• pcl

How does a good feature look like? Federico Tombari, University of Bologna PCL TUTORIAL @ICRA'13

A feature..what?

pointcloudlibrary

Etymology

From Anglo-Norman feture, from Old French faiture, from Latin factura.

Pronunciation

(UK) IPA: /fi:tʃə(J)/, X-SAMPA: /fi:tS@(r)/

Noun

feature (plural features)

- 1. (obsolete) One's structure or make-up; form, shape, bodily proportions. [quotations *]
- 2. An important or main item.
- 3. (media) A long, prominent, article or item in the media, or the department that creates them; frequently used technically to distinguish content from news.
- 4. Any of the physical constituents of the face (eyes, nose, etc.).
- 5. (computing) A beneficial capability of a piece of software. [quotations v]
- 6. The cast or structure of anything, or of any part of a thing, as of a landscape, a picture, a treaty, or an essay; any marked peculiarity or characteristic; as, one of the features of the landscape. [quotations v]
- 7. (archaeology) Something discerned from physical evidence that helps define, identify, characterize, and interpret an archeological site. [quotations v]
- 8. (engineering) Characteristic forms or shapes of a part. For example, a hole, boss, slot, cut, chamfer, or fillet.
- Feature is a compact but rich representation of our (3D) data
- It is designed to be invariant (or robust) to a specific class of transformations and/or set of disturbances

3D keypoint detection

📀 pointcloudlibrary

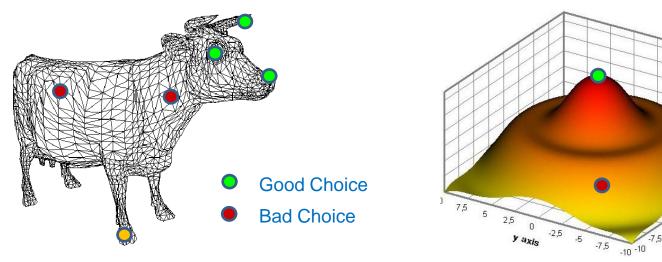
axis

x axis

-2.5

-5

- 3D keypoints are
 - **Distinctive**, i.e. suitable for effective description and matching (*globally definable*)
 - Repeatable with respect to point-of-view variations, noise, etc... (locally definable)
- Usually scale-invariance is not an issue (but better if each feature is extracted together with its characteristic scale)



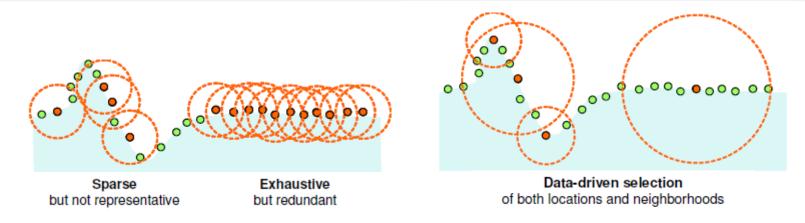
Distinctiveness vs. repeatability

pcl::Keypoints

- (for now) a small set of detectors specifically proposed for 3D point clouds and range maps
 - Intrinsic Shape Signatures (ISS) [Zhong ICCVW09]
 - NARF [Steder ICRA11]
 - (Uniform Sampling)
- Several detectors «derived» from 2D interest point detectors
 - Harris (2D, 3D, 6D) [Harris AVC88] CD
 - SIFT [Lowe IJCV04] BD
 - SUSAN [Smith IJCV95] CD
 - AGAST [Mair ECCV10] CD

