overview

In order to meet these challenges, a group of robotics researchers at Stanford and

Willow Garage developed an open-source framework for complex robotic system

development which they dubbed the Robot Operating System (ROS) [Quigley, 2009].

ROS is distributed under a BSD license as free and open-source software. Since its

release, ROS has rapidly secured a place as the de facto standard framework for advanced

robotic system development. Research groups, hobbyists and enthusiasts have

 12

contributed to the project with such enthusiasm that there is now an enormous code base

that provides a convenient springboard for robotic system development.

 ROS is a peer-to-peer system in which system components run as nodes on a

distributed network. These nodes interact with each other through a standardized

messaging system. This provides a strong separation between the interface and

implementation that simplifies code reuse and collaborative system development. While

well-written device APIs also separate interface from implementation, the system

developer must learn the API for every individual device he wishes to use in the system.

In ROS, the interface is standardized so that integration of new devices is seamless.

1.2.2 ROS concepts and nomenclature

The work presented in this document has been developed under the ROS

framework, so it is appropriate to cover some basic ROS concepts and nomenclature for

the unfamiliar reader. More information can be found at www.ros.org

ROS Filesystem

 ROS requires that code be organized in a specific way so that various ROS tools

can find files and assure that dependencies are met. ROS code is organized into stacks

and packages. Stacks are collections of functionally related packages. Packages are the

basic unit of code organization. A package may consist of any set of related nodes,

libraries, or other data. Typically a package contains some executables that are used to

spawn related ROS nodes. Each package contains a package manifest

(manifest.xml). The manifest contains meta-data for the package such as authorship

and license information, language specific complier flags, and dependency information.

When a package is installed in ROS, the manifest assures that all package dependencies

are installed recursively as well. A package may also contain message description

 13

(*.msg) and service description (*.srv) files that define ROS data structures to contain

messages that will be passed between nodes.

ROS Runtime environment

The ROS Runtime environment is the graph of nodes running on the system. Each

node is a separate process running on the ROS system. Nodes may run individual devices

such as motors and sensors or they may perform higher-level functions like perception or

path planning. ROS systems are inherently distributed. The ROS graph can span any

number of machines and devices on the same network. There is one special node called

the ROS Master. The ROS Master provides name registration and a lookup server so that

other nodes in the system can find each other. The Master provides only a name lookup

service. Connections between nodes are made directly. Communication between nodes is

facilitated by the TCPROS protocol which uses standard TCP/IP sockets.

Nodes interact with each other through messages and services. The basic

communication protocol is a publisher/subscriber model. A node sends information out

by publishing to a topic. Other nodes can then subscribe to the topic to receive this

information. For example, a node that runs a depth imager will publish image information

on a topic. A perception node will subscribe to that topic to receive image data to process.

Any number of nodes can publish on and subscribe to the same topic. Publishing and

subscribing nodes are unaware of each other’s existence. Communication flows only one

way: from publisher to subscriber. This model is ideal for nodes such as sensors that are

continuously producing data. However, it is not well suited to request/response

communication. There are some interactions in which one node makes a request of

another and then expects some sort of response. For example, a node in a control system

may want to retrieve a motion plan from a path planner. This would involve sending a

 14

goal position to the motion planner node and receiving a trajectory in response. For these

types of interactions, ROS uses services. A service is a synchronous interaction that has

two distinct parts, a request, and a response.

Perception in ROS

To provide object recognition and pose estimation capability to a robot

manipulator requires integration of a perception system and a robot control system. The

ROS developer community has provided ROS compatible device drivers for many

common cameras and imaging systems including the Microsoft Kinect for Xbox 360 used

in the current work. Also, developers of some powerful image processing libraries

provide ROS interfaces. The basic ROS installation includes both the OpenCV image

processing libraries for computer vision [Bradski, 2000], as well as the Point Cloud

Library (PCL) libraries for point cloud image processing [Rusu, 2011]. This makes

integration of perception convenient because image acquisition and processing are done

directly in ROS. Chapter 4 discusses in more detail how ROS and PCL features are

leveraged in the current work.

PCL is used extensively in this work. PCL is an open-source project that provides

several state-of-the-art algorithms for processing point clouds [Rusu, 2011]. PCL is

comprised of several modular libraries that do low-level operations like outlier removal,

all the way through more complicated operations like model fitting and segmentation.

Like ROS, PCL has a large and active developer community, so it stays current with the

state of the art in point cloud processing. Also like ROS, from its release it has quickly

become the standard framework for algorithm development in its field. It’s tight

integration and distribution with ROS has established it as the first choice for point cloud

processing in robotics.

 15

ROS and PCL supports the current work by providing a large portion of the

foundational software required. PCL provides many of the individual algorithmic

componenets of an object recognition pipeline. ROS provides filesystem and runtime

tools that greatly simplify creation of a modular pipeline that integrates easily with other

robot control system components. However, neither ROS nor PCL provide a way to

model objects that supports contact interaction (grasping.). Nor do they provide a

complete recognition pipeline. This work uses the strengths of ROS and PCL to create

object recognition and modeling packages that support unstructured manipulation.

1.3 MICROSOFT KINECT

Prior to 2010, depth image and point cloud processing research was confined to

those willing to spend large sums of money to acquire the images. Integrated stereo

systems were available for around $1200 [Point Grey, 2012]. 2D LIDAR systems were

several thousand dollars [SICK, 2010], 3D LIDAR systems can cost as much as $75,000

[Velodyne, 2012]. The best infrared time-of-flight cameras cost around $9000 [Mesa

Imaging, 2012]. The high cost restricted these systems to applications where 3D imagery

was absolutely essential. The LIDAR systems, for example were well represented in the

DARPA Grand Challenge and Urban Challenge vehicles. Stereo vision systems were

preferred as a low-cost option for most robotics applications.

Then, in November 2010, Microsoft released the Kinect for XBOX 360 Video

game controller, shown in Figure 1-5. The Kinect has both an rgb digital video camera

and a structured infrared depth camera. Best of all, the Kinect’s retail price is $149.99.

 16

Figure 1-4. Microsoft Kinect for XBOX 360.

The device was developed to track human motion so that game players could

interact with game software without a traditional hardware controller. However, the

robotics community immediately seized upon the device’s potential as a vision sensor for

robotics. AdaFruit industries offered a bounty of $3000 to the first person to release

open-source drivers for the Kinect. Kinect was launched on November 4
th

, 2010, and the

winner of the bounty was announced on November 10
th

, 2010. In December, PrimeSense

technologies, the developer behind Kinect’s depth sensing technology released their own

open-sournce drivers through OpenNI. At $150, and with open-source drivers readily

available, a vibrant user and developer community sprouted almost overnight [AdaFruit,

2012].

ROS was released in 2009. Kinect was released in 2010, and within days was

accessible to the robotics research and hobbyist communities. PCL was released early in

2011. These three technologies together transformed robot perception in a very short time

frame. All of these technologies provided open-source software and actively nurtured an

enthusiastic developer community. The result is a fertile development environment for

robotic perception and intelligence. Through a framework for transitional autonomy, the

current research brings the fruits of this rapidly advancing technology into applications

that require reliable and robust operation.

 17

1.4 SCOPE AND OBJECTIVE OF RESEARCH

This research provides a complete object recognition and pose estimation system

that supports unstructured robotic manipulation. The target application is robotic

manipulation in gloveboxes for nuclear materials handling. This application provides

unique challenges to machine perception that motivate this research. These challenges are

a result of the nature of the objects found in gloveboxes, a few examples of which are

shown in Figure 1-5.

Figure 1-5. Examples of objects found in a glovebox

The objects in Figure 1-5 have very little visual or geometric texture to use for

recognition. Furthermore, they are moderately reflective, which presents challenges for

depth imagers. In addition, several objects are of very similar shape, but slightly different

dimensions. Therefore, the current research approaches the perception problem under the

following assumptions and limitations:

 The objects have little surface or visual texture.

 The objects may be lightly reflective such as matte-finished stainless steel.

 We wish to differentiate between objects of similar shape but different

size.

 The environment is uncluttered; objects can be readily segmented by

Euclidean clustering or temporal back-ground subtraction.

 We desire real time performance.

 18

The assumption of light clutter is reasonable in a glovebox because the number

and type of objects in the glovebox is well controlled. The desire for real time

performance is dictated by the need to operate under transitional autonomy. The robot

must operate at human processing speeds to assure fast and safe transitions when

environmental conditions prevent the robot from operating at higher levels of autonomy.

The objective of this research is the development of a comprehensive visual

recognition and modeling system robust enough for use in unstructured industrial

environments. Part of this robustness is achieved through shared initiative. That is, if the

system is likely to fail under autonomy, more control initiative is transferred to a human

operator. While this research is directed at the problem of manipulation in gloveboxes,

the methods presented are applicable in any application that meets the limitations and

assumptions described above. This includes many household and service robotics tasks,

as well as unstructured industrial tasks such as sorting and palletizing.

1.4.3 Original contributions

This work makes three original contributions to the field of robot vision,

enumerated here, and discussed in detail in the remainder of this document.

The Cylindrical Projection Histogram

 The most significant contribution is a novel point cloud feature descriptor for 3D

cluster recognition. This feature, the Cylindrical Projection Histogram (CPH), provides

state-of-the-art recognition performance even under challenging conditions of low texture

and moderate specularity. In addition, the feature provides substantial reduction in

computational cost, and improved robustness to image noise over similar feature

descriptors that rely on surface normal estimation.

 19

Probabilistic object model

A probabilistic model of an object’s label and pose is presented that allows

multiple recognition results to be filtered to improve performance. In addition, this allows

the uncertainty to be quantified and used to inform a dynamic shared human/robot

initiative framework.

LANL glovebox object dataset

As part of this work, a new pose-annotated point cluster dataset has been

produced and made available for testing of visual recognition and pose estimation

algorithms. The objects in the dataset provide a challenging benchmark, and this is one of

very few available multi-view datasets that includes the relative pose of the object to the

camera.

1.5 ORGANIZATION OF THIS DOCUMENT

This chapter introduced the problem of visual object recognition and pose

estimation, and discussed the motivating application behind the current research. In

addition, it has briefly discussed some of the current technologies behind the recent rapid

proliferation of work in the area of robot perception from 3D depth data. The remainder

of this document is organized as follows:

Chapter 2 provides a review of previous work in modeling and recognition. This

review serves two purposes:

 To provide a high-level overview of the current state of the art in modeling and

recognition. This allows the reader to understand where the current work fits in

with respect to the taxonomy of recognition systems.

 To provide detailed descriptions of work that is directly related to the current

research presented in this document. This allows the reader to understand work

 20

upon which the presented methods rely, and also provides a basis of comparison

that allows the reader to understand the similarities and differences between the

current work and other recent work in the field.

Chapter 3 presents the methods used in this work. This chapter includes

complete mathematical descriptions of the CPH feature, and probabilistic object model.

This chapter contains the bulk of the original contributions discussed above.

Chapter 4 discusses the system implementation details. This chapter describes

how the methods presented in Chapter 3 are used in conjunction with other hardware and

software tools to provide a functional glovebox recognition system. This includes

ROS/PCL system integration.

Chapter 5 presents the experiments performed to validate the methods presented

in Chapter 3. These experiments are performed on two different datasets using both pre-

collected data as well as noisy “live” data. Identical results are provided for the nearest

analogous feature descriptor implemented in the most recent stable version of PCL.

Chapter 6 closes the proverbial loop, and demonstrates the use of the CPH-based

recognition system in relevant applications. One application demonstration is an

automated object sorting demonstration presented live at Automate 2013 in Chicago, IL.

The other shows a user interface that displays relevant information in real time to the

user.

Finally, Chapter 7 provides a concise summary and review of this document, and

suggests several avenues for continuing research.

 21

Chapter 2: Related Work

This document proposes methods that allow a robot to perceive and model objects

in its environment. This chapter broadly reviews literature relevant to both world

modeling and visual perception and also describes previous approaches to modeling and

perception within the Nuclear Robotics Group (NRG) at UT. The literature review and

discussion of related work at NRG provide context for how the contributions of the

current work advance the state of the art in perception within NRG and the broader

research community.

2.1 MODELING

The current state of the art in world modeling for robots is the result of several

decades of research. This chapter reviews relevant literature and separates modeling

techniques into two classes that are discussed in the following subsections.

1. Deterministic models are those where the state of the environment is

described by some set of finite values. Such models are common in robot

manipulator control.

2. Probabilistic models are those where the state of the environment is

represented as some set of probability distributions. Such models are more

common in mobile robotics, and have been a very active research area in

recent years.

2.1.1 Deterministic modeling

The deterministic approach to modeling is natural and intuitive, and as such, early

approaches to modeling for robotics have favored this approach. These approaches are

motivated by the generalized mover’s problem: given an arbitrary robot arm and obstacle

set, compute a collision-free trajectory between two poses. [Reif, 1979, Canny, 1987] In

 22

these early approaches, solid bodies were modeled as discrete polyhedra in space. Several

seminal works in manipulator motion planning use the deterministic modeling paradigm.

It is interesting to note the solution to the generalized mover’s problem proposed by Reif

acknowledged the importance of uncertainty by inclusion of a factor τ that held a discrete

uncertainty value. At each intermediate transformation, no vertex of the mover is

permitted to move more than this factor, and the mover is considered in collision if would

collide after expanding its dimensions by τ.

Another approach to modeling is to dispense with an internal model altogether.

Under this approach, sensor measurements and control laws interact to produce robot

behaviors without reference to a model. [Brooks, 1985] This approach is often called

behavior-based robotics as it attempts to map sensor measurements and relatively simple

control laws directly to actuator commands in order to produce apparently complex

behaviors. This approach led to the commercial success of iRobot’s Roomba robot

vacuum cleaners.

Brooks [1985] demonstrated how behavior-based robotics can be used to produce

a layered control scheme that can operate at several layers of competence. These layers of

competence start with very low-level tasks such as obstacle avoidance and increase in

complexity to include object identification and task planning. This idea is similar to our

notion of shared human/robot initiative, and reflects the idea that a robot control system

should be able to operate across a continuum of autonomous behaviors. However, the

network of sensors and control laws capable of producing high-level behaviors gets

increasingly complex, and the behavior-based paradigm has remained confined to

relatively simple robot tasks.

Workcell modeling at the University of Texas has traditionally been deterministic.

Figure 2-1 shows the structure of a typical Workcell model as originally implemented in

 23

UT’s Operational Software Components for Advanced Robotics (OSCAR). [Knoll, 2007]

OSCAR has since been repackaged for commercial distribution as a software package

called Kinematix, available from Agile Planet, Inc.

Figure 2-1. OSCAR/Kinematix Workcell model

The OSCAR/Kinematix Workcell model is implemented as an XML schema that

contains a rich representation of the properties of the environment that are relevant to

robot manipulator control. The XML file points to external files that contain the obstacle

models for objects in the environment. These may be simplified geometric primitive

representations, or polygonal models derived from CAD data. All of the information

contained in the model and associated files is discrete. There is no provision for modeling

uncertainty.

 24

The OSCAR/Kinematix Workcell model was later reformulated into a generalized

graph in which the links between nodes carried their own information about the

relationships between entities in the environment. [O’Neil, 2010, O’Neil 2011] The

graphical model is a much richer topological representation of the environment than the

tree-based approach. As implemented, both the OSCAR model and the graphical model

contain only discrete deterministic values. However, the high-level model is independent

of the low-level representation, and there is no reason why either of these could not be

adapted to probabilistic modeling and control.

2.1.2 Probabilistic modeling

The idea of probabilistic modeling in robotics can be traced to the Kalman filter.

[Kalman, 1960] The Kalman filter is a recursive state estimation technique using a known

state transition function and a measurement from a well-characterized sensor. The

Kalman filter does not model states as deterministic values, but as multivariate normal

probability distributions. The idea that spatial information cannot be known

deterministically is important. Reif’s technique of incorporating a discrete uncertainty

parameter is insufficient because its meaning is unclear. It could be that it is physically

impossible to make a larger error, in which case the parameter would be unnecessarily

restrictive. Instead it could be a threshold that the robot is very unlikely to exceed. In that

case, the threshold becomes arbitrary and begs the question of the level of uncertainty in

the uncertainty parameter. The Kalman filter models and propagates uncertainty

explicitly, and has proven the value of probabilistic modeling in countless applications.

Smith and Cheeseman [1986] emphasize the importance of estimating and

modeling spatial uncertainty in robotics. They present a method for combining serial and

parallel coordinate transformations between coordinate frames modeled as random

 25

Gaussian variables. Parallel transformations, such as a transformation derived from

external sensors and another from odometry, are merged through Kalman filtering,

whereas serial transformations add and accumulate uncertainty. This method can reduce

most networks of estimated transformations to a single transformation that, under certain

assumptions, preserves the uncertainty information in the network. The result is that the

uncertainty in a position estimate is stored and updated by sensing. This is a much more

sound approach than choosing a static margin of uncertainty and also allows position

estimates from multiple sensors to be fused to obtain a better position estimate than a

single sensor alone could achieve.

The Kalman filter is a specific type of a general class of methods called Bayes

filters. All Bayes filters recursively update the probabilistic belief about the state in a

two-step process.

1. Prediction step: A state transition function is used to predict the state at

time t given the state at time t-1.

2. Update step: A measurement is incorporated and the predicted distribution

is updated according to Bayes’ rule.

Bayes filters require probabilistic state-transition and measurement models,

regardless of how the Bayes filter is implemented. The Kalman filter is the most common

example of a class of Bayes filters called parametric filters. The Kalman filter assumes a

Gaussian probability distribution and maintains the belief about the state by recording the

parameters that describe this distribution. These parameters are frequently the mean

vector and covariance matrix, a representation known as the moments parameterization.

Other Gaussian parameterizations exist that carry the same information but lend

themselves to better computational efficiency in some algorithms. [Maybeck, 1990]

 26

Bayesian filtering methods require modeling an object’s state as a multivariate

Gaussian distribution. In reality, this distribution is not always a valid model. The

underlying distribution may be multimodal in which case a single Gaussian would be a

poor approximation. Austin and Jensfelt [2000] present a method that uses multiple

Gaussians to represent the probabilities of several hypotheses about a mobile robot’s

location. When measurements are taken from the environment, they are associated and

intersected with matching hypotheses. This generates a new set of hypotheses, the least

likely of which is pruned. Another example of using multiple Gaussians to track multiple

hypotheses comes from the computer vision literature. [Stauffer and Grimson, 1998] A

Gaussian Mixture Model (GMM) can be used to model several image pixel states that

represent the background in a static image. In this model, a fixed number of Gaussian

models the underlying probability distribution. Each Gaussian has an associated weight,

ωi. A new observation is matched to the closest Gaussian by Mahalanobis distance, and

the mean and variance of that distribution are updated by alpha blending. The weights of

all distributions are then updated by alpha blending to increase the weight of the matched

distribution and decrease the weight of the remaining distributions.

A further departure from Gaussian modeling is to use nonparametric techniques to

capture underlying probability distributions. In various ways, these techniques avoid

forcing posterior distributions to fit a parameterized model such a Gaussian. A histogram

filter divides the state space into bins and represents each bin with a uniform distribution.

[Thrun, 2006] Update of the belief can then be accomplished by applying a discrete

Bayes filter. A drawback of this approach is the accuracy of the modeled distribution is

highly dependent on the decomposition of the state space into bins. If there are too few

bins or if they are too wide, the histogram representation will be too coarse to capture the

underlying distribution. The tradeoff is that using many bins involves higher

 27

computational cost. To address this, dynamic decomposition techniques such as density

trees vary the bin size according to the posterior. In less likely regions, the resolution is

coarser because no information about the distribution is captured by maintaining several

bins in areas of near-zero probability. Selective update techniques finely discretize the

bins, but only update bins with relatively high probability, avoiding the high computation

cost of the fine grid.

Monte Carlo techniques are another class of nonparametric modeling methods.

Monte Carlo methods have been used to model the location of mobile robots in stochastic

environments, providing improvements in global localization performance and

computation time. [Dallaert, 1999] These are sampling-based methods that represent the

underlying density function as a set of random samples or particles. The belief update

follows the Bayesian two-step predict/update paradigm for each particle in the sample. In

the prediction step, a new particle is drawn randomly from the state-transition

distribution. The update step weights each particle by the probability of achieving the

current measurement given the hypothesized state. If the algorithm stopped there,

particles would eventually be “lost” to regions of low probability. This phenomenon is

addressed by importance sampling. In importance sampling, a new set of particles is

sampled from the original set with replacement. The probability of selecting each particle

is proportional to the weight assigned in the update step. This resampling forces the

particle density back to the posterior distribution.

Probabilistic modeling can also reduce computation time for certain tasks. For

example, the generalized mover’s problem would be solved if the free configuration

space were finely discretized with a motion plan generated between configurations.

However, the computation of a complete map is prohibitively expensive. A more efficient

technique is to randomly generate configurations from a probability distribution, and then

 28

connect them with plans generated from a weak but fast motion planner. [Kavraki, 1996]

The result is a graph in configuration space with robot configurations represented by

nodes and possible paths represented by edges. Such an algorithm can continue adding

nodes until the graph approaches a complete connectivity map of the free configuration

space, but computation is reduced by stopping this learning phase when the graph

connectivity is sufficient for practical motion planning. Such random methods do not

actually represent the environment probabilistically and thus do not capture any

information about uncertainty.

Robots operating in uncertain environments must make use of sensors to perceive

and estimate the environment state, and then execute a control action based upon this

state estimation. However all sensor measurements and control actions are subject to

stochastic effects and thus introduce uncertainty. Therefore the control policy that makes

decisions for a robot in an uncertain environment must consider this stochastic nature. A

common approach that considers the probabilistic state of the environment in planning

and control is the Markov Decision Process (MDP). [Kaebling, 1998] The MDP

framework considers the stochastic nature of action effects, but not perceptual effects. In

other words, the model assumes that the state of the environment can be fully and

deterministically sensed at all times. In the MDP model, the state of the robot after taking

an action is not known deterministically, and so its control policy must be able to select

an action for a range of possible states. One way to accomplish this is to generate a

universal plan that directly maps the robot’s state to a control action and encompasses the

entire finite state space of the robot.

In most applications, the assumption of the MDP model that the environment state

is fully observable does not hold. Sensor measurements are noisy and not reliable enough

to justify such an assumption. The case where both action results and perception results

 29

are considered probabilistically is known as the Partially Observable Markov Decision

Process (POMDP). Dropping the complete observation assumption significantly

complicates the problem of determining a control policy as the robot must consider the

state of its knowledge about the environment in making control decisions. If there is large

uncertainty in the robot’s belief about the environment state, the optimal control action is

very likely that which results in the greatest disambiguation of the environment model.

The control policy for a POMDP cannot be computed by mapping the robot’s state to an

action as this assumes a deterministic environment state. Instead, the control policy must

map the robot’s belief state to an action. This adds considerable computational

complexity because the dimensionality of the belief space is of the order of the number of

possible states. (i.e. for a continuous state space, the belief space is of infinite dimension.)

Nonetheless, practical methods exist for approximating optimal control policies for

POMDP’s. Kaebling [1996] essentially treats the POMDP as a fully observable MDP,

treating the most probable state as deterministic. However, the probabilistic belief about

the state is monitored. If the entropy in the distribution gets above some threshold, the

controller will select a control action that most reduces the entropy.

A glance at the papers cited above reveals that the MDP and POMDP solution

techniques focus heavily on mobile robot navigation and control. Robotic manipulation in

stochastic domains presents challenges that are difficult to address with these techniques.

Most of the techniques for solving POMDPs require that the observation space be finite.

This requirement is easy to meet by discretizing the continuous state space for a mobile

robot that may only need to localize itself within a square meter. Hoey and Poupart

[2005] observe that a control policy need only differentiate between states if they will

affect the control action. They present a method for solving POMDPs with continuous

observation spaces. They apply their method in an application that guides the cognitively

 30

impaired through daily tasks. This type of guidance is not far related from task planning

for robots. In the end, their method merely provides a more intelligent discretization of

the observation space where observations are lumped together into clusters that

identically affect the choice of control action. Consider the problem of grasping an object

with position determined from sensing. For a successful grasp, the relative position of the

gripper and object must be sufficiently accurate to permit the gripper to move into a pre-

grasp position without collision, and the fingers must be placed accurately enough to

assure a force-closed grasp Keeping in mind that the dimensionality of the belief space is

on the order of the number of possible states, It is impractical to discretize the state space

to such a fine resolution, particularly in the 6-dimensional spatial case. Therefore to

frame the task of grasping as a POMDP results in a belief space that is too complex to be

practical.

Another difference between manipulation and mobile robotics in uncertain

domains is the source of uncertainty. The primary uncertainty of concern for a mobile

robot is the uncertainty in its own position. Therefore the modeling and planning

techniques focus on modeling and propagating uncertainty through transitions of the

robot between states. In manipulation, hardware encoders on individual joints make the

uncertainty in the robot’s state very small compared with that of the objects in its

environment. Particularly in the case of a glovebox, the primary concern of a

probabilistic modeling scheme is not to localize the robot, but to recognize and localize

the objects for collision avoidance or manipulation. Glover, Rus, and Roy [2008] propose

a probabilistic object modeling framework specifically directed at manipulation. Their

approach is to model 2D contour shape similarity by the Procrustean metric, dp. This is a

measure of shape similarity after removing the relative translation, rotation and scale

transformations between two contours. The object model is a Gaussian that describes the

 31

shape variation within an object class. The authors demonstrate that this model can be

used for object recognition and grasp planning in the presence of clutter and occlusions.

2.1.3 Previous modeling work at NRG

Previously, NRG has developed graphical world modeling techniques intended

for use in unstructured environments [O’Neil 2011]. The nodes in the graph represent

specific types of entities in the environment and the links represent specific types of

relationships between nodes. A simple example is given in Figure 2-2.

Figure 2-2. Graphical world model

All entities in the environment are represented as one of three node types. A

Robot node represents a robot and contains information about the kinematic configuration

of the robot as well as any geometric models required for collision detection. An Object

node represents any physical entity in the environment that is not a robot. The object

node may contain any data about the object that might be useful to the control system. A

Location node describes a specific position and orientation in the environment.

 32

Links describe the relationships between the nodes listed above. There are three

types of link. A Locator link may exist between any two nodes and describes their

relative position to each other. The existence of a locator link describes some kind of

spatial connectivity. A Grasp link exists between a robot node and an object node. Its

presence indicates that a valid grasp exists. The grasp link object may contain the grasp

parameters required to make the grasp. A Reachability link can exist between a robot and

a location. Its presence indicates that the robot can reach the location and may contain a

joint configuration that optimizes the robot’s motion potential at that location.

An important feature of the graph-based model is that the links and nodes

described here can be created and added to the model with missing or incomplete

information. This allows the control system to, in effect, know what it doesn’t know. If

the control system requires information about what objects are in a particular fixture, the

model can provide this information even if the exact positions of the objects in the fixture

are unknown. However, in the current implementation, if the position is known, it is

modeled deterministically. Therefore the uncertainty model only permits two states:

known with full certainty or completely unknown.

The graph-based model described here is used to support collision detection and

prevention as well as motion planning and grasping. The model enables high-level

control commands which are executed by semantic search of the graph. In the presence of

missing information, the control system gives control to a human who can decide how to

proceed or complete the task via tele-operation.

2.1.4 Summary and analysis of modeling techniques

This section has examined some deterministic approaches to world modeling.

These models are suitable for manipulator operation in tightly controlled environments,

 33

but do not handle uncertainty well. Some deterministic models attempt to deal with

uncertainty by providing a safety margin or uncertainty factor to assure correct operation

under the worst-case scenario. These methods are unnecessarily limiting and do not

capture the underlying stochastic nature of the real world. Several probabilistic methods

are presented that approach the problem of modeling probabilistically. The overwhelming

majority of these methods were developed to solve the problem of mobile robot

localization and navigation in uncertain domains. MDP and POMDP approaches have

enjoyed success in this field, but the high dimensionality of the state space and the need

for fine scale control make them impractical for most manipulation applications.

However, in the continuous state space of an object’s location, Bayesian filtering

techniques can be used to maintain a probabilistic belief about an object’s state. The

belief can be modeled parametrically as a Gaussian or mixture of Gaussians, or

nonparametrically as a sample of particles. A Gaussian can be easily updated from

measurements by Kalman filtering. A mixture of Gaussians can be updated with an alpha

blending scheme, and a particle representation can be updated with Monte Carlo

techniques with importance sampling.

All of these techniques update the probabilistic belief from sensor measurements

assuming a good perception model is in place. Previous world modeling efforts at

NRG are agnostic to the image representation and are therefore fully compatible

with any of the deterministic or probabilistic techniques described in this section. To

make the most of these techniques, a sensing system should be able to provide data

that can populate and update the model. The next section addresses this by reviewing

work related to visual recognition.

 34

2.2 VISUAL RECOGNITION

This section discusses literature relevant to object recognition from visual sensors.

Traditionally, this sensor is a digital camera where each pixel has a single channel

(grayscale) or three channels (color). The visual recognition process typically involves

two separate phases, a training phase and a test phase. Each phase follows a similar

pipeline:

1. Interest point selection

2. Feature extraction

3. Training (training phase)/Classification (test phase).

Design of a visual recognition system therefore requires three broad

considerations:

1. Where to sample image features?

2. How to collect features into a single image representation?

3. What type of classifier?

The problem can be decomposed this way because the decisions are largely

independent, i.e. the choice of image feature does not usually require a particular

classifier. This section will review literature relevant to each of these three

considerations.

2.2.1 Interest point selection

Here, interest point selection is defined as deciding where to extract features from

the image. This process frequently includes foreground/background segmentation to

assure that features are only extracted on objects of interest. This process is

fundamentally different for static images and video sequences.

Foreground/background segmentation is somewhat easier in video because the

temporal nature of the data provides many cues for background segmentation that aren’t

 35

available in static images. A naïve approach to segmentation in video would be to take

the mean or median value of a pixel over time to be the background. Any time the pixel

varies significantly from a central measure, it is considered foreground. In practice, this

method fails if the background is not perfectly static. A swaying tree branch, for example

results in a pixel having multiple background states (sky and leaf). The previous section

mentioned the Gaussian Mixture Model (GMM) of Stauffer and Grimson [1998]. Their

method represents multiple hypotheses of the background with a mixture of several

Gaussians. This results in a foreground/background segmentation with considerably less

noise. The approach is limited since the number of Gaussians is fixed, and the algorithm

relies heavily on tuning the learning rates. An approach that allows an arbitrary number

of hypotheses is presented by Kim. [2004] This method represents background

hypotheses for each pixel as entries in a codebook. In addition to modeling an arbitrary

number of background states, the method uses less memory, runs faster, and is not as

sensitive to tuning of parameters.

In static images, the background cannot be observed over time, and foreground

segmentation becomes more difficult. Segmentation of a static image is usually

considered the process of dividing the image into coherent sub-regions or superpixels that

contain homogeneous visual content. The resulting superpixels must still be processed to

locate and classify interesting objects. If the processing required is modest, it may help

with the task of interest point selection. Otherwise, recognition techniques that start with

a static segmentation will likely sample features on the entire image to classify each

region independently. If this is the case, the segmentation is only to separate coherent

regions rather than to select regions on which to extract interest points.

 Graph-cutting techniques are among the most common static image segmentation

methods. Wu and Leahy [1993] present a technique for modeling an image as a weighted,

 36

undirected graph whose edge weights describe the similarity between regions. This graph

is recursively bisected by minimizing the total weight of the edges removed to make the

cut. This continues until there are k remaining regions which each enclose a visually

coherent image region. This minimization favors cuts that remove few edges and thus

artificially selects small sets of isolated regions. Shi and Malik [2000] normalize the cut

cost to the fraction of total edges removed, and therefore produce an unbiased grouping.

They pose the optimization of the cut criterion as an eigenvalue problem, yielding good

results but poor computational efficiency. Felzenswalb [2004] presents a method that

adaptively adjusts the segmentation criterion, and makes greedy decisions about what

edges to cut. The method preserves the global coherence of image regions, but is

computationally much faster than eigenvector-based min-cuts. The Felzenswalb method

has been widely implemented in computer vision problems that extend beyond simple

object recognition. [Hoiem 2005a, Hoiem, 2005b, Gould, 2008] Carreira and

Sminchisescu [2010a] use a graph-cutting technique and a classifier to automatically

identify object-like regions in order to automate the foreground segmentation process.

This allows downstream processing of the foreground segments for classification.

[Carreira 2010b] Another approach to segmentation is to define a measure of visual

saliency that approximates human intuition about the most important parts of a scene.

[Liu, 2007] This process involves feature extraction across the entire image and training

on user annotated data. Use of saliency has been demonstrated to improve object

detection speeds by focusing an algorithm’s attention on the most salient image regions.

[Navalpakkam, 2006]

If depth imagery is available, the image can be segmented by finding clusters of

points that belong to the same object. This can be done by examining how the points in

the cloud relate to their neighbors in Euclidean space. Rusu provides a method for

 37

performing Euclidean clustering by starting at some point and searching for nearby

points. For input point cloud P, the algorithm proceeds as follows:

 Set up an empty list of clusters, C and a queue of point to be processed, Q.

 For every point

 add to the current queue, Q.

 for every point

o Search for the set of points
 that fall within a sphere of radius dth of

o For every point

 Check to see if the point has been processed previously, add if not,

add it to Q.

 When all points in Q have been processed, add Q to C and remove all points from

Q.

 Terminate when all points have been assigned to a cluster.

The result of the algorithm is a set of clusters, C, that satisfies:

 ‖ ‖ 2-1

where and . Each cluster represents a tight group of points that can

reasonably be assumed to belong to the same object.

 However, in the case of several objects sitting on a table, all objects would be

assigned to the same cluster because there is a continuous surface of points separated by

distances less than dth. To account for this, Rusu locates the largest planar component in

the dataset by RANSAC fitting, and removes all planar inliners from P prior to Euclidean

clustering.

The video segmentation methods discussed previously function on each

individual pixel independently and as such, extract very little information about local or

global features of the image. The static segmentation and Euclidean clustering

 38

techniques, on the other hand, must extract some visual features in order to perform the

segmentation, and may obviate the need for additional interest point selection. In fact,

superpixel segmentation and Euclidean clustering are, in a sense, region-based interest

point selectors as they identify portions of the image that appear to be visually related and

therefore interesting for classification. In the case of video segmentation, or static

segmentation where further processing is to be performed within a region, the region

must be described by local visual features extracted at interest points.

A widely implemented interest point detector is the Harris corner detector. [Harris

1988] The Harris detector locates areas in an image of high curvature (corners) which are

intuitively interesting features in an image. At each pixel, the Harris detector observes the

change in intensity that occurs with a shift in any direction. If shifts in different directions

result in significant intensity changes, then the point is likely a corner point. The Harris

corner detector has the attractive property of being partially invariant to rotation,

translation, and scale. This invariance is important for object recognition where the

features extracted should be the same regardless of the orientation of the object in the

image. David Lowe [1999] formulated a scale invariant interest point detector. This

detector takes the Difference of Gaussian (DoG) filter responses between image pyramid

levels, and identifies extrema of this function in scale space. An image pyramid is

constructed by recursively filtering and subsampling the original image, resulting in a

pyramid of progressively lower-resolution images. This method is among the most

common interest point detectors currently implemented.

2.2.2 Feature selection

The previous section examines literature relevant to the question of where image

features should be sampled. This section will address the question of what low-level

 39

image features to extract. Image descriptors serve to extract visual information in an

image into a mathematical representation that is convenient for use in visual recognition.

Most local feature descriptors capture image gradients in an image patch surrounding the

interest point.

Appearance Features

David Lowe’s [1999] Scale Invariant Feature Transform (SIFT) descriptor is a

commonly implemented descriptor used in both instance and category-level

classification. The SIFT descriptor computes histograms of gradients in each cell of a 4x4

grid surrounding the interest point. Each of these histograms is binned into 8 directions.

The SIFT descriptor is therefore a 4 by 4 by 8 or 128-dimensional vector that describes a

local image patch. These are typically extracted at the same scale at which the interest

point was detected making the SIFT descriptor invariant to change in scale. The SIFT

descriptor provides the basis for very impressive classification results. [Lowe, 2004,

Mikolajczyk, 2005]

Another descriptor based on local image gradients is the Histogram of Oriented

Gradients (HOG) descriptor. [Dalal, 2005] The HOG descriptor is extracted by dividing

an image into subregions or cells and binning the orientation of image gradients within

the cell into a histogram. This histogram constitutes the local image descriptor, and one

such histogram is extracted from each cell in a densely sampled (or even overlapping) set

that encompasses the entire image. In spirit, the HOG descriptor is very similar to the

SIFT descriptor. They both represent image content with histograms of local image

gradients. However, whereas SIFT features are extracted at DoG interest points at the

interest point scale, HOG features are densely sampled on the entire image at uniform

scale. As such, the HOG descriptor is not invariant to scale. Also SIFT are sampled on a

 40

grid that aligns with the interest point’s dominant gradient orientation, giving it

invariance to rotation. HOG are sampled at uniform orientation and are therefore not

invariant to rotation. Despite the lack of invariance to scale and rotation, the descriptor

yields excellent performance in human detection if the humans are generally in an upright

orientation.

SIFT and HOG both describe the texture of an image by its local gradients.

However, sometimes texture descriptors alone do not describe the image content well.

They work very well on commercial packaging, album covers, and other objects that

have considerable texture. However, many objects are of relatively uniform color, and do

not have many strong local gradients that can be captured by texture-based descriptors.

For such objects, the shape is more important than the texture. One way to describe

shapes in an image with Maximally Stable Extremal Regions (MSER). [Matas, 2002]

MSERs are regions that are significantly brighter (or darker) in intensity than the

surrounding image content. Stability refers to the property that the region does not change

with respect to changes in intensity threshold. Because the regions are defined only by

their intensity, they are invariant to affine transformations, and partially invariant to

changes in scale. Once MSERs are detected in an image, a descriptor must be extracted.

Forssen and Lowe [2007] use a set of SIFT descriptors on MSERs to extract a shape

descriptor.

Depth Features

Recently, the proliferation of inexpensive, consumer-grade depth imaging devices

such as the Microsoft Kinect™ have ignited a surge of activity in object recognition from

depth imagery. These devices produce an image that consists of a depth value for each

pixel. Using the camera’s intrinsic matrix, the depth values can be transformed into 3D

 41

world coordinates. Many of the same features used for traditional 2D images can be

directly applied to these images as if they were grayscale images. [Lai, 2011] However,

gradient based features like SIFT and HOG perform best in the presence of high surface

texture. Most objects have only weak gradients in their 3D shape, so texture-based

features are weaker in depth imagery than in grayscale intensity images. The 3D spin

image feature [Johnson, 1999] is probably the most common descriptor of 3D shape used

presently. [Lai, 2010, Lai, 2011] The spin image is a local descriptor generated from a set

of 3D points and associated surface normals. It uses a binned 2D accumulator that can be

thought of as a sheet that is spun around the surface normal of a point. As points pass

through a bin in the spinning sheet, the bin value is incremented. The spin image

descriptor is then a fixed-size histogram that represents the local shape information

around a point. In this way it can be used in a manner analogous with SIFT descriptors

for shape-based recognition.

A spin image is characterized by three parameters: The histogram bin size, the

support angle, and the image width. Selection of bin size is straightforward: the

histogram bin size should be similar to the image spatial resolution. The support angle is

the maximum angle between of the surface normal of the oriented point and that of a

point that contributes to the histogram. A large angle will result in an accumulation of

more points, but will be more subject to clutter if the image is not segmented. The image

width refers to the maximum distance from the oriented point that points are permitted to

contribute to the histogram. It determines the global/local nature of the spin image: the

larger the width, the more global the shape description. Figures 2-3 and 2-4 show how

the spin image is computed, and also how the image width and support angle vary the

global/local nature of the feature. [Johnson, 1999]

 42

Figure 2-3. Effect of image width. As the image width decreases, the histogram is limited

to an increasingly local neighborhood. (a) 40 pixel width. (b) 20 pixel width.

(c) 10 pixel width. [Johnson, 1999]

Figure 2-4. Effect of support angle. As the support angle decreases, points from the other

side of the image are excluded. (a) 180 degrees (b) 90 degrees (c) 60 degrees

[Johnson, 1999]

The spin image is a member of a class of features called shape histograms. In

cylindrical coordinates, the spin image projects points into a histogram along the

azimuthal axis and bins them according to their vertical and radial coordinates. This both

reduces the dimensionality of the input space and generates a feature vector of uniform

length for any point cluster. Ankerst [1999] Refers to the bins in the radial direction as

shell bins, and the bins in the azimuthal direction as sector bins, and proposes a combined

“spider-web” model that is very similar to the spin image, differing only by the axis along

 43

which the points are projected in cylindrical coordinates. Rather than projecting

azimuthally, the points are projected vertically. The shell, sector, and spider-web

approaches and histogram samples are shown in Figure 2-5.

Figure 2-5. Different 3D binning schemes and the resulting histograms. [Ankerst, 1999]

Another type of histogram feature called the Point Feature Histogram (PFH) does

not directly bin the points, but instead describes local shape by binning relationships

between the surface normals of points within a neighborhood [Rusu, 2008]. The feature is

constructed by the following algorithm illustrated by Figure 2-6:

 For each point p, select all of p’s neighbors that lie within a sphere of

radius r.

 44

 For each pair for points pi, and pj with estimated surface nomals ni and nj

(i ≠ j),

o Assign a Darboux uvn frame to one of the points.

 ()

o Compute angular variations as follows

 (()) ‖ ‖

 ()

 Bin the α,φ, and θ values for each pair of points in the neighborhood into a

histogram.

Figure 2-6. Point Feature Histogram normal differencing scheme [Rusu, 2009].

Unlike Ankerst’s shape histograms, PFH and its faster variant Fast PFH (FPFH)

[Rusu, 2010] are local, pose invariant features that are used with a sample consensus

algorithm to perform alignment of point clouds. In that sense, they are directly analogous

to SIFT features, but in shape space rather than appearance space. As such, they could be

 45

used in a manner similar to Lowe’s correspondence grouping approach [2009], or with

the bag-of-words model discussed in section 2.2.3.

In order to take advantage of the ability to isolate point clusters belonging to the

same object (see section 2.2.1), Rusu has developed an extension of FPFH called the

Viewpoint Feature Histogram (VFH) that is computed globally on a point cluster rather

than locally on a few neighboring points. VFH also has the interesting property of not

being invariant to pose. All of the features discussed previously are invariant to pose

because a good object detector should detect an object regardless of its orientation in

space. Determining the pose of the object would then require additional downstream

processing. VFH, however, can be used to not only recognize an object, but also

determine its orientation in space. This ability to perform pose estimation is essential to

robotic object manipulation.

Like FPFH, the extended FPFH component of VFH bins relative pan, tilt, and roll

angles between points. However, this is done on different sets of point and using a

different reference frame. Instead of computing a histogram on a point and its k

neighbors, the extended FPFH computes the histogram on the angular differences

between the surface normal of all points in the cluster and the central point in the cluster.

This makes the feature global on the point cluster. This global nature of the extended

FPFH feature is shown in, Figure 2-7.

 46

Figure 2-7. Computation of the extended FPFH component of the VFH feature [Rusu

2010].

The extended FPFH component of VFH captures the global shape of the cluster,

but it still does not depend directly on the viewpoint direction. To achieve viewpoint

variance, additional statistics are computed between the viewpoint direction and the

surface normal at each point. This viewpoint component is then concatenated with the

extended FPFH component to give the full VFH descriptor. The viewpoint component is

computed by binning the angles that the viewpoint direction makes with the surface

normal at each point in the cluster. The viewpoint direction refers to the direction of the

camera’s central axis translated to each point in the cloud, not the direction of the vector

between the camera and each point. This formulation assures that the resulting feature

will remain invariant to scale and translation. The computation of the viewpoint

component of VFH is shown in Figure 2-8.

 47

Figure 2-8 Computation of the viewpoint component of the VFH feature [Rusu 2010].

The extended FPFH and the viewpoint components are collected in a single

histogram as shown in Figure 2-8.

Figure 2-9. Full VFH feature [Rusu, 2010].

In 2D imagery, it is difficult to discern whether an object is large and far away, or

small and close. For that reason, scale invariance is generally considered a requirement in

an image feature. However, when trying to capture 3D geometry, it is important to

differentiate between scale invariance and size invariance. The VFH feature described

above is formulated to be invariant to scale. This means the feature vector will be the

 48

same regardless of its size in the image (or alternatively, its distance from the camera.)

However, by being invariant to scale, it is also invariant to size. In other words, the

feature will be identical for two objects of identical shape, but different size. This is a

significant problem if the target dataset contains such objects.

Also, while the VFH feature itself in O(n) in the number of points in the cluster,

it requires that the surface normal be estimated beforehand. At best, this requires an SVD

matrix decomposition of O(d
3
) in the number of matrix columns [Klasing, 2009].

2.2.3 Classification

The previous section discussed various features that can be described to represent

the content of an image. This section examines how the features extracted from an image

can then be used to classify the object(s) in an image.

Lowe [2004] performs classification by finding correspondences between SIFT

features in a test image and SIFT features in a training image. Each matched feature has a

keypoint with known 2D location, orientation, and scale. If the object is assumed to be

rigid, each matched feature therefore suggests a hypothesis about the object’s pose and

scale. If three or more keypoints agree upon the pose of the object, the probability is high

that the hypothesis is correct. The affine parameters of the object are then computed and

the spatial consistency is checked against other matched points.

More recently, classifiers from the machine learning community have become

popular in visual recognition. A classical approach to classification is the Bayesian

classifier. [Duda 2001] The basic idea in Bayesian classification is to use training data to

estimate the probability distribution of each class across the feature space. Given a test

case, you extract the feature vector, and classify it as the most probable class. If the

probability distributions for each class are known exactly, the Bayes classifier is optimal.

 49

In the case where the prior class probabilities are unknown, the method is called Naïve

Bayes. Bayes classifiers are widely implemented, but are typically outperformed by other

methods. [Caruna, 2006]

A very intuitive approach to classification is the K-Nearest Neighbor (KNN)

algorithm. With KNN, a metric such as the Euclidean or Mahalanobis distance is used to

describe the similarity between feature vectors. Given a test vector, the k nearest vectors

in the training set vote on the classification. KNN is easy to implement and is surprisingly

powerful given the simplicity of the algorithm. [Caruna, 2006] In fact, for very large

classification spaces, it has been demonstrated to work as well or better than state-of-the

art machine learning methods. [Deng, 2010] Another advantage of KNN is that training is

trivial, requiring only that the training samples vectors be stored with their class labels.

A popular state-of-the-art classifier is the Support Vector Machine (SVM).

[Caruna, 2006] In a 2D feature space, it is easy to classify two classes of data if a line can

be drawn that separates all instances of one class from another. In 3D, this decision

boundary would be a plane. However, if the data are at all interspersed in the original

feature space, such a line, plane, or hyperplane in dimensions greater than 3, cannot be

found. The idea behind a support vector machine classifier is to map the original feature

vectors into a higher-dimensional space where a separating hyperplane exists. [Duda,

2001] This mapping is done through a kernel function, φ. Popular choices include linear,

polynomial, and Radial Basis Function (RBG) kernels. Ideally, the separating hyperplane

maximizes the margin between itself and the nearest training instances. Training the

SVM requires finding a set of weights for the hyperplane function that maximize this

margin. A disadvantage of SVMs is they only handle two classes. Multi-class

classification must be done by training several SVM classifiers. This can be done by

 50

making the classification between each class and all other classes (1 vs. all), or making

classifications between each pair (1 vs. 1) of classes.

All of the classifiers here presume that an image can be represented by a single

vector of uniform length. From the earlier discussion of features, it is not clear how this

can be done. The most common approach for transforming a set of visual features into a

feature vector that can be used by a classifier is the Bag of Words (BoW) method

borrowed from text document classification. [Sivic, 2003] Under this model, the features

(such as SIFT or HOG) extracted from all of the training data are vector-quantized into a

codebook or visual vocabulary of fixed size. A visual word in the vocabulary is a region

of feature space that contains similar features extracted from training images. An image

can then be described by a frequency histogram across all of these visual words. This

histogram is referred to as the image’s Bag of Words, and is a very compact and rich

description of the image content. By describing images this way, every image has a

feature vector of uniform length that can be used for classification.

2.2.4 Previous recognition work at NRG

Previous work in object recognition from depth imagery has approached the

problem of recognition as a contour matching problem. In this work, Procrustes analysis

[Dryden, 1998] is used to obtain an optimal transformation between contours in

translation, rotation, and scale. The current work compares an extracted vertical cross-

section of an object with a library of templates generated from training data. K-means

clustering is used to group the training data into several template shapes for each object

of interest. In this template clustering step, k=3.

At test time, a vertical cross section it taken from a segmented point cluster

representing the object. The partial Procrustes distance is used as the shape similarity

 51

metric. In order to discriminate between objects of similar shape but different size (such

as the small and large cylinders shown in Figure 1-5 in Chapter 1). The partial Procrustes

distance is computed by omitting the he scale component of the Procrustes

transformation. A KNN classifier (k=1) is used to determine the class of the detected

object. Figure 2-10 shows test cross-sections together with the matched template shape.

Figure 2-10. Procrustes matching results

Table 1 shows the classifier performance presented as a confusion matrix. The

correct classification rates are reasonably high for each of the three objects in the dataset.

Table 2-1. Classifier confusion matrix

Object Hemisphere Small cyl. Large cyl.

Hemisphere 0.80 0.20 0.00

Small cyl. 0.00 1.00 0.00

Large cyl. 0.06 0.00 0.94

The results presented in Table 2-1 suggest that the shape information contained in

depth imagery can be discriminative enough for object classification even in the presence

of specular reflections and poor surface texture.

However, the contour matching approach has several drawbacks that prevent it

from being useful for recognition in a glovebox environment:

 52

 The correct classification rates are not good enough for autonomous

operation in a glovebox.

 The size of the dataset is too small to determine how well the method

would scale.

 The 3D shape is reduced to two dimensions cross section extraction,

completely discarding a significant amount of shape data.

 Uniformity in feature length is artificially achieved by

under/oversampling the original data rather than by using a feature that is

inherently uniform in length.

These drawbacks force the conclusion that Procrustes contour matching is not well suited

to the problem at hand.

2.2.5 Visual recognition discussion

This section discussed several important considerations for design of a visual

recognition system. A generic approach to recognition follows these steps:

1. Perform image segmentation

2. Extract features

3. Generate image or segment representation

4. Classifier training

This review has shown that segmentation can be done either temporally if video is

available, or spatially on individual images or frames. Temporal segmentation requires

that the background be relatively static, or that it have a small number of possible states.

Spatial segmentation requires that objects in the image are reliably discernible from the

background. Either approach could be applied to the problem of recognition in a

glovebox. The background is reasonably static, making temporal segmentation possible.

 53

The use of depth imagery and the fact that objects of interest in a glovebox lie on a

horizontal planar surface enable reliable spatial segmentation.

The above sections have also discussed many types of image features that can be

used for recognition, classification, and pose estimation. The features computed on depth

data are of the most relevant to the current work. 2D contours were shown be a poor

representation. Table 2-2 provides a comparison between the remaining point cloud

features discussed above.

Table 2-2. Point cloud feature comparison.

Feature Shape Hist. Spin Images FPFH VFH

Scale Invariance Y Y Y Y

Global/Local Global Either Local Global

Captures Pose? No No No Yes

Captures Size? No No No No

Comp. Speed Fast Med Med Med

 All of the features are scale invariant, and must be in order to be useful. Shape

histograms, Spin Images, and VFH can all be computed on a segmented cluster of points

to describe global object shape. None of the features captures object size. The global

features lose the ability to capture size in order to achieve invariance to scale. Only VFH

is capable of determining viewpoint direction from the feature itself. Spin images, FPFH,

and VFH all require estimation of surface normals, so while the features themselves

compute quickly, the requirement of an additional processing step slows them down

considerably. None of these features has all of the qualities desired in a feature for

recognition and pose estimation from depth imagery. VFH is the closest as it is the only

feature discussed here that is even capable of describing both object class and pose. It has

the added benefit of being fully implemented in PCL, and (through PCL), ROS.

 54

Selection of a classifier is somewhat difficult because different classifiers seem to

perform better under different circumstances. There is no single “best” classifier. This

problem is often addressed by trying several for a given application and choosing the one

that performs the best. To differentiate between specific object instances, K-nearest

neighbor is intuitive and shows good results across several problems. For category-level

recognition, SVM is popular, widely implemented, and also provides good results across

several applications.

2.3 RELATED WORK DISCUSSION

This section has presented literature to probabilistic modeling and visual

recognition. Several methods for encoding pose into a probabilistic representation are

available. The choice of an appropriate method is based on computational considerations

and the nature of the underlying probability distributions. For pose estimation, a

parametric representation of probability is appropriate. Filtering operations for Gaussians

are computationally simple, and the position of an object in a glovebox is well-

represented by a Gaussian. It is unlikely that a position measurement from depth data

would require more the more accurate modeling of the posterior provided by particle-

based methods.

For visual recognition, traditional texture-based features are not likely to perform

well in a glovebox environment due to poor surface texture on the objects of interest.

Shape-based features computed on point clouds are likely to yield better results. The

general approach to recognition is similar regardless of the type of imagery, but features

derived from point cloud data naturally capture different information than those derived

from appearance imagery. Several point cloud features exist, but none of them

simultaneously achieves scale invariance while capturing size, shape, and viewpoint

 55

invariance. Therefore none are well suited to simultaneous feature-based object

recognition and pose estimation, particularly if the target dataset contains objects of

similar shape but different size.

 The next chapter will present a novel feature that does possess all of the qualities

required for the problem of object recognition and pose estimation in a nuclear materials

glovebox.

 56

Chapter 3: Methods

Chapter 1 described the problem of visual recognition and pose estimation in

gloveboxes and concisely stated some important assumptions and limitations which are

restated here:

 The environment is uncluttered; objects can be readily segmented by Euclidean

clustering or temporal back-ground subtraction.