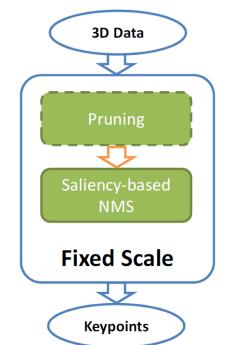
Taxonomy

pointcloudlibrary



Courtesy of Unnikrishnan & Hebert

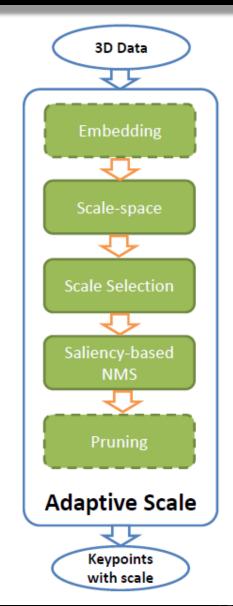
- In 3D scale is (generally) not an issue
 BUT
- The characteristic scale is still an important property of a 3D keypoint
- Several recent proposals, two main categories [Tombari IJCV13]
 - **Fixed-scale detectors:** all keypoints are detected at a specific scale (input parameter)
 - Local Surface Patches (LSP) [Chen07]
 - Intrinsic Shape Signatures (ISS) [Zhong09]
 - KeyPoint Quality (KPQ) [Mian10]
 - Heat Kernel Signature (HKS) [Sun09]



Taxonomy (2)

📀 pointcloudlibrary

- Adaptive-scale detectors: specific scale-space analysis to detect salient structures at multiple scales, associating each keypoint a characteristic scale
 - Scale space on the cloud/mesh
 - KPQ Adaptive Scale (KPQ-AS) [Mian10]
 - Salient Points (SP) [Castellani08]
 - Laplace-Beltrami Scale-Space (LBSS) [Unnikrishnan08]
 - MeshDoG [Zaharescu12]
 - Scale space on voxel maps
 - 3D-SURF [Knopp10]
 - Scale space on range images
 - Scale-dependent local shape detector [Novatnack08]
 - HK Maps [Akagunduz07])
- Need for performance assessment [Tombari13]
 - Locality repeatability / Quantity
 - Scale repeatability
 - Efficiency
 - www.vision.deis.unibo.it/keypoints3d



Intrinsic Shape Signatures

• Exploits the covariance matrix $\mathbf{M}(\mathbf{p}_i) = \frac{1}{\sum_{j=1}^k \rho_i} \sum_{j=1}^k \rho_j (\mathbf{p}_j - \mathbf{p}_i)^T$

• Let its eigenvalues, in decreasing magnitude order, be

$$\lambda_1, \lambda_2, \lambda_3$$

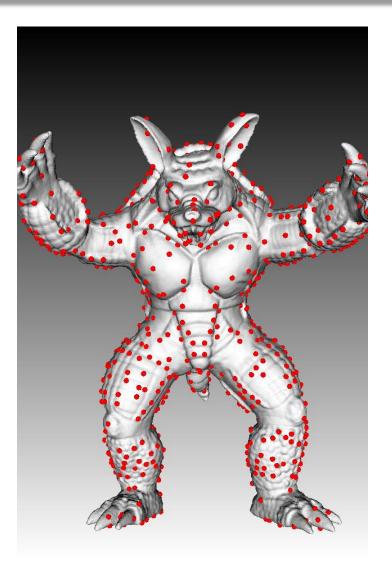
• The pruning step discards points with similar spreads along the principal directions, where a repeatable LRF cannot be defined

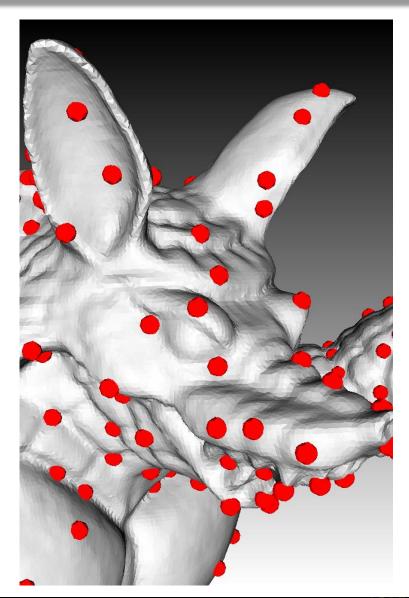
$$\frac{\lambda_2(\mathbf{p})}{\lambda_1(\mathbf{p})} < Th_{12} \wedge \frac{\lambda_3(\mathbf{p})}{\lambda_2(\mathbf{p})} < Th_{23}$$