 The objects have little surface or visual texture.

 The objects may be lightly reflective such as matte-finished stainless steel.

 We wish to differentiate between objects of similar shape but different size.

 We desire real time performance.

Chapter 2 reviewed related work in deterministic and probabilistic modeling and

found that probabilistic modeling allows the uncertainty in visual measurements to be

quantified and reduced by filtering results over several frames. It also examined several

visual recognition techniques including a variety of point cloud features used for object

recognition and pose estimation. None of these features addressed all of the assumptions

and limitations above.

This chapter discusses the probabilistic object model used in the current work,

and introduces a new and novel point cloud feature that addresses some of the

shortcomings of the features discussed in Chapter 2.

3.1 PROBABILISTIC OBJECT MODEL

This section describes the probabilistic object model used in the current work, and

the statistical filtering techniques used to update the model.

 57

3.1.1 The model

An object model, Mo consists of its label, l and pose, S. The label is modeled by

the discrete probability mass function across N possible classes, Cj, where ∑ ()

 , The object pose is modeled as a continuous multivariate Gaussian. In this work, it is

assumed that all objects are vertical with respect to a planar surface, leaving 4 degrees of

freedom in the pose: xyz position and rotation about the vertical axis, θ. This assumption

reasonably assumes that objects are constrained to sitting on a planar work surface. The

object model is described concisely by equations 3-1 through 3-3 where µ is the mean of

the 4D Gaussian and Σ is the covariance.

 [] 3-1

 [() () () ()] 3-2

 [] 3-3

At any given moment, the best estimate of the object’s label is (),

and the best estimate of its 4D pose is µ.

3.1.2 Bayesian update

This posterior is updated by Bayes’ rule where () is the conditional

probability of class j given visual recognition result z:

 ()
 () ()

∑ () ()

 3-4

 To use a Bayesian update of the posterior, a sensor model is created for the visual

recognition system to determine (). This is accomplished by classifying many

images of each class to generate the prior probability distributions. For previously

unobserved objects, a uniform prior is assumed across all possible classes.

In the first observed image, the mean of the Gaussian is set to the measured

position and the covariance is set very high. At each subsequent frame, the pose estimate

 58

is updated by filtering the sensor measurement into the current Gaussian estimate of the

object’s pose by applying Equation 3-4.

While the model formulation permits the pose estimate to be updated by Kalman

filtering, we assume a quasi-static object pose and omit the prediction step of the Kalman

filter algorithm. This assumption is reasonable in our problem domain, where by design

nothing moves rapidly. Update of the modeled pose proceeds as follows:

 (

)
 3-5

 () 3-6

 () 3-7

Equation 3-5 shows the computation of the Kalman gain, the value of which

describes the relative contributions of the previous state estimate and the sensor

measurement to the new state estimate. Ct is a matrix that describes the sensor model and

Qt is the covariance of the sensor noise distribution. These parameters will be determined

by measuring object poses with the methods described against ground truth positions.

Equations 3-6 and 3-7 compute the new mean and covariance of the object’s position

from the previous estimates and the Kalman gain.

3.1.2 Sensor model

In order to use equations 3-5 through 3-7, a sensor model for the visual

recognition system must be in place. The sensor model requires three parameters:

 (), The probability of obtaining recognition result z given Class Cj

 , the pose sensor model.

 , the pose sensor noise covariance.

For each class, () is estimated by classifying several instances of the class

and determining the fraction of instances yielding each possible result. For the pose

 59

sensor model, it is assumed that the true pose is measured by the system, subject to noise.

For the noise model, it is assumed that the covariance is independent:

[

]

 3-8

 We then compute the variance in each dimension independently. This is

important because , the rotation about the vertical axis, is determined in the

classification step, whereas the xyz position is determined directly from range data.

Therefore we expect far more noise in the rotational component of the pose. Each of the

four variances is computed by classifying tens of thousands of images. This completes

the sensor model necessary to use equations 3-5 through 3-7 to update the model.

3.2 THE CYLINDRICAL PROJECTION HISTOGRAM

This section presents the Cylindrical Projection Histogram (CPH), a new and

novel feature suitable for both recognition and pose estimation under the assumptions and

limitations laid out in Chapter 1.

Chapter 2 explored several point cloud features that can be used for object

recognition. Of those, the VFH feature is most suitable given the limitations and

assumptions above. It requires an uncluttered and easily segmented environment, and

does not require significant image texture. However, it does not directly capture object

size without sacrificing its scale invariance, and the pre-processing required for surface

normal estimation may exclude its use when real-time performance is desired.

3.2.1 CPH shape histogram

The CPH feature itself is most similar to the shape histograms presented by

Kazhdan [2003], although the target application is closer to that of VFH. Like those

 60

features, CPH features are computed on clusters of points that are considered to belong to

a single object. The approach is to project each point in the cluster outward from the

cluster’s centroid and bin the points as they pass through the surface of a cylinder of

arbitrary radius. The resulting histogram captures the variation in point density as the

cluster is viewed from different angles. The orientation of the cylinder into which the

points are projected is fixed relative to the camera, meaning the baseline histogram is not

invariant to viewpoint direction or object scale. The lack of invariance to viewpoint

direction allows object pose to be estimated from the feature. The lack of scale invariance

is an undesirable property, and is addressed by a modification to the baseline histogram

that achieves scale invariance while preserving size information. This modification is

discussed in Section 3.2.2.

The projection cylinder’s height is equal to the vertical extent of the point cluster

on which the feature is computed. Its vertical axis is oriented vertically with respect to the

camera, normal to the viewing angle and intersecting the centroid of the point cloud. This

orientation of the projection cylinder is shown in Figure 3-1.

Figure 3-1. Orientation of projection cylinder

 61

To compute the histogram, the projection cylinder’s surface is quantized into M

vertical bins and N azimuthal bins. Every point in the cluster is then projected into the

cylinder and the bin into which it is projected is incremented by 1. The result is a 2D

histogram that represents the spatial distribution of points in the cluster Figure 3-2 shows

a conceptual example of this process where M=5 and N=8.

Figure 3-2. Example of histogram construction.

Another similarity of the CPH histogram to those constructed by Kazhdan’s shape

histograms and spin images in that all three features collapse points in 3D space into a 2D

representation. Each feature performs the collapse in θ,r,h cylindrical coordinates, but the

features vary in the axis along which they collapse the cluster. Assuming a global spin

image where the support width and support angle include all of the points on a cluster, a

spin image collapses all the points azimuthally, and bins them according to their r and h

components. Kazhdan’s spider-web shape histogram collapses the points vertically and

bins them according to their θ and r components. CPH projects the points radially and

 62

bins them according to their θ and h components. For a cluster of points the CPH

histogram is constructed as follows:

1. Start with an empty histogram vector:

 [] 3-9

2. Compute the centroid, c of the point cloud.

[

]

[

 () ()

 () ()

 () ()

] 3-10

3. For each point , compute vertical (y) and azimuthal (θ) bins and

increment the correct bin in h.

 [
 ()

(() ()) ⁄
] 3-11

 [
 ()

 ⁄
] 3-12

 +1 3-13

4. Terminate when all points have been binned.

An example of a histogram computed from the algorithm above is shown in

Figure 3-3. The histogram in Figure 3-3 provides a unique signature for a specific view of

a single object instance. However, because the total area of the histogram is proportional

to the number of points in the cloud, it is not invariant to image scale.

 63

Figure 3-3. Baseline histogram for CPH feature.

3.2.2 Spatial Extents

The histogram described in the previous section is not invariant to image scale. If

an object is larger or closer to the camera, there will be more points in the resulting

cluster. This means that the cluster feature cannot differentiate a larger object from one

that is just closer to the camera. We desire a feature that is invariant to image scale, but

not invariant to the object size. Therefore it is insufficient to normalize the histogram

because this would make the feature invariant to both image scale and object size.

To accomplish scale invariance while retaining information about object size, two

modifications are made to the baseline CPH feature.

1. Compute the spatial extents, s, of the cluster in Cartesian Space:

[

] [

 () ()

 () ()

 () ()

] 3-14

2. Rescale the shape histogram, h, such that the highest peak is equal in

magnitude to the largest spatial extent:

 ()

 ()
 3-15

 64

3. Append the spatial extents, s, to the end of the rescaled histogram, h*.

The result is the full CPH feature.:

 [
] 3-16

The full CPH feature histogram is illustrated in Figure 3-4. The histogram in

Figure 3-4 is computed on the same cluster as the histogram depicted in Figure 3-3. For

both of these features, M=5 and N=72. The modifications to the baseline shape histogram

make the feature invariant to image scale, but allow the vector magnitude to vary

between objects of similar shape but different size. It also provides additional

discriminative information through the spatial extents that is useful for both recognition

and pose estimation.

Figure 3-4. Full CPH feature on a coffee cup, showing the addition of spatial extents and

rescaling.

 65

Comparing Figure 3-3 and Figure 3-4, it appears that the histogram has been

rescaled by about a factor of 10. This is a result of the largest spatial extent being a little

more than 10 cm and is purely coincidental. Adding the spatial extents directly encodes

information about the actual object size (not scale) into the feature. Rescaling the

histogram achieves scale invariance because the spatial extents are computed in physical

space which is always invariant to image scale. The resulting feature vector is of

dimension MxN+3. The vector’s direction in this hyperspace is determined by the

object’s shape, and its magnitude is determined by the object’s size. This quality is

demonstrated clearly in Figure 3-5.

Figure 3-5. Comparison of CPH features for objects of different sizes. (a) Large and

medium cans. (b) Large and small bowls.

 66

3.2.3 Comparison to VFH

Figure 3-6 demonstrates some important differences between the VFH and CPH

features. The first clear trend is that the VFH feature tends to be much sparser with many

bins having a zero value. The sparseness is troubling because there are many bins that

carry no information about the object. The CPH features also have some empty bins, the

problem is much less pronounced, with the exception of the pliers.

The peaks in the VFH feature are narrow and tall. While several tall peaks are

preferable to an overly uniform distribution, if they are too narrow, it will be difficult to

match any clusters to each other because a shift of the peaks by only a bin or two will

place the histograms too far apart in feature space. This could be a real problem in the

presence of noise. The CPH peaks on the other hand, are tall and discriminative without

being too narrow. Most of the peaks have what appears to be a normal statistical

distribution, which indicates that the feature should hold up well under noisy conditions.

Also, the VFH peaks appear to fall around similar bins regardless of the object.

There are four distinct peaks in similar locations among each of the objects. This calls

their discriminative ability into question. Ideally, different objects should have very

different feature signatures. The VFH features definitely have identifiable similarities.

The CPH features, on the other hand, are much more distinct between objects.

 67

Figure 3-6. Samples of features extracted on different objects.

3.3 DISCUSSION OF METHODS

The object model defined in this chapter is an important advance in NRG’s ability

to perform manipulation in unstructured environments. By having access to quantitative

uncertainty information, the control system and the human operator can make informed

decisions about the appropriate level of autonomy for tasks that involve contact

interaction. The probabilistic object model also permits reduction in uncertainty by

combining multiple measurements though Bayesian filtering. In the current work,

 68

multiple measurements from a single sensor are filtered frame-by-frame. However, the

model presented in this chapter paves the way for fusion of information from multiple

sensors in the future.

The CPH feature presented in this chapter is a novel approach to the idea of a

shape histogram for point cloud cluster recognition. It captures both object shape and size

while maintaining invariance to image scale. Chapter 5 presents experiments that

demonstrate the discriminative power of CPH and also provides a side-by-side

comparison of the performance of CPH, and the VFH feature reviewed in Chapter 2.

 69

Chapter 4: System Implementation

The previous chapter discussed a probabilistic object model and a novel point

cloud feature that can be used for cluster recognition. This chapter describes how these

methods are implemented and integrated into a complete object recognition and pose

estimation system. This system is trained and tested on two different datasets under

varying noise conditions. Results are provided for CPH-based recognition, and VFH-

based results are provided as a basis of comparison.

4.1 SYSTEM DESCRIPTION

Some of the experiments done in Chapter 5 are performed on datasets that have

been stored on disk and some are done on “live” data from a vision sensor. The

recognition systems for these two types of experiments are nearly identical, but they do

have some subtle and important differences. This chapter presents the overall recognition

system and also discusses some of the slight differences in implementation between using

live vs pre-collected data.

4.1.1 Classifier training

Training refers to the process of learning different classes from a labeled set of

images. In this work, we use a K nearest neighbor (KNN) classifier with K=1. This

classifier assigns the class of the nearest training sample in feature space to the input

image. In this work, each view of an object is considered to be its own class for

classification purposes, so the input image gets assigned the same label and pose of the

nearest training sample in feature space. We use a fast implementation of KNN called the

Fast Library for Approximate Nearest Neigbors (FLANN) [Muja, 2009]. FLANN

requires that the training set be organized into a k-d tree, so training proceeds in two

steps:

 70

1. Feature extraction: The point cloud feature must be computed for each

image in the training set and the features written to disk. Because there

are several thousand training images, this step can take some time and

is performed offline.

2. K-d tree construction: K-d tree construction is computationally fast

and is performed at runtime prior to any classification. Performing this

step at runtime allows the system operator to select which objects the

classifier should consider at runtime, allowing fast customization of

the recognition system to a particular task.

Once the k-d tree is built, the classifier is ready to accept input images. At test

time, input images are run through a recognition pipeline to obtain recognition and pose

estimation results.

4.1.2 Recognition pipeline

Between image acquisition and recognition result there is a serial sequence of

processing steps referred to as an image pipeline. Figure 4-1 shows the image pipeline

used for the experiments in this chapter.

Figure 4-1. Recognition pipeline showing the difference between the “live” and pre-

collected preprocessing steps.

 71

Plane model segmentation

The recognition pipeline uses Rusu’s Euclidean clustering scheme, previously

discussed in Chapter 2. One requirement of this algorithm is that the objects of interest be

separated from each other by some threshold distance. In practice, most objects of

interest will lie on a common surface (such as the floor of a glovebox). If the common

surface is not removed from the point cloud prior to Euclidean clustering, the algorithm

will find a single cluster that consists of the surface and anything adjoining it. For this

reason, it is necessary to estimate the dominant planar surface in the input image and

remove it from downstream processing.

This plane model segmentation is done by RAndom SAmple Consensus

(RANSAC). RANSAC is an iterative algorithm that randomly selects sets of three points

and fits a plane to those points and then searches to see how many of the remaining

points agree fit the model within some threshold. This is repeated iteratively and the

model with the best consensus is retained. The algorithm runs as follows:

 Begin with an empty list of model inliers, I, and a minimum number of points

required for consensus, d.

 For k iterations,

o Randomly select three points, fit a planar model, M to them, and add them

to I.

o For each point , If the point lies within distance t of the model, add

 to I.

o If the number of points in :

 Re-fit the planar model to all points in I.

 Compute fit quality metric, q.

 If :

 72

 End algorithm

After the RANSAC fit, all points lying within a threshold distance of the planar

model are removed from the image. The remaining points are sent downstream to the

Euclidean clustering algorithm.

Euclidean Clustering

The recognition pipeline used in this work uses Rusu’s Euclidean clustering

algorithm presented in section 2.2.1. This is a region growing algorithm that looks for

sets of points that are grouped in Euclidean space. Each cluster is considered to belong to

the same object. Figure 4-2 shows an example of the plane model segmentation and

Euclidean clustering steps in the pipeline.

Figure 4-2. Results of plane model segmentation and Euclidean clustering. (left) Raw

depth image inside glovebox. (right) Result after removing the dominant

planar surface and clustering.

The image in Figure 4-2 was captured in a cluttered environment. The glovebox is

typically not in this state of clutter, but this image was used to demonstrate the

 73

capabilities and limitations of the plane model segmentation and Euclidean clustering

steps in the recognition pipeline. Several objects are correctly segmented out of the

image, including a glove port that is almost indistinguishable in the original image (the

yellow circle). However, the importance of the light clutter assumption is demonstrated

by the white segment in the left image of Figure 4-2. The white segment is a box that

appears to have a strange “tail”. That “tail”, is a loose glove that is laying inside the

glovebox and makes contact with the box. This type of segmentation failure would

almost certainly result in a failure of the system to recognize the box.

Another possible failure in Figure 4-2 is the large cylindrical object which is an

open container. The segmentation splits the container into two clusters: one representing

the outside front surface (light green), and another representing the inside back surface

(light blue). This type of failure may, however, not lead to a recognition failure. Because

the algorithm is trained on actual camera images segmented by the same algorithm, It is

likely that one of these two clusters will still get matched correctly at test time.

Feature Extraction

Every cluster found by the Euclidean clustering step is passed downstream in the

pipeline for recognition. The previous steps are pre-processing steps that obtain the set of

clusters that the system will attempt to recognize. The first step in the actual recognition

portion of the pipeline is to compute the feature to be used for recognition. In the

experiments in the next Chapter, the feature is either a VFH feature or a CPH feature. For

a complete description of the features and how they are computed, refer to Chapters 2 and

3 respectively.

 74

Classifier

Once features have been extracted on each of the point clusters, the feature is

matched to its nearest neighbor in feature space. The classifier uses the chi-square

distance between the input feature ft, and each of training features fr.

 √∑

()

 4-1

Where cj denotes the average fraction of the histogram contained in bin j across the entire

training set. The classifier implementation used in these experiments is the FLANN

library for approximate nearest neighbors [Muja, 2009].

 The classifier returns the file name where the feature is stored on disk. The

object’s label and rotational pose are encoded into the filename and are extracted when

the nearest neighbor is located. The file name format is

<label>_<pose>.<file_ext>. The label and pose are then used to update the

probabilistic object model as discussed in section 3.1.2.

Offline data pipeline

The recognition system is designed for “live” imagery collected in real time.

However, to validate the system and to collect statistics for the Bayesian model update, it

is necessary to classify a large number of images. In the current work, around 125,000

images are classified for system validation and statistics collection. The advantage of

using pre-collected data is that it allows the use of a publicly available dataset.This

permits meaningful validation and peer review because results can be validated and

examined by anyone on exactly the same data. For these reasons, we provide a

description of an alternative pre-processing pipeline for use with data that have been

collected offline. These steps are shown in green in Figure 4-1.

 75

The biggest difference between the “live” and “pre-collected” pipelines is that we

assume that offline data has already been properly segmented and that we are working

with only a single point cluster. The plane model segmentation and Euclidean clustering

steps are therefore omitted. One advantage of using spatial segmentation as opposed to

temporal background subtraction is that it can be done on individual images. If a dataset

were provided that was not already segmented, the plane model segmentation and

Euclidean clustering could be re-added to the pipeline without the need to develop a

temporal background model.

One challenge that arises when using multi-view datasets is that typically only

one image is provided for each view. The dataset would grow unnecessarily large if tens

or hundreds of images were collected at each view in the dataset. This creates a challenge

when trying to separate samples into a training set and a test set. We cannot consider our

results valid if we train and test on the same data, but any division of the data into

training and testing groups reduces the pose resolution in the training set. Also, testing

would occur only on views that aren’t present in the training set. This is not an accurate

representation of the live system where you would train on all 120 views and would fully

expect to find similar views in the test set.

For example, assume a data set contains 120 images of an object collected at three

degree intervals. If 80 images are reserved for training, the resolution of the classifier

increases from 3 to 4.5 degrees. Also, the test images will be at least three degrees away

from the nearest training instance and thus the accuracy of the pose estimation will suffer

in a completely artificial way. To address this issue, test images are artificially generated

by adding Gaussian noise to the z (depth) channel of the training images. In addition to

providing a more realisitic test, this also allows the robustness of the system to noise to

be evaluated. Because the target application involves objects with surface properties that

 76

are likely to be noisy due to variations in reflectivity and infrared emittance, robustness to

noise is an important consideration.

4.3 SOFTWARE IMPLEMENTATION

The previous section discussed the recognition system at a high\ level to provide

an overview of the pipeline and the basic methodology. This section gets into some finer

implementation details and covers how the system is implemented in the Point Cloud

Library (PCL), and the Robot Operating System (ROS). The high-level ROS

implementation is covered first, as it closely reflects the pipeline discussed above.

Following the system overview, each of the ROS nodes is discussed in more detail,

including how various elements of PCL are used to implement the various steps of the

pipeline discussed in 4.1.2.

Figure 4-3 shows the ROS nodes in the recognition system and how they interact

with each other. Black arrows indicate topic subscriptions and point from the publisher to

the subscriber. Green arrows indicate that during object recognition, at least one service

call is made between nodes. The arrow points from the client node to the server node. All

of the service calls use custom service definitions. The .msg and .srv files are provided in

Appendix A. It may be worthwhile to review the basic ROS ideas and terminology from

Chapter 1.

Figure 4-3. Graph of the ROS recognition system implementation.

 77

The /calling_node is any node uses the recognition system. In practice,

/calling_node will be a robot application that requires object recognition or a node

generated from the command line with rosservice call. The remaining nodes and

their services are discussed below. Particular attention is given to how PCL classes and

functions are used to implement the pipeline discussed in the previous section. For

additional implementation detail, the code used to generate the node executables is

provided in Appendix A.

openni_kinect

The openni_kinect node is shown as a single node in Figure 4-4 for clarity. In

reality is a large system of nodes created by the ROS launch file openni.launch from

the openni_launch stack in ROS Fuerte. The openni_launch nodes publish the point cloud

data and rgb image data from the Kinect on several topics. The topic to which the

recognition_main node subscribes is /camera/depth_registered/points. This topic is

published as a sensor_msgs::PointCloud2 message, the standard format for point

cloud data in ROS.

recognition_main

The main node that manages the recognition system is called recognition_main.

The main node offers two services, /live_test, and /run_test. The services use

custom defined service calls. Table 4-1 shows each node from Figure 4-4, and explains

the service definitions in detail.

The /live_test service is called to perform a series of tests to evaluate the

classifier’s performance on live data from the Kinect. The service request contains the

following information:

 The ground truth label of the object being tested

 78

 The feature to use for classification (VFH or CPH)

 The number of views to examine

 The number of images to take at each view

 The service response provides performance data from the test. It contains the

following information:

 The raw accuracy of the classifier

 The average standard error in the pose estimate

 The filtered accuracy of the classifier

 The filtered error of the pose estimate

For each image at each view, the segmentation node performs plane model

segmentation and Euclidean clustering as described in Section 4.1.2. The service request

includes a sensor_msgs::PointCloud2 array that contains each cluster found in

the scene. Each of these clusters is passed in a service request to either the

cph_recognition_node or vfh_recognition node depending upon the desired feature type.

The recognition result is passed back in the service response. The response consists of the

object label and rotational pose of the nearest training sample in feature space. The

results are filtered frame over frame with the current label and pose estimate distributions

stored within the recognition_main node.

The /run_test service is used for testing on offline datasets. It is used to

recognize many images at one time and return aggregated results. The service request

consists of the name of the ground truth object, the feature to use for recognition (VFH or

CPH), the level of noise to use in the test, and the number of noisy samples that should be

run for each image in the original test set. The service response contains the exact same

information as it did for the /live_test service. The raw results from the

/run_test service are used to collect statistics for the Bayesian filters and to

 79

characterize the classifer performance. Therefore until the statistics have been collected,

the /run_test filtered results will not be meaningful.

When /run_test is called, the test images are loaded from .pcd files stored on

disk. Recognition and statistical filtering are done in exactly the same manner as in the

/live_test service, except the clusters loaded from file are passed directly to

cph_recognition_node or vfh_recognition node without first calling the segmentation

service on the segmentation node. This pre-processing is unnecessary since the point

clouds stored on disk are already segmented.

All of the statistical filtering happens in the recognition_main node. To do the

statistical filtering, the node needs P(C|z) for each class. This data is stored in a table

where entry (m,n) is the a priori probability that an unknown object is of class m given

recognition result n. The node also needs the per-class pose standard deviations. These

are stored in a separate table with a single column. All of this data is loaded at runtime

from a file called classes.list. Each object in the training set must have a row entry in

classes.list. Each row contains the object name, the pose standard deviation, and the

P(C|z) values. An example of a classes.list file is provided in Appendix B.

It is not uncommon that some entries in P(C|z) are zero when the statistics are

collected. However, zeros in P(C|z) can cause unnecessary failures in the improbable

event that a misclassification occurs that never occurred during statistics collection. This

is because propagating a zero through the Bayesian update may set the probability of the

true class to zero. When this happens, no amount of additional evidence for the true class

will ever raise the probability back above zero. To prevent this, if any entry in P(C|z) is

less than .001, it is replaced with .001. This assures that very rare individual failures

don’t cause complete failure of the algorithm.

 80

segmentation

The segmentation node offers a single service. The service request contains a

sensor_msgs::PointCloud2 representing an entire scene in which objects of

interest rest on a common planar surface. The service response is a

sensor_msgs::PointCloud2 array in which each entry is a point cluster belonging

to a single object. The service request also takes several filter parameter arguments that

are detailed in Table 4-1. These parameters allow a region of space to be defined outside

of which no clusters are processed. This prevents additional unnecessary processing on

clusters that are located outside the region of interest. The segmentation node

implementation relies heavily on functions from PCL. When the segmentation service is

called, the scene is processed as follows:

 The PointCloud2 object from the service request is converted from a ROS

sensor_msgs::PointCloud2 into a PCL

pcl::PointCloud<PointXYZ> using the PCL function

pcl::fromROSMsg().

 The scene is filtered using a voxel grid filter with a leaf size of 1 mm

(pcl::VoxelGrid<pcl::PointXYZ>).This divides space into 1

mm cubic regions and allows only a single point per region. In the current

work, where only a single sensor is used and the distance from the camera

is constrained by the glovebox, this filter is probably unnecessary. With

the small leaf size, few if any points are actually filtered. The filter is

retained however, because if an additional sensor were used, the clouds

would grow artificially dense where the images overlap.

 All points out of the region of interest defined in the service request are

discarded.

 81

 Plane model segmentation is performed using the RANSAC algorithm

described in 4.1.2 (pcl::SACSegmentation<pcl::PointXYZ>)

The distance threshold, t is 2 cm and the maximum number of iterations is

100.

 Euclidean segmentation is performed using Rusu’s method described in

2.2.1. The method is implemented in PCL as

pcl::EuclideanClusterExtraction<pcl::PointXYZ>. The

threshold distance dth

is 2 cm. The minimum and maximum number of

points per cluster are set according to the segmentation service request.

 The resulting clusters are of type

pcl::PointCloud<pcl::PointXYZ>. They are converted to

sensor_msgs::PointCloud2 types using pcl::toROSMsg()

and pushed onto a vector of point cluster that is return through the service

response.

vfh_recognition and cph_recognition

The vfh_recognition node and the cph_recognition nodes are nearly identical in

their implementation and function. Each node loads the training samples at runtime.

Recall that the features are extracted from the training samples offline. The node need

only load the pre-computed features. This operation takes no perceivable time when the

node is created.

Each node offers a single service, either /vfh_recognition or

/cph_recognition. Each of these services takes the same service definition. The

point cluster is passed in as a sensor_msgs::PointCloud2, and a maximum chi-

square distance threshold is passed in as well. If no training sample lies within this value,

 82

no result is returned. The two values in the service response are a string with the object

label and a custom-defined pose message that contains the 4D pose. When the

recognition service is called, processing proceeds as follows:

 The centroid of the cluster is computed with

pcl::compute3DCentroid(). The centroid x,y, and z values are

stored in the pose of the service response.

 In the vfh_recognition_node only, the surface normals are estimated using

pcl::NormalEstimation<pcl::PointXYZ>.

 The feature (either VFH or CPH) is extracted. The VFH feature is

implemented in PCL as pcl::VFHEstimation<pcl::PointXYZ,

pcl::Normal, pcl::VFHSignature308>. The feature is passed

to the FLANN nearest-neighbor classifier, which returns the filename of

the nearest training feature.

 The filename is parsed to obtain the object label and rotational pose which

are written to the service response.

The code that implements all of the above nodes was developed for the current

work and is available on the ROS-Industrial repository and in Appendix A. The CPH

implementation is designed to be a direct replacement in any code that currently uses

another PCL feature type. The functional conventions are retained with functions like

setInputCloud() and compute(), and the CPH object works on PCL PointCloud

data types. The CPH feature is parameterized by the number of bins in the vertical and

azimuthal directions, and the CPH class constructor allows these to be customized.

However, 5 vertical bins and 72 azimuthal bins are used throughout. These choices give

high resolution in the angular pose and keep the length of the feature similar to VFH for

valid comparison.

 83

Table 4-1. Nodes and the services they offer.

Node
Services
Offered Description Service definition

recognition_main run_data
Performs recognition and
collects statistics on offline
datasets

run_data.srv

 get_object_list
Processes a scene and
returns a list of recognized
objects

nrg_recognition.srv

segmentation segmentation

Performs plane model
segmentation and
Euclidean clustering.
Returns list of object
clusters

segmentation.srv

vfh_recognition_node vfh_recognition
Recognizes an object
cluster and estimates the
pose with VFH features.

recognition.srv

cph_recognition_node cph_recognition
Recognizes an object
cluster and estimates the
pose with CPH features.

recognition.srv

4.3 IMPLEMENTATION REVIEW AND DISCUSSION

This chapter provided an overview of the image processing pipline implemented

in the current work. Section 4.2 described how the pipeline takes a point cloud of an

entire scene, locates objects through spatial filtering and clustering, and then recognizes

objects and estimates their pose by comparing them to known training samples by

nearest-neighbor matching. The pipeline makes heavy use of PCL functions for type

conversions, filtering operations, and segmentation. This is done in a modular way, so

that the methods and algorithms within the pipeline are interchangeable for alternatives.

This makes the implementation flexible, allowing for fast integration of future research

efforts.

 84

The modularity is enhanced by the use of ROS for the high level implementation.

The different portions of the pipeline are implemented as individual ROS nodes. Not only

does this make the use of alternative methods easy, it also assures a fair comparison

between CPH and VFH by ensuring that only the actual recognition portion of the

pipeline changes without inadvertently making other small changes that may affect the

overall results. ROS integration also allows the recognition system to plug seamlessly

into a robot’s control system for the target application of unstructured robotic

manipulation.

 85

Chapter 5: Experiments

Chapters 3 and 4 describe two variations on a complete object recognition and

pose estimation methodology. The two variations are identical except for the actual

feature used for training and classification. The first feature is the Viewpoint Feature

Histogram (VFH). VFH is a surface normal based feature built into PCL that is

specifically designed for simultaneous recognition and pose estimation. The second

feature is the Cylindrical Projection Histogram (CPH). CPH is novel feature also

specifically developed for simultaneous recognition and pose estimation. CPH is a

fundamentally different type of feature than VFH. Whereas VFH is a histogram built

from surface properties, CPH is based on a shape histogram derived directly from the

spatial point distribution. This chapter presents experimental results that demonstrate the

superiority of CPH in the target application.

Chapters 3 and 4 also describe a method for using probabilistic modeling

techniques to reduce uncertainty in the object model by statistically combining several

measurements through Bayesian filtering. The modeling and filtering methods are

independent of the type of feature used for recognition and pose estimation. However the

performance of the statistical update depends heavily on the quality of the classifier’s

statistics. For example, in the case of a completely random classifier, no amount of

statistical filtering will improve the recognition rate. Likewise, in the case of a perfect

classifier, no amount of statistical filtering will improve the recognition rate above 100%.

Therefore the modeling results presented in this chapter are presented for each of the two

classifier variations (VFH and CPH) independently. The experiments presented in this

chapter show that probabilistic modeling improves overall performance, but the

improvement is marginal.

 86

The recognition system presented in this document addresses the problem of

instance-level recognition. This problem assumes that all members of an object class

have identical appearance. The majority of the experimental results here are instance-

level results However, to fully exercise the CPH feature, its performance is evaluated on

the category-level problem where the assumption of identical appearance is removed. The

results show that VFH does not perform well at the category level. CPH shows some

promise at the category level, but requires further investigation.

5.1 DATASETS

The experiments in this chapter are performed on two datasets. The first is a

subset of images from the RGB-D dataset [Lai, 2010]. The second dataset was collected

as part of the current research and is intended to be representative of objects typically

found inside gloveboxes for nuclear materials processing at Los Alamos National

Laboratory (LANL). Each is discussed in detail below. The subset of the Lai dataset will

be referred to as the RGB-D dataset, and glovebox-specific dataset will be referred to as

the LANL dataset for the remainder of this document.

5.1.1 RGB-D dataset

The complete RGB-D dataset developed by Lai et al. contains 300 instances of

objects in 51 categories. For each object, segmented color and depth images are provided

in the form of short 30 Hz videos of the objects rotating through 360 degrees on a

turntable. Figure 5-1 shows some example images form the RGB-D dataset. The current

work uses only a subset of this data for two reasons.

1. Classifier performance depends on dataset size [Deng, 2010]. Because the number

of objects in a glovebox task is much smaller than the 300, we limit the number of

objects to a similar size as the LANL dataset.

 87

2. The images in the complete RGB-D dataset are not annotated with the pose at

collection time. The pose estimation methodology used in the pipeline from

Chapter 4 requires that every training image be annotated with the pose. This is a

laborious process to do after the fact.

Seven instances from the full RGB-D dataset were selected for inclusion in our

RGB-D dataset. These objects were selected because they were the most geometrically

similar to objects in the LANL database. Only the depth imagery is used; the RGB

imagery is discarded. Figure 5-2 shows the seven objects included in our RGB-D dataset.

Only images the leftmost object in Figure 5-2 are used for all instance-level experiments.

The other objects in Figure 5-2 are used only for the category-level experiments.

Figure 5-1. Example images from Lai’s RGB-D dataset [2011].

 88

Figure 5-2. Objects from the RGB-D dataset used for the experiments in this chapter. (a)

Bowl. (b) Camera. (c) Coffee mug. (d) Dry battery. (e) Flashlight. (f) Food

jar. (g) Pliers.

These seven objects were selected because most of them have little surface texture

and are therefore representative of objects in our target application. Because we assume

that objects can be readily segmented from the scene, we use the segmented depth images

provided by Lai et al. For category-level recognition, we use the same seven object

classes, but we use all available instances and test by Leave-One-Out Cross Validation

(LOO-CV).

Because we would like to characterize the pose estimation performance, the

training samples must be annotated with pose information. While Lai’s RGB-D dataset

provides images from around 600 different viewpoints per instance, it does not provide

any ground truth information about the pose of the objects relative to the camera. The

method of acquisition is to capture frames from video while the object is rotated on a

turntable through approximately one rotation. This is done at three different elevation

 89

angles, although we use only a single elevation. To estimate the ground truth poses in the

dataset, we manually annotate the pose of each frame by the following procedure.

1. Manually locate frame numbers corresponding to 0°, 45°, 90°, 135°, 180°, 225°,

270°, and 315°

2. Linearly interpolate frame numbers between the manually annotated frames in

step 1.

This is done only on the images from the lowest elevation because our pose

estimation is limited to a single rotational degree of freedom. The complete RGB-D

dataset can be obtained from the authors of [Lai, 2011]..

5.1.2 LANL dataset

To evaluate our methods on a relevant dataset, we have created our own pose-

annotated dataset for LANL glovebox applications. The objects in the dataset were

determined through discussions with engineers at Los Alamos National Laboratory. Each

object is an item that a flexible glovebox automation system may need to interact with. In

addition to testing our methods on relevant objects, this dataset provides some

challenging objects for any recognition algorithm. Several of the objects have almost no

texture and are made from matte-finished steel which is moderately reflective. This data

is therefore useful to anyone wishing to recognize these types of objects, so the dataset

has been made publicly available by contacting the author

(brian.erick.oneil@gmail.com). Figure 5-3 shows the objects in the dataset.

 90

Figure 5-3. Objects in the LANL dataset. (a) broom. (b) t-fitting. (c) lathe tool. (d) large

can. (e) large bowl. (f) medium can. (g) scale. (h) small bowl. (i) small can.

(j) sealing tape.

Figure 5-4 shows examples of data collected for the LANL dataset. The clusters

shown in Figure 5-4 indicate the difficulty of the objects in the dataset. The shiny

metallic objects almost all give noisy and incomplete point clusters. The incompleteness

can be explained in the following way. Where there are highlights on the objects due to

specularity, the depth imager does not register points. This leads to discontinuities in the

point cluster that interfere with the Euclidean segmentation algorithm. Instead of a single

cluster representing the entire object, parts of the object end up in separate clusters.

Because the recognition system requires a one-to-one object/cluster correspondence,

points detected on the object are discarded as belonging to different objects.

The T-fitting and the small can are missing large patches due to missing data on

some reflective surfaces. However, the missing data is reasonably consistent, so

reasonable recognition performance can still be achieved. As long as clusters collected at

test time resemble those collected for training, correct recognitions are possible even if

with incomplete data.

 91

Figure 5-4. Samples of CPH features extracted on different objects.

 92

Many of the same observations can be made in Figure 4-2 can also be made in

this data. The VFH histograms tend to be sparse and clustered around a few distinct peaks

that do not vary much between objects. The CPH histograms are well populated, with

distinct structures that vary among the objects.

In order to facilitate the easy in situ collection of pose-annoated object images, we

assembled a custom data collection system. The data collection hardware is a servo-

driven pan/tilt table. The table’s servos are controlled by an Arduino microcontroller. The

table is shown in Figure 5-5. Full specifications on the data collection system and the

code required to run the system are provided in Appendix C.

Figure 5-5. Servo-driven pan/tilt table for data collection

The data collection software is implemented in ROS. A lightweight version of the

base ROS libraries called rosserial_arduino is installed on the Arduino microcontroller.

A full ROS system runs on a Linux PC that includes a rosserial_python node that looks

for any nodes running on serial-connected devices and includes those nodes in the ROS

 93

system running on the PC. Figure 5-6 is a graphical depiction of the ROS data collection

software.

Figure 5-6. ROS data collection software diagram.

The ROS system allows easy integration of image acquisition and analysis

software with the pan/tilt control software. The rosserial_arduino node subscribes to pan

and tilt command topics. The main data collection node can then set the servo position

prior to collecting an image. This allows the system to automatically collect multi-

viewpoint data as specified by user-supplied parameters. The following is a description of

each node in the data collection system. The .srv definition files for the service requests

are provided in Appendix A.

openni_kinect

The openni_kinect node is the same set of nodes used in the recognition pipeline.

It publishes the point cloud data for the entire scene.

 94

rosserial_arduino

The rosserial_arduino node runs the rosserial libraries for arduino. It subscribes to

the pan/tilt servo command topics given in degrees. When new commands are received, it

converts them to pulse width commands and controls the two servo motors on the pan/tilt

mechanism to achieve the desired object view.

data_collect_main

The data_collect_main node accepts a service request from the calling node. The

request contains the label associated with the object on the pan/tilt table, and the angular

resolution desired in the training set. When a training service request is made,

data_collect_main does the following:

 For each requested viewpoint:

o Publish servo commands to the pan/tilt mechanism.

o Pass most recent depth image from Kinect to the feature_extraction node

for processing.

 End processing when all viewpoint images complete.

feature_extraction

The feature_extraction node accepts a service request from the data_collect_main

node. The entire scene from the Kinect is passed in the service request. The feature

extraction node performs plane model segmentation and Euclidean cluster extraction

within a small bounding box around the pan/tilt table to isolate the portion of the scene

that belongs to the training object. This cluster is written to disk as a .pcd file following

the naming convention in 4.1.2. It then extracts a VFH feature and a CPH feature and

writes these to file as well. The original point cloud is not necessary for the recognition

 95

algorithm. However, retention of the raw data allows fair comparison of future methods,

and the raw clouds can be used when visualizing data.

5.2 RECOGNITION AND POSE ESTIMATION EXPERIMENTS

Recognition, pose estimation, and probabilistic filtering experiments are

performed on both datasets. There is one significant difference between the experiments

performed on the RGB-D dataset and those performed on the LANL dataset. For the

RGB-D dataset, the images used in the test phase are the same as the images used in the

training phase, but Gaussian noise added to the z channel of each point in the cluster.

Two different noise levels are tested. For the LANL dataset, the imaging system and the

original objects are available for live testing. Therefore no artificial noise is added;

frames are grabbed directly from the Kinect for processing.

PCL is a popular package in for processing depth images, and its inclusion in

ROS makes it the de facto standard for point cloud processing in robotics research. For

this reason, CPH is compared side-by-side with VFH, the PCL feature that is designed to

address the same problem. The experiments presented in this section address the

following questions:

 Recognition performance

o Rate: What fraction of images are correctly classified?

o Confusion: How do the failures vary among classes?

o Receiver Operating Characteristics: How well do the classifiers reject

false positives?

o Susceptibility to noise: Does the recognition performance degrade with

increasing image noise?

 Pose estimation performance

 96

o Standard deviation: How accurate is the estimated pose compared to

the ground truth?

o Susceptibility to noise: Does the pose estimation performance degrade

with increasing image noise?

 Computation time: Does the feature offer real-time performance?

5.2.1 RGB-D dataset results

The first set of experiments evaluates the classifier’s raw performance without

any statistical filtering. For each of the 1254 original images in the dataset, 100 noisy

samples are generated and classified giving a total of 125,400 test images. For each

object, the fraction of samples assigned to each class is computed to generate a confusion

matrix, and to provide prior statistics that can be used for statistical filtering in later

experiments.

Data are collected in this manner for both the VFH feature and the CPH feature.

The methods used for classification between the two features are identical with the

exception of feature extracted from the cluster. The first set of experiments is done with

Gaussian noise in the z channel of . Tables 5-1 and 5-2 show the confusion

matrices for the VFH-based classifier and CPH-based classifier respectively.

In Tables 5-1 and 5-2, the left column is the ground set truth object, and the

numbers in the table show the fraction of instances of that object classified as the object

listed in the top row. These confusion matrices give a concise description of the classifier

performance and also provide some insight into what kind of failures one can expect.

Both tables show that their respective features perform well on the object recognition

task, however, the performance of CPH is dramatically better, correctly classifying all

125,400 noisy images in the test set.

 97

Table 5-1. Confusion matrix for VFH feature on RGB-D dataset, σnoise = 1 mm.

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 0.805 0.114 0.041 0.030 0.010 0.000

Coffee Mug 0.000 0.000 0.760 0.000 0.061 0.179 0.000

Battery 0.000 0.004 0.001 0.971 0.024 0.000 0.000

Flashlight 0.000 0.009 0.048 0.114 0.829 0.000 0.000

jar 0.000 0.041 0.003 0.000 0.000 0.956 0.000

Pliers 0.000 0.000 0.011 0.000 0.000 0.006 0.983

Table 5-2. Confusion matrix for CPH feature on RGB-D dataset, σnoise = 1 mm

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Coffee Mug 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Battery 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Flashlight 0.000 0.000 0.000 0.000 1.000 0.000 0.000

jar 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Pliers 0.000 0.000 0.000 0.000 0.000 0.000 1.000

The VFH feature’s performance is the best on the bowl and the pliers. The bowl

images have more point on average than images from the other objects, so it is possible

that the normal estimation is better because there is more data on which to compute the

normal. The pliers, however, have fewer points than most of the other object. They do

have significantly more surface texture than the remaining objects, and because the VFH

feature is a surface descriptor, it stands to reason that it would perform better on objects

with more surface texture.

 98

In addition to the recognition statistics, the standard deviation from the true pose

is computed by Equation 5-1 where θc is the pose determined by the classifier and θt is

the ground truth pose.

 √∑

()

 5-1

Table 5-3 gives the standard deviation in the pose estimate for each object. No data is

given for the bowl because it is axially symmetric and the pose estimate is meaningless.

The same is true in theory for the jar. However, as shown in the sample image in Figure

4-2, The imaging system fails to capture data on the exposed glass of the jar, and only the

label is visible in the depth image. Because of the optical properties of the material,

descriptive pose estimation information is present in the image even though the object

itself is axially symmetric.

Table 5-3. Standard deviation in pose estimate (measured from ground truth) for VFH

and CPH classifiers, σnoise = 1 mm.

 VFH CPH

Object
σ

(degrees)
σ (degrees)

Bowl NA NA

Camera 81.7 10.5

Coffee Mug 104.0 10.8

Battery 104.0 10.8

Flashlight 69.0 11.7

jar 55.3 10.2

Pliers 40.0 10.2

Because the object recognition and pose estimation are both performed by the

nearest neighbor classifier, we expect that pose estimation performance would be closely

correlated with object recognition performance. The feature type that is most consistent

between the training set and the test set will give the best recognition result and the best

 99

pose estimation result. This is reflected in the results presented in Table 5-3. The error in

the pose estimate from the CPH feature is dramatically lower and appears to depend less

upon the object than does the error from the VFH feature.

The poor performance of the VFH feature is surprising. Rusu [2010] does not

report standard deviation, but instead reports that 98.52% of test images match to the

correct pose. Those results are reported on a much larger dataset (60 objects), and with

much greater resolution in the training set. Nevertheless, in the current work we fail to

replicate their results on the RGB-D dataset. The current approach uses a recognition

pipeline very similar to that of [Rusu, 2010] to permit a valid comparison between

features. Because the RGB-D dataset contains pre-segmented images, the results reported

here are independent of any minor differences in the preprocessing steps in the pipeline.

The most likely cause of the VFH performance discrepancy is that in this work,

we artificially generate the test set by adding Gaussian noise to the training set. It is not

clear in Rusu how their dataset is separated into training and test data. Even though

Rusu’s results could not be replicated, the experiments in this chapter demonstrate that

CPH-based recognition outperforms even Rusu’s VFH performance, albeit on a much

smaller dataset.

The same experiments were conducted at a higher noise level of σ=5 mm. The

actual noise in the Kinect depth imagery depends upon the location of the pixel in the

field of view. It is non-Gaussian and difficult to model. Testing on two noise levels is an

attempt to bracket the performance in the presence of noise. Tables 5-4 and 5-5 show

confusion matrices for both features at the higher noise level, and Table 5-6 shows the

pose estimation results at the of σ=5 mm noise level. The recognition results at the higher

noise level show that VFH recognition performance degrades in the presence of

additional noise.

 100

Table 5-4. Confusion matrix for VFH feature on RGB-D dataset, σnoise = 5 mm.

Bowl Camera

Coffee
Mug

Battery
Flashligh

t
Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 0.629 0.209 0.054 0.101 0.005 0.002

Coffee Mug 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Battery 0.000 0.002 0.000 0.986 0.012 0.000 0.000

Flashlight 0.000 0.014 0.122 0.238 0.626 0.000 0.000

jar 0.000 0.101 0.050 0.000 0.000 0.849 0.000

Pliers 0.000 0.000 0.034 0.011 0.006 0.000 0.949

Table 5-5. Confusion matrix for CPH feature on RGB-D dataset, σnoise = 5 mm.

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Coffee Mug 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Battery 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Flashlight 0.000 0.000 0.000 0.000 1.000 0.000 0.000

jar 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Pliers 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 5-6. Standard deviation in pose estimate (measured from ground truth) for VFH

and CPH classifiers, σnoise = 5 mm.

 VFH CPH

Object σ (degrees) σ (degrees)

Bowl NA NA

Camera 96.6 10.5

Coffee Mug 100.1 10.9

Battery 110.9 13.8

Flashlight 89.9 11.7

jar 69.5 10.2

Pliers 72.6 10.7

 101

The overall recognition rate for the VFH-based classifier drops from 90.1% to

86.3%. The worst case recognition rate among all objects drops from 81% to 62.5%.

While this performance is unacceptable for most applications, the noise level is arbitrarily

high. These results demonstrate the level of robustness to noise, not the expected

performance in a real system. The CPH-based classifier maintains a 100% recognition

rate even at the more extreme noise level.

The pose estimation results are significantly degraded in the presence of

additional noise. The standard pose error increased by an average of 20.6° for the VFH

classifier and 0.6° for the CPH classifier. At either noise level, the VFH pose estimates

cannot be used reliably for object grasping. The CPH pose estimates are excellent at both

noise levels, although they do exceed the ~3° angular resolution in the training data.

5.2.2 LANL dataset results

Performance of the VFH and CPH classifiers is evaluated on the LANL dataset in

a similar manner as the RGB-D dataset. However, the results for the LANL dataset more

accurately represent the performance expected on a deployed system. Whereas test

images for the RGB-D dataset were artificially produced by the addition of Gaussian

noise, the fact that we have the objects from the LANL dataset in hand allows us to test

the classifier on live data, using the full system implementation described in Chapter 4.

The results in this section are over 100 images from each of 120 object views for a total

of 12,000 images per object.

Tables 5-7 and 5-8 show the results for the raw classifiers presented as confusion

matrices. As was the case with the low-noise results on the RGB-D dataset, the overall

performance of both classifiers is good. The overall recognition performance of the VFH

classifier is 89.6%, with the CPH classifier performing significantly better at 97.2%. Pose

 102

estimation error on the LANL dataset is done by the same methods as for the RGB-D

dataset. Out of the ten objects in the dataset, six are axially symmetric about the vertical

axis, so pose estimation errors are only reported for the remaining four objects. The

results are presented in Table 5-9.

1
0
3

Table 5-7. Confusion matrix for VFH classifier on LANL dataset.

Broom Fitting

Lathe
Knob

Large
Bowl

Large
Can

Medium
Can

Scale
Small
Bowl

Small
Can

Tape
Roll

Broom 0.990 0.004 0.002 0.000 0.000 0.000 0.002 0.000 0.002 0.000

Fitting 0.049 0.781 0.031 0.000 0.000 0.002 0.115 0.000 0.022 0.000

Lathe Knob 0.000 0.002 0.993 0.000 0.000 0.001 0.000 0.000 0.004 0.000

Large Bowl 0.000 0.000 0.000 0.827 0.000 0.000 0.000 0.173 0.000 0.000

Large Can 0.000 0.000 0.000 0.000 0.802 0.198 0.000 0.000 0.000 0.000

Medium Can 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Scale 0.007 0.023 0.008 0.000 0.000 0.000 0.962 0.000 0.000 0.000

Small Bowl 0.000 0.000 0.000 0.393 0.000 0.000 0.000 0.607 0.000 0.000

Small Can 0.000 0.001 0.000 0.000 0.000 0.003 0.001 0.000 0.995 0.000

Tape Roll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

1
0
4

Table 5-8. Confusion matrix for CPH classifier on LANL dataset.

Broom Fitting

Lathe
Knob

Large
Bowl

Large
Can

Medium
Can

Scale
Small
Bowl

Small
Can

Tape
Roll

Broom 0.983 0.013 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.000

Fitting 0.003 0.964 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000

Lathe Knob 0.000 0.002 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Large Bowl 0.000 0.000 0.000 0.934 0.000 0.000 0.000 0.066 0.000 0.000

Large Can 0.000 0.000 0.000 0.000 0.969 0.031 0.000 0.000 0.000 0.000

Medium Can 0.000 0.000 0.000 0.000 0.001 0.999 0.000 0.000 0.000 0.000

Scale 0.006 0.056 0.008 0.000 0.000 0.001 0.929 0.000 0.000 0.000

Small Bowl 0.000 0.000 0.000 0.040 0.000 0.001 0.000 0.957 0.002 0.000

Small Can 0.000 0.012 0.000 0.000 0.000 0.000 0.002 0.000 0.986 0.000

Tape Roll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 5-9. Standard deviation in pose estimate on LANL dataset.

 VFH CPH

Object σ (degrees) σ (degrees)

Broom 16.9 24.2

Fitting 88.9 93.8

Lathe Knob 16.4 12.6

Scale 27.4 28.9

 105

The ability of the CPH feature to capture object size is apparent in the results for

the different sized bowls and different sized cans. The VFH classifier classifies the large

can as a medium can 19.8% of the time. The CPH classifier is only confused between

these objects 3.1% of the time. Similarly, the VFH classifier classifies the large bowl as a

small bowl 17.3% of the time, and the small bowl as a large bowl 39.3% of the time. The

CPH classifier’s confusion rates between the same objects are 6.6% and 4.0%

respectively.

The results in table 5-9 are surprising in that The VFH classifier performs

dramatically better pose estimation on the live LANL data, and the CPH classifier

performs significantly worse. The better performance of VFH is likely attributable to the

fact that the four objects in table 5-9 are more conducive to feature-based pose estimation

than those in Tables 5-3 and 5-6 from the RGB-D dataset. That is, the battery, camera,

and flashlight all have bilateral symmetry across at least one axis, which can lead to pose

confusion. The fact that the coffee mug’s handle may be partially or fully occluded

means there exists a range of ambiguous poses. The only object from the RGB-D dataset

with a strong, non-symmetrical pose signature is the pliers, and for the pliers, the pose

error is similar to what is observed in the LANL dataset. The degradation of the CPH

pose estimation performance is not as surprising. Because the live images are not derived

directly from the training data as in the RGB-D experiments, we would expect an exact

pose match to be less common, and indeed the result reflect this.

 The T-fitting results for both objects show that the pose estimate is not much

better than random. The fitting is much smaller than the other objects, and its images tend

to be noisy and incomplete. This object also gives the poorest recognition from the VFH

classifier, although it is interesting to note that the CPH classifier gives very good

recognition performance, although the test image is seldom matched to the correct pose.

 106

This suggests that the recognition success is mostly attributable to the size component of

the CPH feature.

5.3 PROBABILISTIC MODELING RESULTS

The experiments in the previous section examined the raw performance of two

classifiers. All of the results in that section are from analysis on single image frames.

This section demonstrates how the use of probabilistic modeling affects classifier

performance. The data tables in this section look very similar to the data tables presented

in the previous section. However, these results are computed accumulating and filtering

results over 10 frames by the methods presented in Section 3.1. Filtering more than ten

frames becomes computationally prohibitive. At this level, performance is already less

than real time. However, some latency in the recognition performance is acceptable if the

results are significantly improved.