- Saliency is the magnitude of the third eigenvalue $ho({f p})\doteq\lambda_3({f p})$
- It includes only points with large variations along each principal direction
- "Winner" of PCL 3D detector evaluation in [Filipe 2013]

🙃 pointcloudlibrary

Intrinsic Shape Signatures Opintcloudlibrary





Example

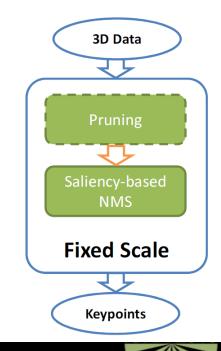
pointcloudlibrary

pcl::PointCloud<int> indices; pcl::UniformSampling<pcl::PointXYZ> uniform_sampling; uniform_sampling.setInputCloud (cloud); uniform_sampling.setRadiusSearch (0.05f); uniform_sampling.compute (indices);

pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints (new pcl::PointCloud<pcl::PointXYZ>());

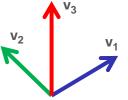
pcl::ISSKeypoint3D<pcl::PointXYZ, pcl::PointXYZ> iss_detector;

- iss_detector.setSalientRadius (support_radius);
- iss_detector.setNonMaxRadius (nms_radius);
- iss_detector.setInputCloud (cloud);
- iss_detector.compute (*keypoints);

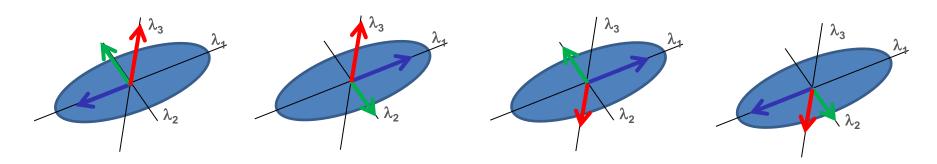


Local Reference Frame

- pointcloudlibrary
- 3 orthogonal unit vectors defined upon a local support
- Goal:
 - invariant to rotations and translations
 - robust to noise and clutter



- Common approach to deal with ambiguities in the LRF definition
 - Define **multiple LRFs** at each keypoint, providing multiple descriptions of the same keypoint
 - Cons:
 - more descriptors to be computed and matched (less efficient)
 - ambiguity pushed to the matching stage
 - Eg. EVD of the scatter matrix computed over the support as used in [Mian10] [Novatnack08] [Zhong09], provides 3 repeatable directions but **no repeatable sign** [Tombari10]
 - 4 different RFs can be obtained by enforcing the right-hand rule



LRF: example

pcl::PointCloud< pcl::ReferenceFrame >::Ptr lrfs(new pcl::PointCloud<
pcl::ReferenceFrame> ());

pcl::BOARDLocalReferenceFrameEstimation<pcl::PointXYZ, pcl::Normal, pcl::ReferenceFrame> lrf_est;

- Irf_est.setRadiusSearch (0.5f);
- Irf_est.setInputCloud (keypoints);

Irf_est.setInputNormals (cloud_normals);

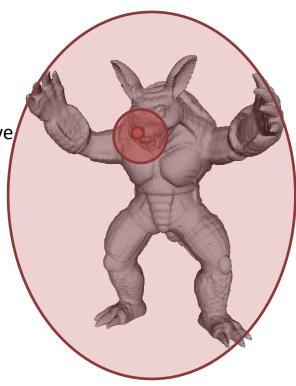
Irf_est.setSearchSurface (cloud);

Irf_est.compute (*Irfs);