The Bayesian filtering operations require a sensor model. The sensor model is

constructed from the data collected in the previous section. We assume a zero mean error

in the pose estimate giving Ct = I. The standard deviations in the pose estimates from the

previous section are used to construct the noise covariance model matrix, Qt. The class-

conditional probabilities, P(z|C) are generated from the confusion matrices presented in

the previous section in the following way. Assuming confusion matrix F, each element in

a class-conditional probability matrix P is constructed accoding to:

∑

 5-2

The result is a matrix P where Pi,j = P(zi|Cj), the probability of obtaining

recognition result i, given that the object is of class j. This matrix, along with the standard

pose deviation for each object is loaded from file when the recognition_main node

is created.

 107

5.3.1 RGB-D dataset results

As in the previous section, individual frames for the RGB-D test data are

generated by adding Gaussian noise to the z channel of the point cloud. The distributions

used to model the object are updated frame over frame by Equations 3-4 to 3-7. The final

reported object class is the most probable class in the discrete distribution representing

the object. the object. Tables 5-10 and 5-11 show confusion matrices for the final

recognition result after 10 frames of filtering for VFH and CPH respectively.

Table 5-10. Confusion matrix filtered over 10 frames for VFH classifier, σnoise = 1 mm.

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 0.893 0.066 0.011 0.030 0.000 0.000

Coffee Mug 0.000 0.000 0.766 0.000 0.060 0.174 0.000

Battery 0.000 0.000 0.000 0.973 0.027 0.000 0.000

Flashlight 0.000 0.005 0.023 0.088 0.884 0.000 0.000

jar 0.000 0.010 0.000 0.000 0.000 0.990 0.000

Pliers 0.000 0.006 0.000 0.000 0.000 0.000 0.994

Table 5-11. Confusion matrix filtered over 10 frames for CPH classifier, σnoise = 1 mm.

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Coffee Mug 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Battery 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Flashlight 0.000 0.000 0.000 0.000 1.000 0.000 0.000

jar 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Pliers 0.000 0.000 0.000 0.000 0.000 0.000 1.000

The results for the CPH classifier, predictably, are still 100%. The statistical

filtering cannot improve upon the 100% raw classification rate. The results for the VFH

classifier, however, do demonstrate an improvement in the classification rates over the

 108

raw VFH classifier. The overall recognition performance improves from 90.1% to 92.9%.

The improvement is not dramatic, but does indicate that there is some value in collecting

statistics and accumulating evidence to avoid misclassifications.

 The reported pose is the mean of the 4D Gaussian model after filtering over 10

frames. Table 5-12 shows the filtered pose estimation results. Overall, there is a 17.4%

reduction of the error in the pose estimate. These results show that probabilistic modeling

and Bayesian update make a significant improvement in the pose estimates. Some of the

VFH results are only improved marginally.

Table 5-12. Standard deviation in pose estimate (measured from ground truth) for filtered

VFH and CPH classifiers, σnoise = 1 mm.

 VFH CPH

Object σ (degrees) σ (degrees)

Bowl NA NA

Camera 75.4 0.0

Coffee Mug 100.5 0.0

Battery 96.5 0.4

Flashlight 59.1 0.0

jar 41.7 0.0

Pliers 21.2 0.6

For objects such as the coffee mug, the raw standard deviation is high, thus there is not

much improvement after 10 frames. However, where the standard deviation is lower,

such as with the pliers, the error in the pose estimate is reduced by 50%. This is also true

for the CPH results. Because the raw standard deviations were all fairly small at around

10°, the statistical filtering rapidly reduces the error in the pose estimate. For each object,

the error in the pose estimate drops to less than 1°.

The same statistical filtering experiments were performed on the σnoise = 5 mm

data. Table 5-13 shows the confusion matrix for the VFH classifier. Because of the

 109

perfect raw recognition rate of the CPH classifier, the confusion matrix is not shown for

the statistically filtered case, but the filtered recognition results were performed, and

confirm that the filtered result remains perfect. The filtered VFH results improve the

overall recognition rate from 86.3% to 91.7%. Table 5-14 shows the filtered pose

estimation results for both classifiers at σnoise = 5 mm. Unsurprisingly, the results show

that the pose estimation deteriorates in the presence of more noise.

Table 5-13. Confusion matrix filtered over 10 frames for VFH classifier, σnoise = 5 mm.

Bowl Camera

Coffee
Mug

Battery Flashlight Jar Pliers

Bowl 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Camera 0.000 0.720 0.000 0.142 0.128 0.005 0.005

Coffee Mug 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Battery 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Flashlight 0.000 0.017 0.006 0.094 0.883 0.000 0.000

jar 0.000 0.116 0.000 0.015 0.000 0.869 0.000

Pliers 0.000 0.005 0.000 0.022 0.017 0.011 0.945

Table 5-14. Pose estimation results for both classifiers at σnoise = 5 mm.

 VFH CPH

Object
σ

(degrees)
σ (degrees)

Bowl NA NA

Camera 96.7 0.2

Coffee Mug 101.5 1.1

Battery 114.8 10.3

Flashlight 90.9 0.2

jar 72.2 0.0

Pliers 70.1 1.2

 110

5.3.2 LANL dataset results

The Probabilistic modeling results for the LANL dataset are collected in the same

way, again with the exception that live data are used instead of artificially noisy data. The

object model is updated over 10 frames, filtered according to the methods described in

Chapter 3. Tables 5-15 and 5-16 show the filtered recognition results. Filtering over 10

frames improves the overall accuracy of the VFH classifer from 89.6% to 94.6%. The

CPH recognition rate improves from 97.2% to 98.5%, with six out of the ten objects

achieving 100% correct recognition.

Table 5-17 shows the filtered pose error results for the LANL dataset. Filtering

improves the overall accuracy of the VFH classifier by 20.4% and the CPH classifier by

17.6%. This translates to an absolute improvement of 4.8° and 6.3° respectively.

1
1
1

Table 5-15. Confusion matrix for LANL datset filtered over 10 frames for VFH classifier.

Broom Fitting

Lathe
Knob

Large
Bowl

Large
Can

Medium
Can

Scale
Small
Bowl

Small
Can

Tape
Roll

Broom 0.992 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fitting 0.000 0.917 0.000 0.000 0.000 0.000 0.050 0.000 0.033 0.000

Lathe Knob 0.000 0.000 0.993 0.000 0.000 0.001 0.000 0.000 0.006 0.000

Large Bowl 0.000 0.000 0.000 0.992 0.000 0.000 0.000 0.008 0.000 0.000

Large Can 0.000 0.000 0.000 0.000 0.958 0.042 0.000 0.000 0.000 0.000

Medium Can 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Scale 0.000 0.025 0.000 0.000 0.000 0.000 0.975 0.000 0.000 0.000

Small Bowl 0.000 0.000 0.000 0.367 0.000 0.000 0.000 0.633 0.000 0.000

Small Can 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 1.000 0.000

Tape Roll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

1
1
2

Table 5-16. Confusion matrix for LANL dataset filtered over 10 frames for CPH classifier.

Broom Fitting

Lathe
Knob

Large
Bowl

Large
Can

Medium
Can

Scale
Small
Bowl

Small
Can

Tape
Roll

Broom 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fitting 0.000 0.975 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000

Lathe Knob 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Large Bowl 0.000 0.000 0.000 0.975 0.000 0.000 0.000 0.025 0.000 0.000

Large Can 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Medium Can 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Scale 0.006 0.000 0.052 0.000 0.000 0.000 0.942 0.000 0.000 0.000

Small Bowl 0.000 0.000 0.000 0.040 0.000 0.001 0.000 0.957 0.002 0.000

Small Can 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

Tape Roll 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table 5-17 Standard deviation in pose estimate on LANL dataset filtered over 10 frames.

 VFH CPH

Object σ (degrees) σ (degrees)

Broom 12.9 19.1

Fitting 84.6 82.5

Lathe Knob 11.0 12.1

Scale 21.8 19.3

 113

5.4 CATEGORY-LEVEL RECOGNITION RESULTS

The CPH feature is intended to enable recognition of specific instances of an

object. In fact, it is intended to recognize a specific view of a specific instance of an

object. The classification results so far consider each view of each object a class, and

there is an implicit constraint that every instance of a class is identical in appearance. If

this constraint is removed, the problem becomes more difficult. As an example, a

classifier that must recognize “chairs” would have to correctly assign the objects in

Figure 5-8 to the same class. This problem is known as category-level recognition as

opposed to instance-level recognition.

Figure 5-7. Example of a challenging category-level problem.

Although a human immediately recognizes all of the images in Figure 5-7 as

chairs, it would clearly be a much more difficult problem for a computer. Even though

CPH is not intended for use on the category-level problem, its performance is evaluated

here to get a sense of how well a global feature might perform if the identical appearance

assumption were removed.

Lai’s RGB Dataset provides several instances of the categories that are used in

this work. In the experiments so far, only a single instance, imaged from several

viewpoints has been used. To approach the category-level problem, the remaining

 114

instances of each objects are added to our dataset. Figure 5-2 shows all object instances

used for the category-level problem. The recognition methodology is modified in the

following ways:

 The test data is no longer generated by adding artificial noise. Instead, we use

Leave One Out – Cross Validation (LOO-CV) Where we train on all images from

all instances except one. All images of the remaining instance are then used for

testing. Under this method, no images of the test object match are present in the

training data.

 The KNN classifier is replaced by a Support Vector Machine (SVM) classifier.

The classifier is LibSVM with a posterior probability output. [Chang, 2011].

Table 5-18 shows the category-level results for the seven classes, and Figure 5-8

shows the ROC curves for each object. On six out of the seven categories, the category-

level performance of the CPH/SVM classifier is excellent. However, the 0.0%

recognition rate on the pliers is troubling. An important observation of the object

instances in Figure 5-2 is that the shape of the objects does not vary dramatically between

the instances. The category-level problem attempted here is nothing like the one

suggested by figure 5-8. The pliers have more shape variation among the instances in the

class then the other objects, and the performance suffers as a result. The good

performance overall suggests that the feature can perform well on easier category-level

problems, but if the identical appearance assumption is relaxed too far, the CPH feature

ceases to be a good discriminator.

 115

Table 5-18. Category-level recognition rates for CPH feature with SVM classifier.

Object Recognition Rate

Bowl 100.0%

Camera 90.6%

Coffee Mug 93.4%

Dry Battery 92.5%

Flashlight 100.0%

Food Jar 100.0%

Pliers 0.0%

Figure 5-8. Receiver Operating Characteristics for category-level recognition with CPH

feature and SVM classifier.

5.5 COMPUTATIONAL PERFORMANCE

Both the CPH and VFH features are intended to be used in real-time recognition

systems. Therefore the ability to compute the feature in real time on a standard PC is

important. The CPH feature has a computational advantage in that it does not require

surface normal estimation on the cluster. Table 5-19 shows the computational

performance for each object in the RGB-D dataset, and Figure 5-9 plots the computation

time against the number of points in the cluster. The average feature computation times

are reported for the CPH features whereas the actual computation times are plotted for the

 116

VFH feature. This is because for the CPH features, the actual computation times are often

close to machine zero, so they must be accumulated to get a meaningful number.

Nevertheless, the data clearly demonstrate that the computational performance of CPH is

real time whereas for VFH it is not.

These data were collected on a Lenovo notebook computer with an Intel Core i7

processor and 8GB of RAM running Ubuntu Linux 11.10. The times for the VFH feature

include both the feature computation time and the time required to estimate the surface

normal. On average, the CPH feature computes 753 times faster than the VFH feature.

Table 5-19. Average feature computation time on the RGB-D dataset.

Avg.
Size

(points)

VFH
Comp. Time

(ms)

CPH
Comp. Time

(ms)

10814 1734 2.500

1207 481.4 0.625

6335 1160 1.375

457 25.81 0.250

3284 698.1 0.500

2742 364.4 0.563

671 21.75 0.138

 117

Figure 5-9. Feature computation time vs. cluster size. The CPH values shown are scaled

by a factor of 10.

Figure 5-10 shows that both features require time approximately linear in the

number of points, the slopes are dramatically different. For larger point clouds, it can take

almost two seconds to compute a single VFH feature. The CPH feature, on the other

hand, computes in milliseconds on even the largest clusters, making it suitable when real-

time performance is required.

5.6 SUMMARY AND DISCUSSION OF EXPERIMENTS

5.6.1 Chapter 5 summary

The experiments discussed in this chapter were intended to evaluate the

performance of the CPH feature descriptor for use in 3D point cluster recognition and

pose estimation. To do this, a modular recognition pipeline was implemented using PCL

and ROS. This allowed the evaluation of CPH as an alternative to VFH, the feature

implemented in PCL for use in point cluster recognition and pose estimation. Several

experiments quantified the performance of each feature in the following areas.

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

VFH time (ms)

10 x CPH time (ms)

 118

 Raw multi-class recognition rate.

 Raw rotational pose error.

 Bayesian filtered multi-class recognition rate using probabilistic object model.

 Pose error after Kalman filter update of probabilistic object model.

 Category-level recognition performance

 Computational performance.

The remainder of this chapter discusses the results from each of these areas and

evaluates them in the context of the general object recognition problem. It also addresses

the specific problem of simultaneous object recognition and pose estimation for nuclear

materials handling.

5.6.2 Multi-class recognition and pose estimation.

The first set of recognition and pose estimation experiments was done on the

RGB-D dataset discussed in Section 5.1.1. The results are summarized in Table 5-20.

Table 5-20. Recognition and pose estimation summary (RGB-D data)

VFH

CPH

 σnoise = 1mm σnoise = 5mm σnoise = 1mm σnoise = 5mm

Bowl Rec. Rate 100% 100% 100% 100%

σpose (deg) NA NA NA NA

Camera Rec. Rate 80% 63% 100% 100%

σpose (deg) 88.7 102.3 0.0 5.7

Coffee Mug Rec. Rate 100% 100% 100% 100%

σpose (deg) 76.8 102.6 0.0 1.8

9V Battery Rec. Rate 100% 99% 100% 100%

*σpose (deg) 101.4 112.3 0.4 22.1

Flashlight Rec. Rate 88% 63% 100% 100%

σpose (deg) 62.2 95.2 0.0 0.5

Food Jar Rec. Rate 98% 82% 100% 100%

σpose (deg) 42.9 85.0 0.0 1.0

Pliers Rec. Rate 99% 93% 100% 100%

σpose (deg) 18.0 70.3 0.1 2.7

 119

The RGB-D dataset results suggested that the CPH feature performed much better than

the VFH feature in its ability to match a test object to a specific view of a specific object.

Furthermore, the results in Table 5-20 show that the recognition performance of VFH

degrades in the presence of significant noise. However, because the test images were

artificially generated from the training set, these results demonstrate performance much

better than would be expected in a deployed recognition system.

In order to better characterize the true performance of the CPH feature, and also

to test it on application-relevant objects, the LANL dataset was developed. This allowed

live testing of the VFH and CPH features under conditions similar to what is expected for

a deployed system. Table 5-21 summarizes the performance.

Table 5-21. Recognition and pose estimation summary (LANL data)

 VFH CPH

Broom Rec. Rate 99% 98%

σpose (deg) 16.9 24.2

T-fitting Rec. Rate 78% 96%

σpose (deg) 88.9 93.8

Lathe knob Rec. Rate 99% 100%

σpose (deg) 16.4 12.6

Large bowl Rec. Rate 83% 93%

σpose (deg) NA NA

Large can Rec. Rate 80% 97%

σpose (deg) NA NA
Medium

can
Rec. Rate 100% 100%

σpose (deg) NA NA

Scale Rec. Rate 96% 93%

σpose (deg) 27.4 28.9

Small bowl Rec. Rate 61% 96%

σpose (deg) NA NA

Small can Rec. Rate 100% 99%

σpose (deg) NA NA

Tape roll Rec. Rate 100% 100%

σpose (deg) NA NA

 120

The results for the LANL set demonstrate much better recognition performance

from the CPH feature. One of the goals of CPH was to define a feature that would capture

object size. As expected, the performance advantage of CPH is significantly greater when

differentiating between objects of similar shape but different size. The VFH feature is

confused between large and small bowls and large and small cans. It is interesting to note

that VFH is not confused by the small can, despite its similarity in shape to the medium

and large cans. This can be explained by examining Figure 5-6. The small can’s surface

has particularly high specular reflection, and so the segment representing it is missing

most of the can’s surface, resulting in a point cluster whose shape is much different than

the large or medium can.

Using the live data caused an expected drop in pose estimation performance for

the CPH classifier. Surprisingly, however, the pose estimation performance of the VFH

classifier improved considerably. This is attributable to the pose ambiguities of the

objects selected for the RGB-D dataset making pose estimation by surface normal

binning very difficult.

5.6.3 Filtered recognition and pose estimation

By collecting statistics on classifier performance, a sensor model was developed

and used to filter results over 10 frames. The results for the RGB-D dataset are

summarized in Table 5-22. While the raw performance of CPH on this data is too good to

draw any conclusions about the benefits of using a probabilistic model, the VFH results

do show improvement in recognition and pose estimation results. However, the

improvements in pose estimates are modest and neither feature offers performance

suitable to use in a deployed system.

 121

Table 5-22. Filtered results summary for RGB-D data.

VFH

CPH

 σnoise = 1mm σnoise = 5mm σnoise = 1mm σnoise = 5mm

Bowl Rec. Rate 100% 100% 100% 100%

σpose (deg) NA NA NA NA

Camera Rec. Rate 89% 72% 100% 100%

σpose (deg) 74.5 96.7 0.0 0.2
Coffee

Mug
Rec. Rate 76% 100% 100% 100%

σpose (deg) 100.5 101.5 0.0 1.1

9V Battery Rec. Rate 97% 100% 100% 100%

σpose (deg) 96.5 114.8 0.4 10.3

Flashlight Rec. Rate 88% 88% 100% 100%

σpose (deg) 59.1 90.9 0.0 0.2

Food Jar Rec. Rate 99% 87% 100% 100%

σpose (deg) 41.7 72.2 0.0 0.0

Pliers Rec. Rate 99% 95% 100% 100%

σpose (deg) 21.2 70.1 0.0 1.2

Table 5-23. Filtered results summary for LANL data.

 VFH CPH

Broom Rec. Rate 99% 100%

σpose (deg) 12.9 19.1

T-fitting Rec. Rate 92% 97%

σpose (deg) 84.6 82.5

Lathe knob Rec. Rate 99% 100%

σpose (deg) 11.0 12.1

Large bowl Rec. Rate 99% 98%

σpose (deg) NA NA

Large can Rec. Rate 96% 100%

σpose (deg) NA NA

Medium can Rec. Rate 100% 100%

σpose (deg) NA NA

Scale Rec. Rate 98% 94%

σpose (deg) 21.8 19.3

Small bowl Rec. Rate 63% 100%

σpose (deg) NA NA

Small can Rec. Rate 100% 100%

σpose (deg) NA NA

Tape roll Rec. Rate 100% 100%

σpose (deg) NA NA

 122

Table 5-23 provides a summary of the filtered recognition and post estimation

results on the LANL dataset. This table makes a strong case for the use of a probabilistic

object model. The pose estimates are significantly improved with both features. Much of

the large/small object confusion in the VFH classifier is mitigated by statistical filtering,

although recognition performance for the small bowl remains very poor. While the

overall performance of CPH is still better than VFH, the advantage is not as great on live

data with the use of the probabilistic model. However, the computational advantage of

CPH must be considered along with these results. On large point clusters, the VFH

feature may take almost two seconds to compute, so filtering over 10 frames means the

total time require to achieve the performance in Table 5-23 is nearly 20 seconds for some

objects. CPH, on the other hand, computes extremely quickly, and filtering over 10

frames still occurs in less than a second.

5.6.4 Category-level performance

Category-level recognition is a harder problem than instance-level recognition.

Neither VFH nor CPH are designed with this problem in mind, but the performance on

this problem was examined experimentally using an SVM classifier instead of the KNN

classifier used in the instance-level experiments. While the classifier performed well on

some classes, the failure of CPH to recognize any instances of one class of objects

suggest that it is not suitable to this problem.

5.6.5 Computational performance

CPH is a much simpler feature than VFH from a computational perspective. This

is because of the need to estimate point surface normals in order to compute the VFH

descriptor. CPH computes about 3 orders of magnitude faster than VFH. This is the

 123

difference between computing in a couple milliseconds versus a couple of seconds.

Because of this, CPH is much better suited to real-time recognition.

Overall, the performance of CPH is comparable to or better than VFH in every

area of comparison. The filtered recognition performance is sufficient for use on datasets

of around ten objects, even in applications that require high recognition accuracy.

However, the pose estimation results are generally not good enough for autonomous

grasping in unstructured environments.

 124

Chapter 6: Application demonstrations

Previous chapters have provided substantial detail on the technical aspects of a

visual cluster recognition system. This chapter shows how the technical accomplishments

discussed previously can be used in deployed systems. The first demonstration shows

how CPH recognition enables autonomous pick and place tasks in an unstructured

workcell. The second demonstration shows how information from the probabilistic object

model can be displayed to a system user to give a real-time idea of model quality. These

two demonstrations show how the work presented in this document support unstructured

manipulation by advancing autonomous capabilities and supporting notions of shared

human-robot initiative and transitional autonomy.

6.1 AUTOMATED SORTING WORKCELL

The CPH feature is part of the ROS-Industrial packages for industrial

manipulation in ROS. It was recently used at the core of a vision-based demonstration to

showcase ROS-Indsustrial at a major robotics conference and trade show [Automate

2013]. This demonstration was developed in collaboration with Southwest Research

Institute, the North American Center of Excellence for ROS-Industrial. This chapter

describes the demonstration and how it relates to nuclear materials handling.

All of the grasp and motion planning in the following demonstration is performed

in ROS using sensor information from Microsoft Kinect depth cameras. ROS-Industrial

provides the ROS bindings for the manipulators in the workcell. The demonstration is

intended to show the following:

 How ROS and ROS-Industrial simplify integration of complex robotic systems

under a common operating framework.

 125

 How using ROS for industrial automation allows incorporation of recent research

advances into deployed systems.

CPH features form the crux of the ability to demonstrate the second point. The

demonstration described below shows that robust and reliable object recognition can be

achieved on a deployed system suitable for unstructured industrial automation.

6.1.1 Demonstration workcell

Figure 6-1 shows an exterior view of the demonstration workcell. Figure 6-2

shows a schematic layout of the demonstration area. The workcell contains two

manipulators, a Motoman SIA-20D and a Universal Robotics UR working in close

proximity. The robots share a workspace within a confined environment. Parts of the

workspace are partitioned off according to the task specification, but the environment is

unstructured in that the positions of objects are uncertain and no fixtures are used.

Figure 6-1. Demonstration workcell, exterior view.

 126

Figure 6-2. Schematic workspace layout.

6.1.2 Task description and execution

The demsontration task is to sort a cluttered group of objects into a set of bins.

The bins in this demonstration are not physical bins, but areas partitioned out of the

workspace for item storage. The demonstration begins with four objects of each of three

type randomly distributed in the cluttered area. The sorting proceeds as follows:

1. Object singulation. – The UR 5 Robot moves a single object from the cluttered

area to the staging area. The object is selected from the cluttered area at random

after image segmentation. Because of the clutter, CPH would be unreliable for

recognition in the cluttered area.

2. Recognition and sorting. – Once a single object has been moved to the staging

area, the processing pipeline described in Chapter 4 is used to identify the

object. When it has been identified, the SIA-20d robot moves the object to the

appropriate bin location.

 127

3. Return. - When all objects have been sorted, the SIA-20d moves them each

individually to the return area. The UR 5 robot retrieves them and drops them

onto the ramp where they tumble back into the cluttered area. The demonstration

then begins again.

Figure 6-3 shows the demonstration in progress. A video of the demonstration is

available at http://www.youtube.com/watch?v=dGPwHodET8s&feature.

6.1.3 Demonstrated capability

The demonstration described in this section shows how the work presented in this

document helps solve the problem of manipulation in unstructured environments. The

demonstration task shares much in common with the nuclear materials handling problem

introduced in Chapter 1. The objects have little surface texture, the environment is

confined and unstructured, but also contains little clutter. All of this is also true in a

nuclear materials glovebox. The problem of light clutter is addressed by separating

individual objects prior to additional segmentation and recognition. For a system

operating under dynamic autonomy, this demonstration shows how reliable cluster

recognition allows the system to accept a high level instruction from the operator (“Put

away these objects”) and translate that isntruction into a series of low-level tasks that can

be completed without further input from the operator.

http://www.youtube.com/watch?v=dGPwHodET8s&feature

 128

(a)

(b)

(c)

Figure 6-3. Application demonstrion. (a) Object singulation with UR 5 robot. (b)

Recogition and object grasp. (c) Object sorting.

 129

6.2 SYSTEM USER DISPLAY DEMONSTRATION AT UT AUSTIN

Perhaps the most important aspect of a transitional autonomy scheme is the ability

of the system to determine the quality of its internal world model and communicate that

to the system operator. This allows the operator to know when the model is degraded and

anticipate the need for more direct human involvement in system operation. This section

shows a simple user display where information about objects detected and modeled by

the perception system is displayed for the user.

Figure 6-4 shows two screen captures of the user dislay. The image is annotated

with the object and model information. In addition to the object’s label and pose,

probabilisitic model information is output to the screen adjacent to the perceived object.

Figure 6-4 (a) was captured immediately after the new object was acquired. Figure 6-4

(b) was acquired after a few frames. The improvement in the model resulting from

fitering is apparent between the images. The probability of the object being a broom

reaches a maximum of 1 and the pose uncertainty is reduced from 16.5 degrees to less

than a degree. Figure 6-5 demonstrates the ability of the classifier to handle multiple

objects in light clutter. Images are shown with two and four objects present respectively.

 130

Figure 6-4. User display showing label with probability estimate and pose with deviation

estimate. (a) shortly after initial acquisition. (b) several frames later.

 131

Figure 6-5. User display showing light clutter (a) two objects present. (b) four objects

present.

 132

6.3 COMMENTS ON DEMONSTRATIONS

The demonstrations described in this chapter show how the recognition pipeline

developed in Chapters 3 and 4 enables certain autonomous tasks in unstructured

environments. The most fundamental manipulator task is to move an object from one

place to another. The automated sorting workcell shown in Section 6.1 demonstrates this

capability within a difficult unstructured environment. The majority of manipulator tasks

in a glovebox would be simiar pick-and-place operations.

The user display shown in Section 6.3 gives a system operator a real-time notion

of the quality of the system’s internal model. This allows the operator to know whether or

not a particular task can be completed automously under high-level direction, or if it must

be completed through teleoperation. These demonstrations show that a CPH-based

recognition system with probabilistic object modeling supports transitional autonomy

system by enabling autonomous unstructured pick-and-place and by providing the model

data necessary to determine an appropriate level of autonomy.

 133

Chapter 7: Conclusion

The last decade has seen rapid expansion of autonomous robotics technologies.

However, very few of these technologies are successfully crossing the chasm between

research labs and commercial or industrial success. There are many technical and

economic reasons for this that can all be concisely summarized as follows: Autonomous

robotic systems must be able to do the things humans do more safely, more reliably, and

at lower cost, and in approximately the same amount of time This safer/better/cheaper

axiom is the reason that robots are not used for many exceptionally hazardous tasks at the

national laboratories, despite the fact that they have access to some of the best trained

scientists and engineers in the world.