Global vs local representations () pointcloudlibrary

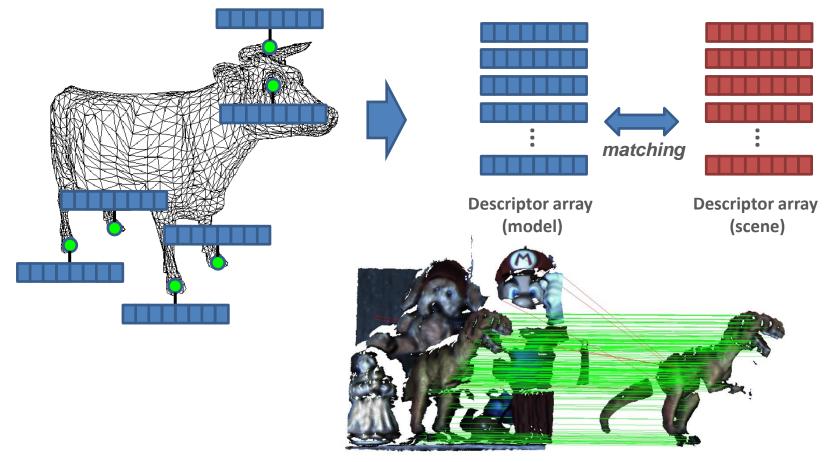
→ Description → Matching

- compact representations aimed at detecting similarities between surfaces (*surface matching*)
- based on the support size
 - Pointwise descriptors
 - Simple, efficient, but not robust to noise, often not descriptive enough
 - Local/Regional descriptors
 - Well suited to handle clutter and occlusions
 - Can be vector quantized in codebooks
 - Segmentation, registration, recognition in clutter, 3D SLAM
 - Global descriptors
 - Complete information concerning the surface is needed (no occlusions and clutter, unless pre-processing)
 - Higher invariance, well suited for **retrieval and categorization**
 - More descriptive on objects with poor geometric structure (household objects..)



Local descriptors

- Descriptive representation of the local neighborhood (*support*) of a point
- Local descriptors can embed also intensity/color information (*RGB-D descriptors*)
- Matching descriptions yields point-to-point correspondences between two surfaces



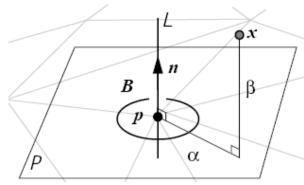
Spin Images

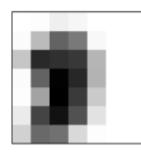
- 📀 pointcloudlibrary
- Spin Image descriptor [Johnson99] is arguably the most popular 3D local descriptor
- 2D histograms accumulating points by spinning around a repeatable axis (*normal*)

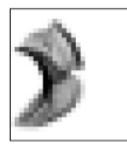


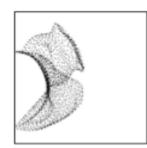
(courtesy of Johnson & Hebert)

- Rotation and translation invariant, not scale invariant
- Appreciates uniform surface sampling
- Variants: compressed-SI (PCA)
- pcl::SpinImageEstimation









Effect of bin size (courtesy of Johnson & Hebert)

Point Feature Histogram

- pointcloudlibrary
- PFH [Rusu08] computes 3 values for each pair in the neighbourhood
 - Complexity O(k²), extremely slow.
- pcl::PFHEstimation
- For each pair, it computes a LRF *u-v-w* centred on one point p_s as
 - The normal $\mathcal{U}=\mathcal{N}_{_S}$
 - The cross product between ns and the vector (pt-ps) $v=n_s imes(p_t-p_s)$
 - The cross product between the previous vectors $W = \mathcal{U} imes \mathcal{V}$
- Then, it computes and accumulates