This chapter summarizes the material presented in previous chapters and suggests

several avenues for further research that would improve the work presented here and

extend its impact.

7.1 SUMMARY

Chapter 1 introduced the problem of unstructured manipulation in the context of

nuclear materials handling in DOE glovebox facilities. It proposed the transitional

autonomy as a way to achieve the safety and robustness required to better deploy and

utilize advanced robotics. This idea acknowledges that the current state of the art in fully

autonomous systems is insufficient to satisfy the safer/better/cheaper axiom and opts

instead to provide a framework in which the level of system autonomy changes in

response to environmental uncertainty, incomplete information, or user input. This

requires a visual perception system to perceive the environment, and a probabilistic

modeling framework to track the quality of the model. This chapter also discussed ROS,

an exciting development in robotics research that improves the probability of system

 134

deployment by opening up a wealth of state-of-the-art algorithms to any system

implemented in ROS. It also briefly discussed the Microsoft Kinect, and how it has

rapidly transformed the field of robot vision and perception by offering inexpensive

access to coupled range and color imagery.

Chapter 2 examined and reviewed previous work in the areas of robot world

modeling, computer vision, and robot perception. The clear trend in world modeling is

toward probabilistic models. This trend is driven in large part to the need of mobile

systems to localize themselves from noisy sensor data, a problem that most manipulation

systems do not have. However as manipulation systems move into increasingly uncertain

environments, and are integrated with a wider range of noisy sensors, they too benefit

from the use of probabilistic modeling.

Many of the well-developed techniques for computer vision do not translate well

to depth imagery. This is particularly true for segmentation algorithms and image feature

descriptors which tend to rely on strong gradients. With the advent of sensors like the

Kinect, there has been a rapid expansion into segmentation algorithms and feature

descriptors that work well on depth imagery. One of these, the Viewpoint Feature

Histogram, is used as a benchmark for the current work.

Chapter 3 presented the methods that form the backbone of the current work. A

probabilistic object model is used that treats an object’s label as a discrete probability

distribution over all possible objects. Objects are assume to sit upright on a planar

surface, restricting the pose to four dimensions: x, y, z and θ. The model is a 4D Gaussian

in these dimensions. This object model is updated by discrete Bayesian filtering, and

Kalman filtering for the label and pose, respectively.

Chapter 3 also introduced a novel feature descriptor, the Cylindrical Projection

Histogram (CPH). CPH is a member of a class of shape descriptors called shape

 135

histograms that also includes the Spin Image. Its major advantages compared to other

point cluster descriptors are its fast computation, and its ability to encode object size

while maintaining invariance to image scale.

Chapter 4 delved into the details system implementation. This chapter described

how the methods presented in Chapter 3 became part of a functional perception system,

implemented in ROS and PCL. This chapter included a detailed description of the entire

processing pipeline to take a depth frame from raw image to a description of the objects

in the scene.

Chapter 5 uses the system presented in Chapter 4 to perform several experiments

that test and validate the methods proposed in Chapter 3. Experiments were conducted on

a publicly available dataset in the literature, and on a custom dataset that captures the

operational requirements of glovebox manipulation at Los Alamos National Laboratory.

Because the methods presented here require pose-annotated training data, a custom data-

collection system was built to simplify collection of datasets with objects imaged at

around 360° with 1° angular resolution.

The experiments occurred in two phases. In the first phase a VFH and a CPH

classifier performed classification and pose estimation on approximately 12,000 images

for each object. The raw results give a good indication of each feature’s capabilities. The

results from this phase are also used to generate a priori probability tables and pose

statistics that inform the statistical update algorithms. In the second phase, each test

image is filtered over 10 frames, and the resulting label and pose are reported. This is

done for both datasets, the only difference being that the RGB-D test images were

synthetically generated by adding Gaussian noise to the training set. The raw results

demonstrate that the raw classification performance of CPH is superior to that of VFH,

which a very strong advantage in its ability to discriminate between similarly shaped

 136

objects of different size. This is done with a computational performance advantage of

about three orders of magnitude.

Chapter 6 presented two application demonstrations show how the work

presented here supports autonomous unstructured manipulation under transitional

autonomy. Manipulation was performed on hardware systems, and model information

communicated with a human operator for the purposes of determining whether or not a

task can be completed autonomously.

7.2 RECOMMENDATIONS FOR FUTURE WORK

This document demonstrates the contribution of the CPH feature and probabilistic

modeling techniques to the problem of unstructured manipulation. However, there

remains significant work to be done in the areas of robot vision, world modeling, and

transitional autonomy. The work presented here may serve a springboard for further

exploration. Below is a list of avenues for revision, extension, and application of the

techniques presented in this thesis.

 Generalize feature scaling – One of the most powerful aspects of the CPH

feature is the direct encoding of size information without sacrificing scale

invariance. However, it is likely that the addition of spatial extents and histogram

re-scaling could be performed on any point cluster feature. This includes VFH

and its derivatives. Researchers pursuing other types of point cluster features

should consider these techniques to improve performance on objects of similar

size or appearance but different size.

 Investigate other projections – The CPH feature projects points into a

cylindrical surface. A cylinder was used as an intuitive shape to capture variation

in viewpoint as an object on a plane rotates about a central axis. However, the

 137

shape histogram component of CPH conceivably could be computed by projecting

into any surface. It is possible that another type of projection, such a spherical

one, could yield as good or better results, and may perform better in the general 6

DOF case.

 Incorporate appearance – All of the work presented here uses only depth data.

However, in many applications, both a depth image and an appearance image are

available. The CPH descriptor, or some variant of it, may be enhanced if used in

conjunction with an appearance based method. Hybrid shape/appearance features

have been shown to be effective in some real-time recognition applications.

[Hinterstossier, 2012]. Possible approaches might include a concatenated global

color histogram or vector of average chromaticity values for the points in each bin

of the CPH shape histogram. Incorporation of appearance information may,

however, have a deleterious effect on CPH’s performance on reflective objects.

 Evaluate on larger datasets – Both datasets in this work are relatively small in

order to keep the scale of the problem relevant to the DOE/LANL mission.

However, it has not been determined whether or not the methods presented here

would scale well to larger datasets. In order to evaluate the scalability, the LANL

dataset should be expanded to include more objects. A good approach would be to

create a dataset similar to Lai’s RGB-D dataset, but to annotate each image with

the geometric transformation between the camera frame and a local reference

frame on the object. Evaluating on larger datasets may also motivate work in how

to handle the hierarchical nature of object classes. For example, a multi-stage

classifier might first determine whether the object is large or small, then

determine a broad category, then determine a specific class or instance. This

hierarchical approach has shown promise in works such as Lai.

 138

 Use multiple imagers – All results in here use a single depth camera as a sensor

with the result that the data is not fully 3D. The depth image is still captured by a

2D pixel array, so more than half of an object’s geometry is typically occluded.

However, the methods presented here should generalize well to a more complete

3D description of the object that could be captured by adding an additional depth

camera opposite the first.

 Sensor Fusion – One of the strengths of the probabilistic model is that it permits

model refinement from any sensor for which a sensor model exists. In order to

further reduce model uncertainty, the robot could measure a sensed object’s

position via tactile sensing. The object’s size could be measured by grasping with

a force or current-limited gripper. These measurements could then inform the

Gaussian position and the discrete distribution across object labels.

 Downstream pose refinement – The pose estimation results reported here are as

good or better than feature-based pose estimation results with VFH. However,

when using live data, the results are insufficient for dexterous grasping. For

example, it would be unlikely that a robot reliably grasp a mug by its handle, or

correctly wield a tool. However, iterative alignment techniques such as RANSAC

or Iterative Closest Point (ICP) algorithms could be performed after obtaining a

classification and gross pose estimation from the CPH classifier. The pose from

the CPH classifier could serve as an initial guess for the iterative pose estimation

algorithm, improving the likelihood of convergence and reducing the time

required for convergence.

 139

7.3 CONCLUDING REMARKS

The research presented in this document advanced object recognition and gross

pose estimation capabilities on challenging objects. The major contributions of this work

are:

 The Cylindrical Projection Histogram – A scale invariant point cluster

descriptor that encodes shape, size, and pose for object recognition and pose

estimation.

 ROS-compatible CPH code that is publicly available from Southwest Research

Institute’s ROS repository: swri-ros-pkg. It will also be included with the unstable

trunk of PCL.

 The probabilistic object model – A non-deterministic model that quantifies the

uncertainty in the robot’s internal model of the environment and permits statistical

refinement from the robot’s sensor suite.

 The LANL object dataset – A small but challenging dataset that contains

reflective objects, and includes several objects with similar shapes and different

sizes. This dataset is publicly available by contacting the UT Nuclear Robotics

Group.

 A prototype GUI interface that communicates information about the model

quality to the system operator. This allows the operator to make decisions

regarding the appropriate level of autonomy.

These contributions lay the groundwork for a formalized decision making framework for

transitional autonomy by providing the ability to quantify environmental uncertainty.

And while this document ends without fully solving the robot vision problem, it does

provide a strong foundation upon which the UT NRG can continue to develop advanced

perception capabilities that support deployment of manipulators for unstructured

 140

materials handling tasks in DOE facilities. It also provides for public consumption a new

avenue for the vision community to further explore solutions for autonomous object

recognition and pose estimation.

 141

Appendix A: CPH recognition ROS package code

The following code is also available on the NRG code repository as well as

Southwest Research Institute’s ROS repository.

cph.h

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/io/pcd_io.h>
#include <iostream>
#include <flann/flann.h>
#include <math.h>

#define PI 3.14159265

class CPHEstimation{

public:

 CPHEstimation(){
 num_ybins = 5;
 num_cbins = 72;
 hist.resize(num_ybins * num_cbins,0);
 centroid.resize(3,0);
 };

 CPHEstimation(int num_y, int num_c){
 num_ybins = num_y;
 num_cbins = num_c;
 hist.resize(num_ybins * num_cbins,0);
 centroid.resize(3,0);
 };

 bool setInputCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr inputCloud){
 cloud = inputCloud;
 return 1;
 };

int compute(std::vector<float> &result){
 //compute bouding box size:
 float x_max=0, x_min=100, y_max=0, y_min = 100, z_max=0, z_min=100;
 for(unsigned int i=0; i<cloud->size(); i++){
 if(cloud->points.at(i).x > x_max)
 x_max = cloud->points.at(i).x;
 if(cloud->points.at(i).x < x_min)
 x_min = cloud->points.at(i).x;
 if(cloud->points.at(i).y > y_max)

 142

 y_max = cloud->points.at(i).y;
 if(cloud->points.at(i).y < y_min)
 y_min = cloud->points.at(i).y;
 if(cloud->points.at(i).z > z_max)
 z_max = cloud->points.at(i).z;
 if(cloud->points.at(i).z < z_min)
 z_min = cloud->points.at(i).z;
 }

 x_size = (x_max - x_min);
 y_size = (y_max - y_min);
 z_size = (z_max - z_min);

 float max_size = x_size;
 if(y_size > max_size)
 max_size = y_size;
 if(z_size > max_size)
 max_size = z_size;
 max_size*=100;

 centroid.at(0) = x_min + x_size/2;
 centroid.at(1) = y_min + y_size/2;
 centroid.at(2) = z_min + z_size/2;

 //compute feature
 hist.clear();
 hist.resize(num_cbins*num_ybins, 0.0f);
 int y,c;
 float dy = y_size/num_ybins;
 float dc = 2*PI/num_cbins;

 for(unsigned int i=0; i<cloud->size(); i++){
 //bin z component
 y = floor((cloud->points.at(i).y-y_min)/dy);
 c = floor((PI+atan2(cloud->points.at(i).z-centroid.at(2),cloud-
>points.at(i).x-centroid.at(0)))/dc);
 if(y*num_cbins+c < hist.size())
 hist.at(y*num_cbins+c)+=1.0f;
 }

 //Find tallest peak
 float max_peak = 0;
 for(unsigned int i=0; i<hist.size(); i++){
 if(hist.at(i) > max_peak)
 max_peak = (float)hist.at(i);
 }

 //Rescale cph to largest spatial extent:
 float scaleFactor = max_size/max_peak;
 for(unsigned int i=0; i<hist.size(); i++){
 hist.at(i)*=scaleFactor;

 143

 }

 //Concatenate epatial extents
 hist.push_back(x_size*100);
 hist.push_back(y_size*100);
 hist.push_back(z_size*100);

 result.clear();
 result = hist;
 return result.size();
};

private:

 std::vector<float> hist;
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, result;
 int num_ybins, num_cbins;
 float x_size, y_size, z_size;
 std::vector<float> centroid;
};

cph_recognition_node.cpp:

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>

#include <iostream>
#include <fstream>

#include <flann/flann.h>

#include <boost/filesystem.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>

#include <nrg_object_recognition/recognition.h>

#include "ros/ros.h"
#include "sensor_msgs/PointCloud2.h"
#include "cph.h"

typedef std::pair<std::string, std::vector<float> > cph_model;
std::vector<cph_model> models;
flann::Matrix<int> k_indices;

 144

flann::Matrix<float> k_distances;
flann::Matrix<float> *data;
sensor_msgs::PointCloud2 fromKinect;
ros::Publisher pub;
std::ofstream outFile;
int segCount = 0;
int num_ybins = 5; int num_rbins = 72;
int histSize = num_ybins*num_rbins+3;

inline void
nearestKSearch (flann::Index<flann::ChiSquareDistance<float> > &index, const
cph_model &model,
 int k, flann::Matrix<int> &indices, flann::Matrix<float>
&distances)
{
 // Query point
 flann::Matrix<float> p = flann::Matrix<float>(new float[model.second.size
()], 1, model.second.size ());
 memcpy (&p.ptr ()[0], &model.second.at(0), p.cols * p.rows * sizeof (int));

 indices = flann::Matrix<int>(new int[k], 1, k);
 distances = flann::Matrix<float>(new float[k], 1, k);
 index.knnSearch (p, indices, distances, k, flann::SearchParams (512));
 delete[] p.ptr ();
}

bool
loadHist (const boost::filesystem::path &path, cph_model &cph)
{
 //path is the location of the file being read.
 std::ifstream featureFile;
 featureFile.open(path.string().c_str(), std::ifstream::in);
 cph.second.clear();
 float value;
 for(unsigned int i=0; i<histSize; i++){
 featureFile >> value;
 cph.second.push_back(value);
 }
 cph.first = path.string ();

 return (true);
}

void
loadFeatureModels (const boost::filesystem::path &base_dir, const std::string
&extension,
 std::vector<cph_model> &models)
{
 if (!boost::filesystem::exists (base_dir) &&
!boost::filesystem::is_directory (base_dir))
 return;

 145

 for (boost::filesystem::directory_iterator it (base_dir); it !=
boost::filesystem::directory_iterator (); ++it)
 {
 if (boost::filesystem::is_directory (it->status ()))
 {
 std::stringstream ss;
 ss << it->path ();
 pcl::console::print_highlight ("Loading %s (%lu models loaded so
far).\n", ss.str ().c_str (), (unsigned long)models.size ());
 loadFeatureModels (it->path (), extension, models);
 }
 if (boost::filesystem::is_regular_file (it->status ()) &&
boost::filesystem::extension (it->path ()) == extension)
 {
 cph_model m;
 if (loadHist (base_dir / it->path ().filename (), m))
 models.push_back (m);
 }
 }
}

bool recognize_cb(nrg_object_recognition::recognition::Request &srv_request,
 nrg_object_recognition::recognition::Response &srv_response)
{
 //create knn index
 flann::Index<flann::ChiSquareDistance<float> > index (*data,
flann::LinearIndexParams ());
 index.buildIndex ();

 pcl::PointCloud<pcl::PointXYZ>::Ptr cluster (new
pcl::PointCloud<pcl::PointXYZ>);
 pcl::fromROSMsg(srv_request.cluster, *cluster);

 // Create cph estimation.
 CPHEstimation cph(num_ybins,num_rbins);

 //Hold results:
 std::string label, angleStr;
 int angle;
 Eigen::Vector4f translation;

 //Demean the cloud.
 Eigen::Vector4f centroid;
 pcl::compute3DCentroid (*cluster, centroid);
 srv_response.pose.x = centroid(0);
 srv_response.pose.y = centroid(1);
 srv_response.pose.z = centroid(2);

 146

//Compute cph:
 cph.setInputCloud (cluster);
 std::vector<float> feature;
 cph.compute(feature);

 int k = 1; //number of neighbors
 cph_model histogram;
 histogram.second.resize(histSize);

 for (size_t i = 0; i < histSize; ++i)
 {
 histogram.second[i] = feature.at(i);
 }

 //KNN classification
 nearestKSearch (index, histogram, k, k_indices, k_distances);

 //determine label and pose:
 if(k_distances[0][0] < srv_request.threshold){
 //Load nearest match
 std::string cloud_name = models.at(k_indices[0][0]).first;

 cloud_name.erase(cloud_name.end()-3, cloud_name.end());
 angleStr.assign(cloud_name.begin()+cloud_name.rfind("_")+1,
cloud_name.end());
 std::string label;
 label.assign(cloud_name.begin()+5,
cloud_name.begin()+cloud_name.rfind("_"));
 angle = atoi(angleStr.c_str());
 srv_response.label = label;
 srv_response.pose.rotation = angle;
 }
 return(1);
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "cph_recongition_node");
 ros::NodeHandle n;

 loadFeatureModels (argv[1], ".csv", models);
 pcl::console::print_highlight ("Loaded %d VFH models. Creating training
data\n",
 (int)models.size ());

 // Convert data into FLANN format
 data = new flann::Matrix<float> (new float[models.size () *
models[0].second.size ()], models.size (), models[0].second.size ());

 std::cout << "data size: [" << data->rows << " , " << data->cols << "]\n";

 147

 for (size_t i = 0; i < data->rows; ++i)
 for (size_t j = 0; j < data->cols; ++j)
 *(data->ptr()+(i*data->cols + j)) = models[i].second[j];

 pcl::console::print_error ("Training data loaded.\n");

 ros::ServiceServer serv = n.advertiseService("/cph_recognition",
recognize_cb);

 ROS_INFO("cph_recognition_node ready.");

 ros::spin();

 return(1);
}

vfh_recognition_node.cpp

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/vfh.h>
#include <pcl/features/normal_3d.h>

#include <iostream>
#include <fstream>

#include <flann/flann.h>
#include <boost/filesystem.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>

#include <nrg_object_recognition/recognition.h>
#include "ros/ros.h"
#include "sensor_msgs/PointCloud2.h"

typedef std::pair<std::string, std::vector<float> > vfh_model;
std::vector<vfh_model> models;
flann::Matrix<int> k_indices;
flann::Matrix<float> k_distances;
flann::Matrix<float> *data;
//ros::Publisher recognized_pub;
sensor_msgs::PointCloud2 fromKinect;
ros::Publisher pub;

inline void

 148

nearestKSearch (flann::Index<flann::ChiSquareDistance<float> > &index, const
vfh_model &model,
 int k, flann::Matrix<int> &indices, flann::Matrix<float>
&distances)
{
 // Query point
 flann::Matrix<float> p = flann::Matrix<float>(new float[model.second.size
()], 1, model.second.size ());
 memcpy (&p.ptr ()[0], &model.second[0], p.cols * p.rows * sizeof (float));

 indices = flann::Matrix<int>(new int[k], 1, k);
 distances = flann::Matrix<float>(new float[k], 1, k);
 index.knnSearch (p, indices, distances, k, flann::SearchParams (512));
 delete[] p.ptr ();
}

bool
loadFileList (std::vector<vfh_model> &models, const std::string &filename)
{
 std::ifstream fs;
 fs.open (filename.c_str ());
 if (!fs.is_open () || fs.fail ())
 return (false);

 std::string line;
 while (!fs.eof ())
 {
 getline (fs, line);
 if (line.empty ())
 continue;
 vfh_model m;
 m.first = line;
 models.push_back (m);
 }
 fs.close ();
 return (true);
}

bool
loadHist (const boost::filesystem::path &path, vfh_model &vfh)
{
 int vfh_idx;
 // Load the file as a PCD
 try
 {
 sensor_msgs::PointCloud2 cloud;
 int version;
 Eigen::Vector4f origin;
 Eigen::Quaternionf orientation;
 pcl::PCDReader r;
 int type; int idx;

 149

 r.readHeader (path.string (), cloud, origin, orientation, version, type,
idx);

 vfh_idx = pcl::getFieldIndex (cloud, "vfh");
 if (vfh_idx == -1)
 return (false);
 if ((int)cloud.width * cloud.height != 1)
 return (false);
 }
 catch (pcl::InvalidConversionException e)
 {
 return (false);
 }

 // Treat the VFH signature as a single Point Cloud
 pcl::PointCloud <pcl::VFHSignature308> point;
 pcl::io::loadPCDFile (path.string (), point);
 vfh.second.resize (308);

 std::vector <sensor_msgs::PointField> fields;
 pcl::getFieldIndex (point, "vfh", fields);

 for (size_t i = 0; i < fields[vfh_idx].count; ++i)
 {
 vfh.second[i] = point.points[0].histogram[i];
 }
 vfh.first = path.string ();
 return (true);
}

void
loadFeatureModels (const boost::filesystem::path &base_dir, const std::string
&extension,
 std::vector<vfh_model> &models)
{
 if (!boost::filesystem::exists (base_dir) &&
!boost::filesystem::is_directory (base_dir))
 return;

 for (boost::filesystem::directory_iterator it (base_dir); it !=
boost::filesystem::directory_iterator (); ++it)
 {
 if (boost::filesystem::is_directory (it->status ()))
 {
 std::stringstream ss;
 ss << it->path ();
 pcl::console::print_highlight ("Loading %s (%lu models loaded so
far).\n", ss.str ().c_str (), (unsigned long)models.size ());
 loadFeatureModels (it->path (), extension, models);
 }

 150

 if (boost::filesystem::is_regular_file (it->status ()) &&
boost::filesystem::extension (it->path ()) == extension)
 {
 vfh_model m;
 if (loadHist (base_dir / it->path ().filename (), m))
 models.push_back (m);
 }
 }
}

bool recognize_cb(nrg_object_recognition::recognition::Request &srv_request,
 nrg_object_recognition::recognition::Response &srv_response)
{

 //create knn index
 flann::Index<flann::ChiSquareDistance<float> > index (*data,
flann::LinearIndexParams ());
 index.buildIndex ();

 pcl::PointCloud<pcl::PointXYZ>::Ptr cluster (new
pcl::PointCloud<pcl::PointXYZ>);
 pcl::fromROSMsg(srv_request.cluster, *cluster);

 // Create vfh estimation.
 pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;

 //Hold results:
 std::string label, angleStr;
 int angle;
 Eigen::Vector4f translation;

 //Demean the cloud.
 Eigen::Vector4f centroid;
 pcl::compute3DCentroid (*cluster, centroid);
 srv_response.pose.x = centroid(0);
 srv_response.pose.y = centroid(1);
 srv_response.pose.z = centroid(2);

 vfh.setInputCloud (cluster);
 //Estimate normals:
 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setInputCloud (cluster);
 pcl::search::KdTree<pcl::PointXYZ>::Ptr treeNorm (new
pcl::search::KdTree<pcl::PointXYZ> ());
 ne.setSearchMethod (treeNorm);
 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new
pcl::PointCloud<pcl::Normal>);
 ne.setRadiusSearch (0.03);
 ne.compute (*cloud_normals);

 //VFH estimation

 151

 vfh.setInputNormals (cloud_normals);
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new
pcl::search::KdTree<pcl::PointXYZ> ());
 vfh.setSearchMethod (tree);
 pcl::PointCloud<pcl::VFHSignature308>::Ptr vfhs (new
pcl::PointCloud<pcl::VFHSignature308> ());
 vfh.compute (*vfhs);

 //Load histogram
 vfh_model histogram;
 histogram.second.resize(308);
 for (size_t i = 0; i < 308; ++i)
 {
 histogram.second[i] = vfhs->points[0].histogram[i];
 }

 //Algorithm parameters
 int k = 1; //number of neighbors
 nearestKSearch (index, histogram, k, k_indices, k_distances);

 //determine label and pose:
 if(k_distances[0][0] < srv_request.threshold){
 //Load nearest match
 std::string cloud_name = models.at(k_indices[0][0]).first;
 cloud_name.erase(cloud_name.end()-8, cloud_name.end()-4);
 std::string recognitionLabel, viewNumber;
 recognitionLabel.assign(cloud_name.begin()+5,
cloud_name.begin()+cloud_name.rfind("_"));
 viewNumber.assign(cloud_name.begin()+cloud_name.rfind("_")+1,
cloud_name.end()-4);
 srv_response.label = recognitionLabel;
 srv_response.pose.rotation = atof(viewNumber.c_str());
 }
 return(1);
}

int main(int argc, char **argv)
{

 ros::init(argc, argv, "vfh_recongition_node");
 ros::NodeHandle n;

 loadFeatureModels (argv[1], ".pcd", models);
 pcl::console::print_highlight ("Loaded %d VFH models. Creating training
data\n",
 (int)models.size ());

 // Convert data into FLANN format
 data = new flann::Matrix<float> (new float[models.size () *
models[0].second.size ()], models.size (), models[0].second.size ());

 152

 std::cout << "data size: [" << data->rows << " , " << data->cols << "]\n";
 for (size_t i = 0; i < data->rows; ++i)
 for (size_t j = 0; j < data->cols; ++j)
 *(data->ptr()+(i*data->cols + j)) = models[i].second[j];

 pcl::console::print_error ("Training data loaded.\n");

 ros::ServiceServer serv = n.advertiseService("/vfh_recognition",
recognize_cb);

 ROS_INFO("vfh_recognition_node ready.");

 ros::spin();

 return(1);
}

euclidean_segmentation.cpp

#include "ros/ros.h"
#include "nrg_object_recognition/segmentation.h"

#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>

ros::Publisher plane_pub;
ros::Publisher bound_pub;
ros::Publisher cluster_pub;

bool segment_cb(nrg_object_recognition::segmentation::Request &seg_request,
 nrg_object_recognition::segmentation::Response &seg_response)
{
 // Read in the cloud data
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new
pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
 std::cout << "segmenting image..." << std::endl;
 pcl::fromROSMsg(seg_request.scene, *cloud);

 153

// Create the filtering object: downsample the dataset using a leaf size of
1cm
 pcl::VoxelGrid<pcl::PointXYZ> vg;
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new
pcl::PointCloud<pcl::PointXYZ>), cloud_filtered_0 (new
pcl::PointCloud<pcl::PointXYZ>);
 vg.setInputCloud (cloud);
 vg.setLeafSize (0.001f, 0.001f, 0.001f);
 vg.filter (*cloud_filtered_0);

 // Create the segmentation object for the planar model and set all the
parameters
 pcl::SACSegmentation<pcl::PointXYZ> seg;
 pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
 pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new
pcl::PointCloud<pcl::PointXYZ> ());
 pcl::PCDWriter writer;
 seg.setOptimizeCoefficients (true);
 seg.setModelType (pcl::SACMODEL_PLANE);
 seg.setMethodType (pcl::SAC_RANSAC);
 seg.setMaxIterations (100);
 seg.setDistanceThreshold (0.01);
 //Spatial filter.
 cloud_filtered->resize(0);
 //Parameters
 float min_x = seg_request.min_x, max_x = seg_request.max_x;
 float min_y = seg_request.min_y, max_y = seg_request.max_y;
 float min_z = seg_request.min_z, max_z = seg_request.max_z;

 for(pcl::PointCloud<pcl::PointXYZ>::iterator position=cloud_filtered_0-
>begin(); position!=cloud_filtered_0->end(); position++){
 if(position->x > min_x && position->x < max_x && position->y >
(2.145*position->z - 3.2) && position->y < (-.466*position->z + .500))
 cloud_filtered->push_back(*position);
 }
 sensor_msgs::PointCloud2 cloud_filtered_pc2;
 pcl::toROSMsg(*cloud_filtered, cloud_filtered_pc2);
 cloud_filtered_pc2.header.frame_id = "/camera_depth_optical_frame";
 bound_pub.publish(cloud_filtered_pc2);

 std::cout << "num points in spatially filtered cloud: " << cloud_filtered-
>points.size() << std::endl;
 int i=0, nr_points = (int) cloud_filtered->points.size ();
 while (cloud_filtered->points.size () > 0.5 * nr_points)
 {
 // Segment the largest planar component from the remaining cloud
 seg.setInputCloud (cloud_filtered);
 seg.segment (*inliers, *coefficients);
 if (inliers->indices.size () == 0)
 {

 154

 std::cout << "Could not estimate a planar model for the given dataset."
<< std::endl;
 break;
 }

 // Extract the planar inliers from the input cloud
 pcl::ExtractIndices<pcl::PointXYZ> extract;
 extract.setInputCloud (cloud_filtered);
 extract.setIndices (inliers);
 extract.setNegative (false);

 // Publish dominant plane
 extract.filter (*cloud_plane);
 sensor_msgs::PointCloud2 plane_pc2;
 pcl::toROSMsg(*cloud_plane, plane_pc2);
 plane_pc2.header.frame_id = "/camera_depth_optical_frame";
 plane_pub.publish(plane_pc2);

 // Remove the planar inliers, extract the rest
 extract.setNegative (true);
 extract.filter (*cloud_f);
 cloud_filtered = cloud_f;
 }

 pcl::toROSMsg(*cloud_filtered, cloud_filtered_pc2);
 cloud_filtered_pc2.header.frame_id = "/camera_depth_optical_frame";
 cluster_pub.publish(cloud_filtered_pc2);

 std::cout << "Number of points in remaining clusters: " << cloud_filtered-
>points.size() << std::endl;
 // Creating the KdTree object for the search method of the extraction
 if(cloud_filtered->points.size() > 50){
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new
pcl::search::KdTree<pcl::PointXYZ>);
 tree->setInputCloud (cloud_filtered);

 std::vector<pcl::PointIndices> cluster_indices;
 pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
 ec.setClusterTolerance (0.03); // 2cm
 ec.setMinClusterSize (75);
 ec.setMaxClusterSize (25000);
 ec.setSearchMethod (tree);
 ec.setInputCloud (cloud_filtered);
 std::cout << "extracting clusters...\n";
 ec.extract (cluster_indices);

 std::cout << "length of cluster_indices: " << cluster_indices.size() <<
std::endl;
 int j = 0;
 for (std::vector<pcl::PointIndices>::const_iterator it =
cluster_indices.begin (); it != cluster_indices.end (); ++it)

 155

 {
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new
pcl::PointCloud<pcl::PointXYZ>);
 for (std::vector<int>::const_iterator pit = it->indices.begin (); pit !=
it->indices.end (); pit++)
 cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
 cloud_cluster->width = cloud_cluster->points.size ();
 cloud_cluster->height = 1;
 cloud_cluster->is_dense = true;
 std::cout << "writing cluster to service response. It has " <<
cloud_cluster->points.size() << " points.\n";
 sensor_msgs::PointCloud2 tempROSMsg;
 pcl::toROSMsg(*cloud_cluster, tempROSMsg);
 seg_response.clusters.push_back(tempROSMsg);
 j++;
 }
 }
 return (1);
}
int main(int argc, char **argv)
{

 ros::init(argc, argv, "segmentation_node");
 ros::NodeHandle n;

 plane_pub = n.advertise<sensor_msgs::PointCloud2>("/dominant_plane",1);
 bound_pub = n.advertise<sensor_msgs::PointCloud2>("/bounded_scene",1);
 cluster_pub = n.advertise<sensor_msgs::PointCloud2>("/pre_clustering",1);
 ros::ServiceServer serv = n.advertiseService("/segmentation", segment_cb);

 ros::spin();

}

main_dataset_node.cpp

#include "ros/ros.h"
#include "std_msgs/UInt16.h"
#include <visualization_msgs/Marker.h>

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>

#include <iostream>
#include <fstream>
#include <math.h>
#include <sstream>

 156

#include <flann/flann.h>

#include <boost/filesystem.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>

#include "cph.h"
#include "nrg_object_recognition/run_data.h"
#include "nrg_object_recognition/recognition.h"
#include "nrg_object_recognition/segmentation.h"

float subtract_angle(float angle_1, float angle_2);

ros::ServiceClient cph_client, vfh_client, seg_client;
std::vector<std::vector<float> > probTable;
std::map<std::string, int> classMap;
std::vector<float> pose_dev;
int k;

ros::Publisher pan_pub;
ros::Publisher rec_pub;
ros::Publisher text_pub;
sensor_msgs::PointCloud2 cloud_to_process;

void kinect_cb(sensor_msgs::PointCloud2 fromKinect)
{
cloud_to_process = fromKinect;
}

bool test_cb(nrg_object_recognition::run_data::Request &main_request,
 nrg_object_recognition::run_data::Response &main_response)
{
 std::string objectName = main_request.object_name;
 std::stringstream fileName;
 std::vector<float> pcc_row(k,0); //will hold class conditional
probabilities. P(c|testObject)
 std::vector<float> filtered_result(k,0); //holds filtered result.

 nrg_object_recognition::recognition rec_srv;
 int num_objects = 0;
 std::string angleStr;
 float angle=0, pose_err = 0, cum_err=0, filtered_pose_err=0, cum_filt_dev=0;

 //Noise generator:
 boost::mt19937 mers;
 mers.seed(static_cast<unsigned int>(std::time(0)));
 boost::normal_distribution<float> dist(0, main_request.noise_level);

 157

 boost::variate_generator<boost::mt19937 , boost::normal_distribution<float>
> noise(mers,dist);

 std::cout << "test running...\n";
 int avgSize = 0;
 int size_idx = 0;
 //For each test file:
 for(boost::filesystem::directory_iterator it ("test"); it !=
boost::filesystem::directory_iterator (); ++it){
 if (boost::filesystem::is_regular_file (it->status ()) &&
boost::filesystem::extension (it->path ()) == ".pcd")
 {
 //Set up probabilistic filters:
 std::vector<float> classProb;
 Eigen::Matrix4f K, Sigma, Q, I;
 Eigen::Vector4f pose;
 Q(0,0) = .005f; Q(1,1) = .005f; Q(2,2) = .005f; Q(3,3) = 0.1;
 I.setIdentity();

 //start with uniform prior
 classProb.clear();
 classProb.resize(7,(float)1/7.0f);

 //Start with high covariance:
 Sigma(0,0) = 1000; Sigma(1,1) = 1000; Sigma(2,2) = 1000; Sigma(3,3) =
1000;

 //Hold results:
 std::string label, angleStr;
 int angle, z;
 Eigen::Vector4f translation;

 int cloudSize=0;

 //Iterate through noisy samples
 for(unsigned int j=0; j<main_request.num_samples; j++){

 //Read .pcd file.
 fileName.str("");
 fileName << "test/" << it->path().filename().c_str();
 pcl::PointCloud<pcl::PointXYZ>::Ptr cluster (new
pcl::PointCloud<pcl::PointXYZ>);
 pcl::io::loadPCDFile (fileName.str(), *cluster);

 //Add noise to the z channel.
 for(size_t idx = 0; idx < cluster->points.size(); idx++){
 cluster->points[idx].z += noise();
 }

 pcl::toROSMsg(*cluster, rec_srv.request.cluster);

 158

 rec_srv.request.threshold = 10000; //(nearest neighbor no matter how
far.)

 if(main_request.method == 0){
 cph_client.call(rec_srv);
 }
 else if(main_request.method == 1){
 vfh_client.call(rec_srv);
 }
 num_objects++;

 //Increment appropriate row.
 z = classMap[rec_srv.response.label];
 pcc_row.at(z)++;

 //compute error in pose estimate, and accumulate squared error.
 std::string fileNameString = fileName.str();
 angleStr.assign(fileNameString.begin()+fileNameString.rfind("_")+1,
fileNameString.end()-3);
 angle = atof(angleStr.c_str()); //angle is ground truth angle
 translation(0) = rec_srv.response.pose.x; translation(1) =
rec_srv.response.pose.y; translation(2) = rec_srv.response.pose.z;
 pose_err = subtract_angle(angle, rec_srv.response.pose.rotation);
 cum_err += pow(pose_err, 2);

 //Filter results:
 //Bayes filter for class probability:
 //Compute denominator:
 float bayesDen = 0;
 for(unsigned int ck=0; ck<7; ck++){
 bayesDen += probTable.at(ck).at(z)*classProb.at(ck);
 }
 //Update P(C|z)
 for(unsigned int cj=0; cj<7; cj++){
 classProb.at(cj) = probTable.at(cj).at(z)*classProb.at(cj)/bayesDen;
 }

 //Filter the pose estimate info in:
 if(j==0){
 pose(3) = rec_srv.response.pose.rotation;
 }

 else{
 Q(3,3) = pose_dev.at(z);
 std::cout << "Q: " << Q << std::endl;
 K = Sigma*(Sigma + Q).inverse();
 std::cout << "K: " << K << std::endl;
 float newAngle = pose(3) +
K(3,3)*subtract_angle(rec_srv.response.pose.rotation, pose(3));
 std::cout << "newAngle: " << newAngle << std::endl;
 if(newAngle < 0)

 159

 newAngle += 360;
 pose = pose + K*(translation-pose);
 if(newAngle > 360)
 newAngle -= 360;
 pose(3) = newAngle;
 Sigma = (I-K)*Sigma;
 std::cout << "Sigma: " << Sigma << std::endl;
 }
 std::cout << "pose: " << pose(3) << std::endl;
 }
 //increment bin of label
 for(unsigned int class_it = 0; class_it < 7; class_it++){
 if(classProb.at(class_it) > classProb.at(z))
 z = class_it;
 }
 filtered_result.at(z)++;
 cum_filt_dev += pow(subtract_angle(pose(3),angle),2);//Sigma(3,3);
 }
 }
 std::cout << "done.\n";
 main_response.sigma_pose = pow(cum_err/num_objects, .5);
 for(unsigned int i=0; i<pcc_row.size(); i++){
 pcc_row.at(i) = pcc_row.at(i)/num_objects;
 }
 for(unsigned int i=0; i<pcc_row.size(); i++){
 filtered_result.at(i) =
main_request.num_samples*filtered_result.at(i)/num_objects;
 }

 main_response.rec_rate = pcc_row.at(classMap[objectName]);
 main_response.prob_dist = pcc_row;
 main_response.sigma_filtered =
pow(main_request.num_samples*cum_filt_dev/num_objects,.5);
 main_response.filt_dist = filtered_result;

 return(1);
}

bool live_cb(nrg_object_recognition::run_data::Request &main_request,
 nrg_object_recognition::run_data::Response &main_response)
{
 std_msgs::UInt16 command;
 command.data = 0;
 ros::Rate loop_rate(.1);
 pan_pub.publish(command);
 loop_rate.sleep();

 std::string objectName = main_request.object_name;
 std::vector<float> pcc_row(k,0); //will hold class conditional
probabilities. P(c|testObject)
 std::vector<float> filtered_result(k,0); //holds filtered result.

 160

 nrg_object_recognition::recognition rec_srv;
 nrg_object_recognition::segmentation seg_srv;
 int num_objects = 0;
 std::string angleStr;
 float angle=0, pose_err = 0, cum_err=0, filtered_pose_err=0, cum_filt_dev=0;

 std::cout << "test running...\n";
 //For each view
 for(unsigned int i=0; i<main_request.num_images; i++){
 //Set up probabilistic filters:
 std::vector<float> classProb;
 Eigen::Matrix4f K, Sigma, Q, I;
 Eigen::Vector4f pose;
 Q(0,0) = .005f; Q(1,1) = .005f; Q(2,2) = .005f; Q(3,3) = 0.1;
 I.setIdentity();

 //start with uniform prior
 classProb.clear();
 classProb.resize(k,(float)1/7.0f);

 //Start with high covariance:
 Sigma(0,0) = 1000; Sigma(1,1) = 1000; Sigma(2,2) = 1000; Sigma(3,3) =
1000;

 //Hold results:
 std::string label, angleStr;
 int angle, z;
 Eigen::Vector4f translation;

 //Take several images.
 for(unsigned int j=0; j<main_request.num_samples; j++){
 ros::spinOnce();
 //Call segmentation service...
 seg_srv.request.scene = cloud_to_process;
 seg_srv.request.min_x = -.75, seg_srv.request.max_x = .4;
 seg_srv.request.min_y = -5, seg_srv.request.max_y = .5;
 seg_srv.request.min_z = 0.0, seg_srv.request.max_z = 1.15;
 seg_client.call(seg_srv);

 //could iterate through all clusters here in future app.
 if(seg_srv.response.clusters.size() > 0){
 rec_srv.request.cluster = seg_srv.response.clusters.at(0);
 rec_srv.request.threshold = 10000;
 //Call recognition service...
 if(main_request.method == 0){
 cph_client.call(rec_srv);
 }
 else if(main_request.method == 1){
 vfh_client.call(rec_srv);
 }

 161

 num_objects++;

 //Increment appropriate row.
 z = classMap[rec_srv.response.label];
 pcc_row.at(z)++;

 //compute error in pose estimate, and accumulate squared error.
 angle = command.data; //angle is ground truth angle

 translation(0) = rec_srv.response.pose.x; translation(1) =
rec_srv.response.pose.y; translation(2) = rec_srv.response.pose.z;
 pose_err = subtract_angle(angle, rec_srv.response.pose.rotation);
 std::cout << "label: " << rec_srv.response.label << std::endl;
 cum_err += pow(pose_err, 2);

 //Visualization://
 //build filename.
 std::stringstream fileName;
 fileName << "data/" << rec_srv.response.label << "_" <<
rec_srv.response.pose.rotation << ".pcd";
 //Load and convert file.
 pcl::PointCloud<pcl::PointXYZ>::Ptr trainingMatch (new
pcl::PointCloud<pcl::PointXYZ>);
 sensor_msgs::PointCloud2 rosMsg;
 pcl::io::loadPCDFile(fileName.str(), *trainingMatch);
 //Translate to location:
 Eigen::Vector4f centroid;
 pcl::compute3DCentroid(*trainingMatch, centroid);
 pcl::demeanPointCloud<pcl::PointXYZ> (*trainingMatch, centroid,
*trainingMatch);

 Eigen::Vector3f translate;
 Eigen::Quaternionf rotate;
 translate(0) = rec_srv.response.pose.x;
 translate(1) = rec_srv.response.pose.y;
 translate(2) = rec_srv.response.pose.z;
 rotate.setIdentity();
 pcl::transformPointCloud(*trainingMatch, *trainingMatch, translate,
rotate);

 pcl::toROSMsg(*trainingMatch, rosMsg);
 //Add transform to header
 rosMsg.header.frame_id = "/camera_depth_optical_frame";
 //Publish to topic /recognition_result.
 rec_pub.publish(rosMsg);

 ///end visualization//

 float bayesDen = 0;
 for(unsigned int ck=0; ck<7; ck++){
 bayesDen += probTable.at(ck).at(z)*classProb.at(ck);

 162

 }
 //Update P(C|z)
 for(unsigned int cj=0; cj<k; cj++){
 classProb.at(cj) = probTable.at(cj).at(z)*classProb.at(cj)/bayesDen;
 }

 //Filter the pose estimate info in:
 if(j==0){
 pose(3) = rec_srv.response.pose.rotation;
 }

 else{
 Q(3,3) = pose_dev.at(z);
 std::cout << "Q: " << Q << std::endl;
 K = Sigma*(Sigma + Q).inverse();
 std::cout << "K: " << K << std::endl;
 float newAngle = pose(3) +
K(3,3)*subtract_angle(rec_srv.response.pose.rotation, pose(3));
 std::cout << "newAngle: " << newAngle << std::endl;
 if(newAngle < 0)
 newAngle += 360;
 pose = pose + K*(translation-pose);
 if(newAngle > 360)
 newAngle -= 360;
 pose(3) = newAngle;
 Sigma = (I-K)*Sigma;
 std::cout << "Sigma: " << Sigma << std::endl;
 }
 std::cout << "pose: " << pose(3) << std::endl;

 //Put result in rviz marker for visualization
 visualization_msgs::Marker object_text_marker;
 object_text_marker.header.frame_id = "/camera_depth_optical_frame";
 object_text_marker.header.stamp = ros::Time();
 object_text_marker.type =
visualization_msgs::Marker::TEXT_VIEW_FACING;
 object_text_marker.action = visualization_msgs::Marker::ADD;
 object_text_marker.pose.position.x = rec_srv.response.pose.x;
 object_text_marker.pose.position.y = rec_srv.response.pose.y-.10;
 object_text_marker.pose.position.z = rec_srv.response.pose.z;
 object_text_marker.pose.orientation.w = 1.0;

 object_text_marker.scale.x = .03;
 object_text_marker.scale.y = .03;
 object_text_marker.scale.z = .03;

 object_text_marker.color.a = 1.0;
 object_text_marker.color.r = 0.0;
 object_text_marker.color.g = 1.0;
 object_text_marker.color.b = 0.0;

 163

 std::stringstream object_text_ss;
 object_text_ss << "Label: " << rec_srv.response.label << "\nP: " <<
classProb.at(z) << "\nPose: " << pose(3);
 object_text_marker.text = object_text_ss.str();
 text_pub.publish(object_text_marker);

 }
 } //end sample iterator
 //increment bin of label
 for(unsigned int class_it = 0; class_it < k; class_it++){
 if(classProb.at(class_it) > classProb.at(z))
 z = class_it;
 }
 filtered_result.at(z)++;
 cum_filt_dev += pow(subtract_angle(pose(3),angle),2);//Sigma(3,3);

 command.data += 360/main_request.num_images;
 pan_pub.publish(command);
 loop_rate.sleep();
 }//end image iterator
 std::cout << "done.\n";
 main_response.sigma_pose = pow(cum_err/num_objects, .5);
 for(unsigned int i=0; i<pcc_row.size(); i++){
 pcc_row.at(i) = pcc_row.at(i)/num_objects;
 }
 for(unsigned int i=0; i<pcc_row.size(); i++){
 filtered_result.at(i) = filtered_result.at(i)/main_request.num_images;
 }

 main_response.rec_rate = pcc_row.at(classMap[objectName]);
 main_response.prob_dist = pcc_row;
 main_response.sigma_filtered =
pow(main_request.num_samples*cum_filt_dev/num_objects,.5);
 main_response.filt_dist = filtered_result;

 return(1);
}

int main(int argc, char **argv)
{

 ros::init(argc, argv, "main_dataset_node");
 ros::NodeHandle n;

 ros::ServiceServer offline_serv = n.advertiseService("/run_test", test_cb);
 ros::ServiceServer live_serv = n.advertiseService("/live_test", live_cb);
 ros::ServiceServer marker_test = n.advertiseService("/marker_test",
marker_cb);

 164

 cph_client =
n.serviceClient<nrg_object_recognition::recognition>("cph_recognition");
 vfh_client =
n.serviceClient<nrg_object_recognition::recognition>("vfh_recognition");
 seg_client =
n.serviceClient<nrg_object_recognition::segmentation>("segmentation");

 ros::Subscriber kin_sub = n.subscribe("/camera/depth_registered/points", 1,
kinect_cb);
 pan_pub = n.advertise<std_msgs::UInt16>("/pan_command",1);
 rec_pub = n.advertise<sensor_msgs::PointCloud2>("/recognition_result",1);
 text_pub = n.advertise<visualization_msgs::Marker>("/object_text", 1);

 std::ifstream objectListFile;
 objectListFile.open(argv[1], std::ios::in);
 std::string tempName, objectLine;
 k = 0;
 std::vector<float> probRow;

 std::cout << "reading file...\n";
 while(std::getline(objectListFile, objectLine)){
 std::istringstream objectSS(objectLine);
 //Record object name and add to map.
 objectSS >> tempName;
 std::cout << tempName << std::endl;
 classMap.insert(std::pair<std::string, int>(tempName, k));
 //Get pose sigma
 objectSS >> tempName;
 pose_dev.push_back(atof(tempName.c_str()));

 //populate probability table (line k;)
 while(objectSS >> tempName){
 probRow.push_back(atof(tempName.c_str()));
 }
 probTable.push_back(probRow);
 probRow.clear();
 k++;
 }
 std::cout << "done\n";
 if(k != probTable.at(0).size())
 std::cout << "Error: Probability table is not square!" << std::endl;

 for(unsigned int i=0; i<k; i++){
 for(unsigned int j=0; j<k; j++){
 std::cout << probTable.at(i).at(j) << " ";
 }
 std::cout << std::endl;
 }

 std::cout << probTable.size() << " objects in set.\n";

 165

 ROS_INFO("main_dataset_node ready!");
 ros::spin();
}
float subtract_angle(float angle_1, float angle_2){
 if(angle_1-angle_2 > -180 && angle_1-angle_2 < 180)
 return(angle_1-angle_2);
 else if(angle_1-angle_2 < -180)
 return(angle_1-angle_2+360);
 else
 return(angle_1-angle_2-360);
}

pose.msg

float32 x
float32 y
float32 z
float32 rotation

recognition.srv:

sensor_msgs/PointCloud2 cluster
float32 threshold

string label
nrg_object_recognition/pose pose

segmentation.srv

sensor_msgs/PointCloud2 scene
float32 min_x
float32 max_x
float32 min_y
float32 max_y
float32 min_z
float32 max_z

sensor_msgs/PointCloud2[] clusters

run_data.srv

string object_name
uint16 method
uint16 num_samples
uint16 num_images
float32 noise_level

float32 rec_rate
float32 sigma_pose
float32[] prob_dist
float32 sigma_filtered
float32[] filt_dist

 166

Appendix B: Input probability tables

The tables listed below contain the statistical data necessary for probabilistic

filtering on the LANL dataset. They contain the prior probabiliiteis P(c|z), as well as the

standard devition of the pose rotation. The tables are slightly modified from the actual

data so that they do not contain any zeros. This prevents the posterior probabilities from

going to zero in the event of misclassifications not observed during statisitcs collection.

cph.list

broom 16.8 .987 .006 .002 .001 .001 .001 .001 .001 .001 .001
fitting 63.2 .003 .977 .001 .001 .001 .001 .001 .001 .001 .001
lathe_knob 9.7 .001 .005 .983 .001 .001 .001 .001 .001 .001 .001
lg_bowl 94.8 .001 .001 .001 .958 .001 .001 .001 .013 .001 .001
lg_can 105.1 .001 .001 .001 .001 .991 .136 .001 .001 .001 .001
med_can 64.6 .002 .001 .008 .001 .001 .835 .001 .001 .001 .001
scale 18.6 .001 .004 .001 .001 .001 .021 .991 .001 .038 .001
sm_bowl 82.8 .001 .001 .001 .034 .001 .001 .001 .979 .009 .001
sm_can 99.6 .001 .003 .001 .001 .001 .002 .001 .001 .931 .001
tape 117.7 .001 .001 .001 .001 .001 .001 .001 .001 .001 .991

vfh.list

broom 15.5 .803 .006 .002 .001 .001 .001 .001 .001 .001 .001
fitting 74.9 .036 .879 .019 .001 .001 .002 .054 .004 .009 .002
lathe_knob 11.6 .001 .002 .905 .001 .001 .001 .001 .001 .001 .001
lg_bowl 78.3 .001 .001 .001 .807 .001 .001 .001 .235 .001 .001
lg_can 109.9 .001 .001 .003 .001 .991 .050 .001 .001 .001 .001
med_can 103.9 .001 .001 .008 .001 .001 .934 .001 .001 .001 .001
scale 28.0 .010 .050 .005 .001 .001 .001 .918 .001 .001 .001
sm_bowl 101.4 .005 .001 .001 .185 .001 .001 .001 .754 .001 .001
sm_can 103.0 .142 .058 .063 .001 .001 .008 .022 .001 .983 .001
tape 96.3 .001 .001 .001 .001 .001 .001 .001 .001 .001 .990

 167

Appendix C: Training data collection

The following ROS and Arduino code was used for data collection. This code is

available in the NRG repository, but not on any public ROS repository. Because CPH and

VFH features are not invariant to viewpoint, data collection must be done in situ.

Therefore this code is not general and serves only as an example of how one might go

about collecting data. Table C-1 is a bill of materials for constructing an inexpensive data

collection table.