$$\alpha = \arccos\left(v \cdot n_{t}\right)$$

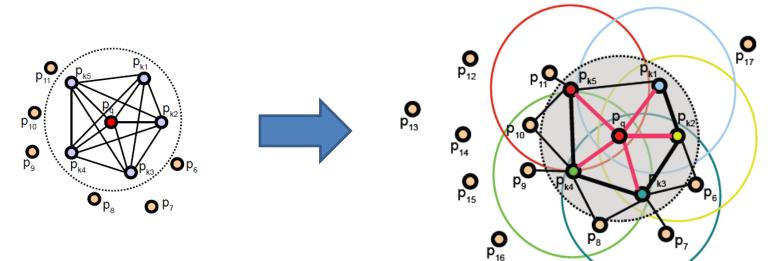
$$\phi = \arccos\left(u \cdot \frac{\left(p_{t} - p_{s}\right)}{\left\|p_{t} - p_{s}\right\|_{2}}\right)$$

$$\theta = \arctan\left(w \cdot n_{t}, u \cdot n_{t}\right)$$

Fast PFH

- FPFH [Rusu09]: approximation of PFH with linear complexity in the number of neighbors
 - Compute SPFH (Simplified PFH) between the keypoint and every neighbor
 - Combine the weighted SPFHs to form the final Fast PFH

$$FPFH(p_i) = SPFH(p_i) + \frac{1}{k} \sum_{j=1}^{k} \frac{1}{\omega_j} SPFH(p_j)$$



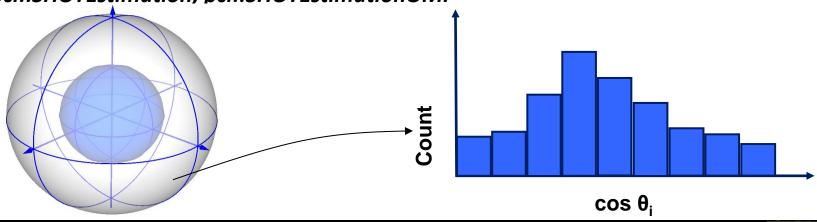
• pcl::FPFHEstimation, pcl::FPFHEstimationOMP

SHOT descriptor

pointcloudlibrary

H

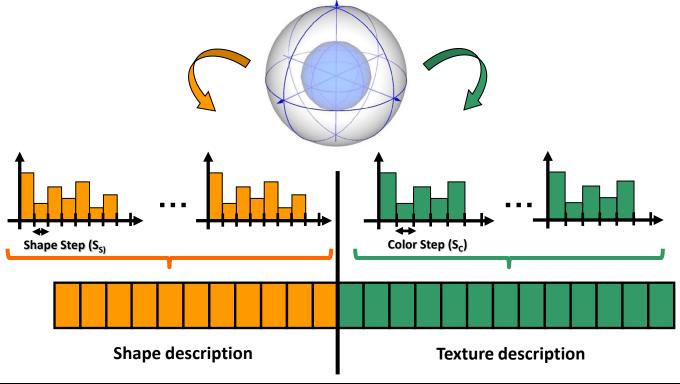
- Signatures of Histograms of OrienTations [Tombari10]
- Inspired by SIFT: computation of a geometric coarsely localized local set of histograms of first-order derivatives.
- The local support is partitioned by means of a spherical grid
- For each volume of the grid, an histogram of the cosines of the angle θi between the normal at each point and the normal at the feature point is computed.
- Quadrilinear interpolation to smooth out quantization distortions
- Normalization of the descriptor for robustness towards point density variations
- pcl::SHOTEstimation, pcl::SHOTEstimationOMP



SHOT for RGB-D data

pointcloudlibrary

- SHOT for RGB-D data [Tombari11] deploys
 - Shape, as the SHOT descriptor
 - Texture, as histograms in the Lab space
 - Pairs of *Lab* triplets (center point and its neighbor) can be compared using specific metrics (CIE94, CIE2000, ..), although the L1-norm proved to be a good trade-off
- pcl::SHOTColorEstimation, pcl::SHOTColorEstimationOMP



Code Example: descriptors

pointcloudlibrary

pcl::PointCloud<pcl::SHOT352>::Ptr descriptors (new pcl::PointCloud<pcl::SHOT352>());

pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> describer;

describer.setRadiusSearch (support_radius); describer.setInputCloud (keypoints); describer.setInputNormals (normals); describer.setSearchSurface (cloud);

describer.compute (*descriptors);

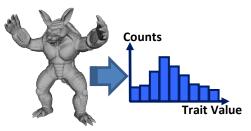
Summing up..