Table C-1. Pan/tilt Bill of Materials

Item Qty Vendor Vendor P/N

Arduino Uno microcontroller 1 Adafruit tech. 50

Tilt mechanism 1 servocity.com SPT400

Pan mechanism 1 servocity.com SPG400A-BM-360

Servo 2 servocity.com HS-7955TG

pan_tilt.pde (Arduino code)

#include <Servo.h>
#include <ros.h>
#include <std_msgs/Int32.h>

Servo tilt;
Servo pan;
int tiltHome = 59, panHome = 234;
int tiltCommand, panCommand;
int pos = 0; // variable to store the servo position

ros::NodeHandle n;

void pan_cb(const std_msgs::Int32 & panAngle){
 if(panAngle.data+panHome >= 0 && panAngle.data+panHome <=360)
 {
 panCommand = panAngle.data+panHome;
 }
 else if(panAngle.data+panHome < 0)
 {
 panCommand = panAngle.data+panHome + 360;
 }

 168

 else if(panAngle.data+panHome > 360)
 {
 panCommand = panAngle.data+panHome-360;
 }
 pan.write(panCommand/2);
}

void tilt_cb(const std_msgs::Int32 & tiltAngle){
 if(tiltAngle.data+tiltHome > 0 && tiltAngle.data+tiltHome < 360)
 {
 tiltCommand = tiltAngle.data+tiltHome;
 }
 else if(tiltAngle.data+tiltHome < 0)
 {
 tiltCommand = tiltAngle.data+tiltHome + 360;
 }
 else if(tiltAngle.data+tiltHome > 360)
 {
 tiltCommand = tiltAngle.data+tiltHome-360;

 }

 tilt.write(tiltCommand);
}

ros::Subscriber<std_msgs::Int32> pan_sub("/pan_command", &pan_cb);
ros::Subscriber<std_msgs::Int32> tilt_sub("/tilt_command", &tilt_cb);

void setup()
{
 tilt.attach(8,1000,1500);
 pan.attach(10,1050,1950);
 n.initNode();
 n.subscribe(pan_sub);
 n.subscribe(tilt_sub);

}

void loop()
{
 n.spinOnce();
 delay(1);
}

feature_extraction.cpp

#include <iostream>
#include <fstream>

 169

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
// PCL specific includes
#include <pcl/ros/conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/features/vfh.h>
#include <pcl/features/normal_3d.h>

#include "data_collection/process_cloud.h"
#include "euclidean_segmentation.h"
#include "nrg_object_recognition/segmentation.h"
#include "cph.h"

 ros::ServiceClient seg_client;

bool cloud_cb(data_collection::process_cloud::Request &req,
 data_collection::process_cloud::Response &res)
{
 //Segment from cloud:
 std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clouds;
 nrg_object_recognition::segmentation seg_srv;

 seg_srv.request.scene = req.in_cloud;
 seg_srv.request.min_x = -.75, seg_srv.request.max_x = .4;
 seg_srv.request.min_y = -5, seg_srv.request.max_y = .5;
 seg_srv.request.min_z = 0.0, seg_srv.request.max_z = 1.15;
 seg_client.call(seg_srv);

 pcl::PointCloud<pcl::PointXYZ>::Ptr cluster (new
pcl::PointCloud<pcl::PointXYZ>);
pcl::fromROSMsg(seg_srv.response.clusters.at(0), *cluster);
 std::cout << "cluster has " << cluster->height*cluster->width << "
points.\n";

 //Write raw pcd file (objecName_angle.pcd)
 std::stringstream fileName_ss;
 fileName_ss << "data/" << req.objectName << "_" << req.angle << ".pcd";
 std::cout << "writing raw cloud to file...\n";
 std::cout << fileName_ss.str() << std::endl;
 pcl::io::savePCDFile(fileName_ss.str(), *cluster);
 std::cout << "done.\n";

 //Write vfh feature to file:
 pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh;
 vfh.setInputCloud (cluster);
 //Estimate normals:
 pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
 ne.setInputCloud (cluster);
 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new
pcl::search::KdTree<pcl::PointXYZ> ());

 170

 ne.setSearchMethod (tree);
 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new
pcl::PointCloud<pcl::Normal>);
 ne.setRadiusSearch (0.03);
 ne.compute (*cloud_normals);
 vfh.setInputNormals (cloud_normals);
 //Estimate vfh:
 vfh.setSearchMethod (tree);
 pcl::PointCloud<pcl::VFHSignature308>::Ptr vfhs (new
pcl::PointCloud<pcl::VFHSignature308> ());
 // Compute the feature
 vfh.compute (*vfhs);
 //Write to file: (objectName_angle_vfh.pcd)
 fileName_ss.str("");
 std::cout << "writing vfh descriptor to file...\n";
 fileName_ss << "data/" << req.objectName << "_" << req.angle << "_vfh.pcd";
 pcl::io::savePCDFile(fileName_ss.str(), *vfhs);
 std::cout << "done.\n";

 //Extract cph
 std::vector<float> feature;
 CPHEstimation cph(5,72);
 cph.setInputCloud(cluster);
 cph.compute(feature);
 //Write cph to file. (objectName_angle.csv)
 std::ofstream outFile;
 fileName_ss.str("");
 fileName_ss << "data/" << req.objectName << "_" << req.angle << ".csv";
 outFile.open(fileName_ss.str().c_str());
 std::cout << "writing cph descriptor to file...\n";
 for(unsigned int j=0; j<feature.size(); j++){
 outFile << feature.at(j) << " ";
 }
 outFile.close();
 fileName_ss.str("");
 std::cout << "done.\n";
 res.result = 1;
}

int main(int argc, char **argv)
{

 ros::init(argc, argv, "feature_extractor");

 ros::NodeHandle n;

 //Offer services that can be called from the terminal:
 ros::ServiceServer joint_test_serv = n.advertiseService("process_cloud",
cloud_cb);

 171

 seg_client =
n.serviceClient<nrg_object_recognition::segmentation>("segmentation");

 ros::spin();

 return 0;
}

data_collection.cpp

//code contributed by Alexandria Gallagher
#include "ros/ros.h"
#include "std_msgs/UInt16.h"
#include "std_msgs/String.h"
#include "data_collection/dataCollect.h"
#include "data_collection/process_cloud.h"
#include <sensor_msgs/PointCloud2.h>_
#include <sstream>

ros::Publisher pan_pub;
ros::ServiceClient pan_client;
sensor_msgs::PointCloud2 cloud_to_process;

void kinect_cb(sensor_msgs::PointCloud2 fromKinect)
{
cloud_to_process = fromKinect;
}

bool rotate_cb(data_collection::dataCollect::Request &req,
data_collection::dataCollect::Response &res)
{
std_msgs::UInt16 command;
command.data=0;
data_collection::process_cloud srv;

srv.request.objectName = req.objectName;

while(command.data<360)
{
ros::Rate loop_rate(.2);

srv.request.in_cloud = cloud_to_process;
srv.request.angle = command.data;
pan_client.call(srv);
srv.response.result = 1;

pan_pub.publish(command);
ros::spinOnce();
loop_rate.sleep();
command.data += req.delta;
}

 172

res.result = 1;
std::cout << "Status: " << srv.response.result << "\n";
return 1;
}

int main(int argc, char **argv)
{
ros::init(argc, argv, "pan360_data_collect");
ros::NodeHandle n;

pan_pub = n.advertise<std_msgs::UInt16>("/pan_command",1);
ros::ServiceServer pan_serv = n.advertiseService("/pan360_data_collect",
rotate_cb);
ros::Subscriber pan_sub = n.subscribe("/camera/depth_registered/points", 1,
kinect_cb);
pan_client = n.serviceClient<data_collection::process_cloud>("process_cloud");

ROS_INFO("Ready!");
ros::spin();

return 0;
}

process_cloud.srv

sensor_msgs/PointCloud2 in_cloud
float32 angle
string objectName

int32 result

dataCollect.srv

string objectName
int32 delta

int32 result

 173

Appendix D: ROS recognition quickstart tutorial

The following tutorial describes how to replicate the recognition results achieved

in this dissertation using the ROS system developed as part of this work. This tutorial

also appears on the NRG wiki page.

Preliminaries

Before proceeding, make sure you are using a computer that has ROS installed, as

well as the openni_camera and openni_launch packages. To do this, check out the ROS

page on the wiki. Then, make sure that the ROS directory of your local NRG repository is

listed in the ROS_PACKAGE_PATH variable of ~/.bashrc. Your ~/.bashrc file should

have some lines that look kind of like this:

If you have recently cloned the NRG repository to your local machine, you will

need to make sure that the ROS package management tools can find the data_collection

and nrg_object_recognition packages, and that the packages have been built. From a

terminal:

Before continuing, you should also be fairly familiar with basic ROS concepts

like nodes and services. If not, you should take some time to familiarize yourself with

the tutorials.

export ROS_PACKAGE_PATH=:$ROS_PACKAGE_PATH:~/nrg/ROS
export ROS_WORKSPACE=~/nrg/ROS

rospack profile
rosmake data_collection
rosmake nrg_object_recognition

https://wikis.utexas.edu/display/NRG/ROS
https://wikis.utexas.edu/display/NRG/ROS
http://www.ros.org/wiki/ROS/Tutorials

 174

nrg_object_recognition Quickstart

Object recognition happens in two phases:

 Training: The recognition system learns what interesting objects look like

 Test: The recognition system locates and identifies previously learned

objects in the scene.

Training:

The data_collection package is used to train the classifier. You will need to use

the servo-driven data collection table pictured below. Verify that the Kinect and the

Arduino on the data collection table are plugged in. For each object you wish to

recognize, you must collect multi-view training images. To do this start each of these

from a terminal:

Note that all ROS nodes run as their own processes so you will need to do each of

the above from a different terminal (ctrl+shift+T to get a new tab in a terminal window).

Once all of the above nodes are running, you call a service from the command line. It

takes two arguments: the object name and the angular resolution you want in the training

data. Here is an example:

roslaunch openni_launch openni.launch
rosrun data_collection pan360_data_collect
rosrun data_collection feature_extraction
rosrun nrg_object_recognition segmentation_node
rosrun rosserial_python /dev/ttyACM0
rosrun rviz rviz

rosservice call pan360_data_collect test_object 1

 175

This will take some time. The object will now be imaged at 1 degree increments.

If you have rviz running, subscribe to the PointCloud2 published by the segmentation

node. You should see something like Figure D-1

Figure D-1. Rviz display during data collection.

The object is segmented out from the scene and feature files are written to <current

directory>/data.

Testing:

Currently, nrg_object_recognition/main_dataset_node makes good example code.

It was written to measure performance of the classifier, but it provides a convenient way

to experiment with the object recognition package and to get a feel for how it works.

 176

First, get the ROS system running:

The main_dataset_node offers some services that can be requested from a

terminal. For this quickstart, we will use the live_test service. Place an object on the

data_collection table. Then, from a terminal:

The arguments in the service request are the object's name, the method (0 for

CPH), the number of images to take at each angle (1), and the number of angles at which

to take the images. What should happen now is that the system will attempt to recognize

the object on the data collection table at 8 different angles. The main_dataset_node will

print the recognition result at each angle to the screen. The point cloud of the training

sample to which the test image was matched is published on a ROS topic and displayed

in rviz. In rviz, you should see something like this:

roslaunch openni_launch openni.launch
rosrun rosserial_python /dev/ttyACM0
rosrun nrg_object_recognition segmentation_node
rosrun nrg_object_recognition cph_recognition_node
rosrun main_dataset_node
rosrun rviz rviz

rosservice call live_test <object_name> 0 1 8 0

 177

Figure D-2. Rviz display during testing

In this image, the recognition/pose estimation result is shown in magenta.

Congratulations! you are now recognizing objects.

 178

Appendix E: PCL code

This version of CPH can be built with the pcl trunk. The file cph.cpp should be

placed in the features/src directory. The cph.h file should be placed in features/include,

and the cph.hpp file should be placed in features/include/impl. This implementation

separates the CPH feature from ROS, and more tightly integrates it with PCL for use in

cluster recognition applications.

The following disclaimer must accompany each of the files below. For brevity, it

is only printed here once.

disclaimer

/* Point Cloud Library (PCL) - www.pointclouds.org
 * Copyright (c) 2012- Brian O'Neil
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided
 * with the distribution.
 * * Neither the name of Willow Garage, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

 179

cph.cpp

#include <pcl/point_types.h>
#include <pcl/impl/instantiate.hpp>
#include <pcl/features/cph.h>
#include <pcl/features/impl/cph.hpp>

// Instantiations of specific point types
#ifdef PCL_ONLY_CORE_POINT_TYPES
 PCL_INSTANTIATE_PRODUCT(CPHEstimation,
((pcl::PointXYZ)(pcl::PointXYZI)(pcl::PointXYZRGB)(pcl::PointXYZRGBA)))
#else
 PCL_INSTANTIATE_PRODUCT(CPHEstimation, (PCL_XYZ_POINT_TYPES))
#endif

cph.hpp

#ifndef PCL_FEATURES_IMPL_CPH_H_

#define PCL_FEATURES_IMPL_CPH_H_

#include <pcl/features/cph.h>

#include <pcl/common/common.h> //May not need this

///

template<typename PointInT, typename PointOutT> void

pcl::CPHEstimation<PointInT, PointOutT>::compute (PointCloudOut

&output)

{

 // Copy the header

 output.header = input_->header;

 // Resize the output dataset

 // Important! We should only allocate precisely how many elements we

will need, otherwise

 // we risk at pre-allocating too much memory which could lead to

bad_alloc

 // (see http://dev.pointclouds.org/issues/657)

 output.width = output.height = 1;

 output.is_dense = input_->is_dense;

 output.points.resize (1);

 // Perform the actual feature computation

 computeFeature(output);

 Feature<PointInT, PointOutT>::deinitCompute ();

}

///

template <typename PointInT, typename PointOutT> void

pcl::CPHEstimation<PointInT, PointOutT>::computeFeature (PointCloudOut

&output)

 180

{

 output.points.resize (1);

 output.width = 1;

 output.height = 1;

 //compute bouding box size:

 float x_max=0, x_min=100, y_max=0, y_min = 100, z_max=0, z_min=100;

 for(unsigned int i=0; i<input_->size(); i++){

 if(input_->points.at(i).x > x_max)

 x_max = input_->points.at(i).x;

 if(input_->points.at(i).x < x_min)

 x_min = input_->points.at(i).x;

 if(input_->points.at(i).y > y_max)

 y_max = input_->points.at(i).y;

 if(input_->points.at(i).y < y_min)

 y_min = input_->points.at(i).y;

 if(input_->points.at(i).z > z_max)

 z_max = input_->points.at(i).z;

 if(input_->points.at(i).z < z_min)

 z_min = input_->points.at(i).z;

 }

 x_size_ = (x_max - x_min);

 y_size_ = (y_max - y_min);

 z_size_ = (z_max - z_min);

 float max_size = x_size_;

 if(y_size_ > max_size)

 max_size = y_size_;

 if(z_size_ > max_size)

 max_size = z_size_;

 max_size*=100;

 centroid_(0) = x_min + x_size_/2;

 centroid_(1) = y_min + y_size_/2;

 centroid_(2) = z_min + z_size_/2;

 //compute feature

 hist_.clear();

 hist_.resize(nr_bins_vert_*nr_bins_azmt_, 0.0f);

 int y,c;

 float dy = float(y_size_)/float(nr_bins_vert_);

 float dc = float(2.0*PI)/float(nr_bins_azmt_);

 for(unsigned int i=0; i<input_->size(); i++){

 //bin z component

 y = int(floor((input_->points.at(i).y-y_min)/dy));

 c = int(floor((PI+atan2(input_->points.at(i).z-centroid_(2),input_-

>points.at(i).x-centroid_(0)))/dc));

 if(y*nr_bins_azmt_+c < hist_.size())

 hist_.at(y*nr_bins_azmt_+c)+=1.0f;

 }

 181

 //Find tallest peak

 float max_peak = 0;

 for(unsigned int i=0; i<hist_.size(); i++){

 if(hist_.at(i) > max_peak)

 max_peak = (float)hist_.at(i);

 }

 //Rescale cph to largest spatial extent:

 float scaleFactor = max_size/max_peak;

 for(unsigned int i=0; i<hist_.size(); i++){

 hist_.at(i)*=scaleFactor;

 }

 //Stick size onto the end and BAM! scale variance.

 hist_.push_back(x_size_*100);

 hist_.push_back(y_size_*100);

 hist_.push_back(z_size_*100);

 //Populate output:

 for(unsigned int i=0; i<hist_.size(); i++){

 output.points[0].hist[i] = hist_.at(i);

 }

}

#endif // PCL_FEATURES_IMPL_CPH_H_

cph.h

#ifndef PCL_FEATURES_CPH_H_

#define PCL_FEATURES_CPH_H_

#ifndef PI

#define PI 3.14159265

#endif

#include <pcl/point_types.h>

#include <pcl/features/feature.h>

struct CPHSignature

 {

 float hist[363];

 };

 POINT_CLOUD_REGISTER_POINT_STRUCT(CPHSignature,

 (float[363], hist, hist))

namespace pcl

{

 /** \brief CPHEstimation estimates the Cylindrical Projection

Histogram (VFH) descriptor for a given point cloud

 * \author Brian O'Neil

 * \ingroup features

 */

 182

 template<typename PointInT, typename PointOutT = CPHSignature>

 class CPHEstimation : public Feature<PointInT, PointOutT>

 {

 public:

 using Feature<PointInT, PointOutT>::feature_name_;

 using Feature<PointInT, PointOutT>::getClassName;

 using Feature<PointInT, PointOutT>::indices_;

 using Feature<PointInT, PointOutT>::input_;

 typedef typename Feature<PointInT, PointOutT>::PointCloudOut

PointCloudOut;

 typedef typename boost::shared_ptr<CPHEstimation<PointInT,

PointOutT> > Ptr;

 typedef typename boost::shared_ptr<const CPHEstimation<PointInT,

PointOutT> > ConstPtr;

 /** \brief Empty constructor. */

 CPHEstimation () : nr_bins_vert_ (5), nr_bins_azmt_ (72)

 {

 feature_name_ = "CPHEstimation";

 }

 /** \brief Overloaded computed method from pcl::Feature.

 * \param[out] output the resultant point cloud model dataset

containing the estimated features

 */

 void

 compute (PointCloudOut &output);

 private:

 void computeFeature (PointCloudOut &output);

 int nr_bins_vert_, nr_bins_azmt_;

 std::vector<float> hist_;

 //pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, result;

 float x_size_, y_size_, z_size_;

 Eigen::Vector3f centroid_;

 protected:

 };

}

#ifdef PCL_NO_PRECOMPILE

#include <pcl/features/impl/cph.hpp>

#endif

#define PCL_INSTANTIATE_CPHEstimation(T) template class PCL_EXPORTS

pcl::CPHEstimation<T>;

#endif //#ifndef PCL_FEATURES_CPH_H_

 183

References

AdaFruit Industreis. (n.d.). The Open Kinect Project. Retrieved November 1, 2012, from

http://www.adafruit.com/blog/2010/11/04/the-open-kinect-project-the-ok-prize-

get-1000-bounty-for-kinect-for-xbox-360-open-source-drivers/

Ankerst, M., Kastenmuller, G., Kriegel, H. P., & Seidl, T. (1999). 3D shape histograms

for similarity search and classification in spatial databases. Symposium on

Advances in Spatial Databases, 207-226.

Automate 2013, Chicago, IL. Jan 21-24 2013. http://www.automate2013.com

Austin, D. J., & Jensfeldt, P. (2000). Using multiple Gaussian hypotheses to represent

probability distributions for mobile robots. Proceedings of the IEEE Inernational

Conference on Robotics and Automation (ICRA).

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Bruemmer, D. J., Marble, J. L., McKay, M. D., & Dudenhoeffer, D. D. (2002). Dynamic-

Autonomy for Remote Robotic Sensor Deployment. Spectrum 2002.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, 2, 14-23.

Canny, J. (1987). The complexity of robot motion planning. Cambridge, MA: MIT Press.

Carreira, J., & Sminchisescu, C. (2008a). Constrained parametric min-cuts for automatic

object segmentation. IEEE Intl. Conference on Computer Vision and Pattern

Recognition (CVPR).

Carreira, J., & Sminchisescu, C. (2010b). Object recognition as ranking holistic figure-

ground hypotheses. IEEE Intl. Conference on Computer Vision and Pattern

Recognition (CVPR).

Caruna, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised

learning algorithms. International Conference on Machine Learning (ICML), 161-

168.

Chang, C., & Lin, C. (2011). LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3), 27:1-27:27.

Coonley, M. S. (Ed.). (1st/2nd Quarters 2008). ARIES turns 10. Actinide Research

Quarterly.

Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human

detection. IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), 886-893.

Dellaert, F., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile

robots. Proceedings of the International Conference on Robotics and Automation

(ICRA).

 184

Deng, J., Berg, A., Li, K., & Fei-Fei, L. (2010). What does classifying more than 10,000

image categories tell us? European Conference on Computer Vision (ECCV).

Dryden, I. L., & Mardia, K. V. (1998). Statistical Shape Analysis. John Wiley & Sons.

Duda, R., Hart, P., & Stork, D. (2001). Pattern Classification (2nd ed.). New York:

Wiley-Interscience.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004, September). Efficient graph-based

image segmentation. International Journal of Computer Vision, 59(2), 167-181.

Forssen, P. E., & Lowe, D. G. (2007). Shape descriptors for maximally stable extremal

regions. IEEE Intl. International Conference on Computer Vision (ICCV).

Glover, J., Rus, D., & Roy, N. (2008). Probabilistic models of object geometry for grasp

planning. Procedings of Robotics: Science and Systems (RSS 2008).

Gould, S., Rodgers, J., Elidan, G., & Koller, D. (2008). Multi-class segmentation with

relative location prior . International Journal of Computer Vision (IJCV).

Harris, C. G., & Stephens, M. J. (1988). A combined corner and edge detector.

Proceedings of the Fourth Alvey Vision Conference, 147-151.

Hinterstossier, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., & Lepetit, V. (2012, May).

Gradient response maps for real-time detection of texture-less objects. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 34(5), 876-888.

Hoey, J., & Poupart, P. (2005). Solving POMDPs with continuous or large discrete

observation spaces. Proceedings of the Intl. Joint Conference on Artificial

Intelligence.

Hoiem, D., Efros, A., & Hebert, M. (2005). Geometric context from a single image.

Proceedings of the IEEE Intl. Conference on Computer Vision (ICCV).

Johnson, A., & Hebert, M. (1999, May). Using spin images for efficient object

recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 21(5), 433-449.

Kaebling, L. P., Cassandra, A. R., & Kurien, J. A. (1996). Acting under uncertainty:

Discrete Bayesian models for mobile robot navigation. Proceedings of the

IEEE/RSJ Conference on Robotics and Systems (IROS).

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. ASME

Journal of basic engineering, 82, 35-45.

Kavraki, L., Latombe, J. C., & Overmars, M. (n.d.). Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Transactions on

Robotics and Automation, 12, 566-580.

Kazhdan, M., Funkhouser, T., & Rusinkiewics, S. (2003, June). Rotation invariant

spherical harmonic representation of 3D shape descriptors. Symposium on

Geometry and Processing.

 185

Kim, K., Chalidabhongse, T. H., & Harwood, D. (2004). Background modeling and

subtraction by codebook construction. IEEE Intl. Conference on Image

Processing (ICIP).

Klasing, K., D. Althoff, D., Wollherr, D., & Buss, M. (2009, May). Comparison of

surface normal estimation methods for range sensing applications. Intl. Conf. on

Robotics and Automation, 3206-3211.

Knoll, J. A. (2007). Complete workcell modeling for robot control and coordination

(Unpublished master's thesis). University of Texas, Austin, TX.

Lai, K., Bo, L., Ren, X., & Fox, D. (2010). A large-scale hierarchical multi-view RGB-D

dataset. IEEE International Conference on Robotics and Automation (ICRA).

Lai, K., Bo, L., Ren, X., & Fox, D. (2011, August). A scalable, tree-based approach for

joint object and pose recognition. AAAI Conference on Artificial Intelligence

(AAAI).

Liu, T., Sun, J., Zheng, N., Tang, X., & H, Shum. (2007). Leaning to detect a salient

object. IEEE Intl. Conference on Computer Vision and Pattern Recognition

(CVPR).

Lowe, D. G. (1999). Object recognition from local scale-invariant features. IEEE Intl

Conference on Computer Vision (ICCV).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision (IJCV), 60(2), 91-110.

Matas, J., Chum, O., Urban, M., & Pajdla, T. (2002, September). Robust wide baseline

stereo from maximally stable extremal regions. 13th British Machine Vision

Conference (BMVC), 384-393.

Maybeck, P. S. (1990). The Kalman Filter: An introduction to concepts. In I. J. Cox & G.

T. Wilfong (Eds.), Autonomous robot vehicles. Springer Verlag.

Mesa Imaging. (2012). Swiss Ranger SR 4000. Retrieved from http://www.mesa-

imaging.ch/profview4k.php

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., .

. . Van Gool, L. (2005). A comparison of affine region detectors. International

Conference on Computer Vision (IJCV), 65(1), 43-72.

Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic

algorithm configuriation. Intl. Conf. on Computer Vision Theory and

Applications.

Navalpakkam, V., & Itti, L. (2006). An integrated model of top-down and bottom-up

attention form optimizing detection speed. IEEE Intl. Conference on Computer

Vision and Pattern Recognition (CVPR), 2049-2056.

 186

O'Neil, B., Pryor, M., & Landsberger, S. (2011). A graph-based modeling approach for

automating neutron radiography experimentation. In ANS EPRRSD - 13th

Robotics & remote systems for hazardous environments. Knoxville, TN.

Point Grey Research. (n.d.). Bumblebee 2. Retrieved from

http://www.ptgrey.com/products/bumblebee2/bumblebee2_stereo_camera.asp

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., . . . Wheeler, R.

(2009). ROS: an open-source Robot Operating System. International Conference

on Robotics and Automation.

Reif, J. H. (1979). Complexity of the Mover's Problem and Generalizations. Proceedings

of the 20th IEEE Symposium on Foundations of Computer Science, 421-427.

Rusu, R. (2009). Semantic 3D Object Maps for Everyday Manipulation in Human Living

Environments (Doctoral dissertation, Technical University Munich, Munich,

Germany). Retrieved from

http://files.rbrusu.com/publications/RusuPhDThesis.pdf

Rusu, R. B., Beetz, M., & Bloodow, N. (2009, May). Fast Point Feature Histograms for

3D registration. International Conference on Robotics and Automation.

Rusu, R. B., Bradski, G., Thibaux, R., & Hsu, J. (2010, October). Fast 3D recognition

and pose using the Viewpoint Feature Histogram. 23rd IEEE/RSJ International

Conference on Robotics and Systems.

Rusu, R. B., & Cousins, S. (2011, May 9). 3D is here: Point Cloud Library (PCL).

International Conference Robotics and Automation.

Rusu, R. B., Marton, Z. C., Blodow, N., & Beetz, M. (2008). Learning informative point

classesfor the acquisition of object model maps. 10th Intl. Conference on Control

Automation, Robotics, and Vision.

Shi, J., & Malik, J. (2000, August). Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888-905.

SICK Sensor Intelligence. (2010, April 15). LMS-200 Data Sheet [Brochure].

Sivic, J., & Zisserman, A. (2003). Video google: A text retrievla approach to object

matching in videos. IEEE Intl. Conference on Computer Vision (ICCV).

Smith, R. C., & Cheeseman, P. (1986). On the representation of spatial uncertainty.

International Journal of Robotics Research, 52, 56-68.

Stauffer, C., & Grimson, W. E. (1999). Adaptive background mixture models for real-

time tracking. IEEE Conference on computer vision and pattern recognition

(CVPR).

Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic Robotics. Cambridge, MA: MIT

Press.

 187

Velodyne Lidar, Inc. (n.d.). Velodyne HDL-64E Laser Rangefinder. Retrieved 2012, from

http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx

Wu, T. F., & Lin, C. J. (2004). Probability estimates for multi-class classification by

pairwise coupling. Journal of Machine Learning Research, 5, 975-1005.

Wu, Z., & Leahy, R. (1993, November). An optimal graph theoretic approach to data

clustering: Theory and its application to image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(11), 1101-1113.

 188

Vita

Brian Erick O’Neil was born in Tempe, AZ in 1978 to his parents Pat and Barb

O’Neil. Brian graduated from Arizona State University with a B.S. in Political Science in

2001. He then worked as a professional flight instructor and airline pilot before returning to

Arizona State where he earned a second B.S. degree in Mechanical Engineering. Brian

entered the graduate school at The University of Texas in 2008 studying nuclear engineering

and robotics. He earned his master’s degree at UT in Mechanical Engineering in 2010. Brian

currently resides in Austin with his wife, Emily, son, Henry, and daughter, Ellen.

Permanent email: brian.erick.oneil@gmail.com

This dissertation was typed by the author