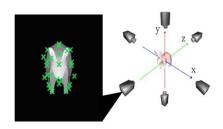
Method	Category	Unique LRF	Texture
Struct. Indexing [Stein92]	Signature	No	No
PS [Chua97]	Signature	No	No
3DPF [Sun01]	Signature	No	No
3DGSS [Novatnack08]	Signature	No	No
KPQ [Mian10]	Signature	No	No
3D-SURF [Knopp10]	Signature	Yes	No
SI [Johnson99]	Histogram	RA	No
LSP [Chen07]	Histogram	RA	No
3DSC [Frome04]	Histogram	No	No
ISS [Zhong09]	Histogram	No	No
USC [Tombari10]	Histogram	Yes	No
PFH [Rusu08]	Histogram	RA	No
FPFH [Rusu09]	Histogram	RA	No
Tensor [Mian06]	Histogram	No	No
RSD [Marton11]	Histogram	RA	No
HKS [Sun09]	Other	-	No
MeshHoG [Zaharescu09]	Hybrid	Yes	Yes
SHOT [Tombari10]	Hybrid	Yes	Yes

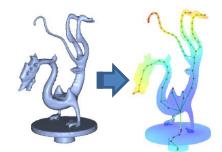
Global descriptor taxonomy

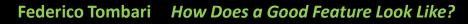
pointcloudlibrary

- Taxonomy for global descriptors [Akgul09]
- Histogram-based: accumulators of local or global features
 - Robustness, paid off with less descriptivness
 - Shape Distributions [Osada02], 3D Shape Histograms [Ankerst99], Orientation Histograms [Horn84], Viewpoint Feature Histogram (VFH) [Rusu10], Clustered-VFH [Aldoma11], OUR-CVFH [Aldoma12]
- Transform-based: Transform geometric information in a domain where representation is compact and invariant
 - Compact descriptors by retaining only a subset of (eg. the first) coefficients
 - 3D Fourier Transform [Dutagaci05], Angular Radial Tr. [Ricard05], 3D Radon Tr. [Daras04], **Spherical Harmonics** [Kazhdan03], wavelets [Laga06]
- 2D view-based: 3D surface is transformed into a set of 2D projections (range maps)
 - 2D image descriptors are computed on each 2D view
 - Fourier descriptors [Vranic 04], Zernike moments [Chen03], SIFT [Ohbuchi08], SURF, ..
- Graph-based: A graph is built out of the surface
 - Transform the graph into a vector-based numerical description
 - topology-based[Hilaga01], Reeb graph[Tung05], skeleton-based[Sundar03]









Descriptor matching

- Problem: find the kNN of a n-dimensional query vector **q** within a set of m candidates (same size)
 - Variant: find all neighbors within an hypersphere of radius **r** centered on **q**
- To speed up the brute force, fast indexing schemes
 - Kd-tree [Freidman77]
 - Hierarchical k-means tree [Fukunaga75]
 - Locality Sensitive Hashing (LSH) [Andoni06]
- Kd-tree slows down at high dimensions (too many nodes, long exploration time), need for approximate kd-tree search
 - Best Bin First [Beis97]
 - Randomized kd-tree [Silpa-Anan08]
 - FLANN [Muja09]
- Example: pcl::KdTreeFLANN<pcl::SHOT352> matcher; (in pcl_kdtree module) (also have a look at pcl::search::FlannSearch)

Acknowledgements

• Thanks to: Samuele Salti, Aitor Aldoma

