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Abstract— The problem of object localization is a well-known
problem in industrial robotics. Manufactured parts arrive at
factories as bulk goods in boxes. Single parts need to be picked
out of the boxes and have to be fed to a machine. The task
of automatically isolating single objects is known as the bin-
picking problem. Even in modern factories the task of bin-
picking is not automated widely yet. The automatization of
this task is expensive since state-of-the-art solutions require
object-class specific algorithms. In this paper we present an
applicable solution for the bin-picking problem which is based
on a standard 3d-sensor and is able to handle arbitrary objects.
Furthermore, it is robust against noise and object occlusions.
Additionally, we propose an approach for optimal grasp pose
estimation with collision avoidance that effectively reduces
system cycle times.

I. INTRODUCTION AND RELATED WORK

In the context of industrial robotics the task of object
localization is a very important one. With the self-imposed
goal of creating human friendly and ergonomic factories,
manufacturers see themselves faced with several tasks where
intelligent autonomous robots are needed. One important
example of these tasks is robotic bin-picking. By creating an
autonomic, generic and robust system, it would be possible
to spare human workers from monotonic, unergonomic and
not favorable work. For this reason much research has been
done on this field. Many publications deal with this problem
and offer a wide range of approaches towards its solution.
The proposed approaches use different sensor types and
different object detection algorithms but nearly all of them
have limitations in some aspects. Furthermore, the important
subtask of collision avoidance and grasp pose planning is not
or only very briefly mentioned in most of the publications.

Berger et al. show an approach based on plane detection
[1]. In a second step they determine the object pose of the
isolated object. Ghita and Whelan show a system that locates
box-like polyhedral objects [2]. Safranov et al. show an ap-
proach that only locates cylindric objects [3]. This is similar
to the work of Oh et al. who rely on edges of cylinders
[4]. All these works constitute interesting approaches but
have in common that they are limited to special geometries
of the objects. An object independent solution to the bin-
picking problem is shown by Kirkegaard and Moeslund
[5]. But this solution is sensitive to noise which makes it
difficult to set it up in an industrial environment. Similar
problems appear in the work of Hema et al. who need optimal
lighting conditions [6]. A very promising approach based on
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mesh simplifications and the iterative closest point algorithm
was proposed by Boehnke et al. [7]. Unfortunately, they do
not give any practical results of their system. In [8] the
Random Sample Matching (RANSAM) algorithm is used
to locate single objects in a bin. The RANSAM algorithm
was originally developed to solve the 3d puzzle problem [9].
Not focusing on specific object features this approach can
deal with arbitrary object shapes. Papazov et al. also use
this algorithm to solve the object localization problem but do
not aim at industrial applications and instead of a collision
avoidance use an impedance controlled robot [10].

Regarding the problem of collision avoidance and grasp
planning there are only a few publications that deal with this
problem. One example is the work of Schyja et al. [11] in
which the use of existing point cloud based algorithms like
RAPID [12] is proposed.

In this paper we describe a bin-picking system with
its object localization algorithm and collision avoidance
mechanism. The localization algorithm is an enhancement
of existing surface based localization techniques which over-
comes issues which, besides others, occur when dealing with
objects mainly consisting of planar faces and using scanners
with fixed viewpoints. The proposed collision avoidance
mechanism is designed to be easy to use and efficient to
calculate and is capable to estimate optimal grasp poses in
predefined regions. The described techniques are applicable
to arbitrary hardware making the system easy to implement
in industrial environments.

II. BIN-PICKING SYSTEM AND OBJECT LOCALIZATION

The proposed bin-picking system is based on 3d scans of
the bin and CAD models of the objects scrambled in it.

A. RANSAM for Industrial Bin-Picking

The basis for the RANSAM algorithm is a set of two
vertices with their appropriate normals called an oriented
point pair or ”dipole”. It serves as a generic surface feature
that can be computed in every 3d mesh. Therefore, no
specific surface features like planes or circles have to be
present in the objects that need to be located. The dipole
has the property to build 4 rotation and translation invariant
features as can be seen in Fig. 1. Using these 4 invariant
features as coordinate axes, two 4d relation tables are built.
One table for the scan data and one table for the CAD model
[8].

To locate an object, dipoles are generated alternatingly by
picking two arbitrary vertices of the scan and the model.
To estimate surface normals in the scan, a triangulation of
the points is performed. After a dipole is built and stored in
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d distance between point pu and point pv

α angle between the normal nu and vector puv

(puv is the unit vector pointing from pu to pv)
β angle between the normal nv and vector puv

δ signed angle between nu and nv around puv

(i.e. dihedral angle between the plane with normal
nu× puv and the plane with normal nv× puv)

Fig. 1. Rotation and translation invariant features of a dipole.

its relation table the other table is checked for a collision,
meaning that a similar dipole was already found in the other
data set.

If such a collision occurs, a pose hypothesis is found by
computing a unique frame that transforms the model dipole
onto the scan dipole. Due to the fact that the relation tables
are filled continuously the probability of a collision rises over
time making the algorithm faster for each new entry in the
tables. The CAD model stays constant all the time leading to
a well filled table and fast localization times during runtime.

To evaluate the hypotheses, the number of points in contact
is estimated. Owing to the fact that similar dipoles can
be found at various locations on the objects many false
hypotheses are found. To deal with this, a very fast evaluation
of each hypothesis is needed. This is done by applying a
kd-tree [13] for nearest neighbor search and using a quality
forecast by an efficient Monte-Carlo strategy.

After a valid hypothesis has been found, the well known
ICP algorithm [14] is applied to refine the pose estimate.

To complete the task of autonomously grasping parts and
moving them to a defined deposit, some kind of collision
avoidance has to be ensured. This problem will be dealt with
in Section IV.

III. LOCALIZATION AND EVALUATION IMPROVEMENT
VIA REDUNDANCY ELIMINATION

For the proposed approach it is necessary that the scan
data that is used for localization exclusively consists of the
bin content. The reason for this is the basis of the localization
algorithm. The RANSAM algorithm is based on surface data.
When applying this algorithm not to two complete models,
but to one CAD model and one scanned surface this has
to be considered. Scanning reflecting metal parts with an
optical scanner mostly leads to low point density on the
reflecting surfaces. In contrast to the objects the used bin in
the experiments was made of plastic which had much better
reflectance properties in sense of scanability leading to much
higher point densities. In this context this means that false
matchings (an object is matched into the bin) are likely to
get high qualities because the quality estimate depends on
the amount of touching points.

(a) (b)

(c) (d)

Fig. 2. Joist hanger. (a) CAD model, (b) scan from above, (c) CAD edge
model, (d) scan edges.

To overcome this issue one can simply delete the bin
points of the scan for the matching procedure and re-
include them for collision avoidance algorithms, i.e., using
a calibration of the bin pose. This is done because it also
reduces the amount of points leading to faster localization
times.

Considering the goal of a generic bin-picking solution this
leaves an issue that will be topic of the next section because
a similar problem can occur for a specific class of objects.

A. Problem Description

The problem with the bin mentioned above is a conceptual
one occurring under different circumstances. The reason is
the basis for the localization algorithm being oriented surface
patches. If the objects that are scattered in the box mainly
consist of planar faces like the joist hanger shown in Fig.
2, the issues are explainable by looking at state of the art
scanning systems that can be found in modern industrial
applications. Most of these scanning systems only determine
the distance values of 3d points in respect to some optical
center. This means the scan data is generated using only
one point of view. When scanning an object like a joist
hanger from only one side, e.g., from above, the scan data is
extremely incomplete and the point density is not distributed
uniformly. This means that faces with a normal pointing
towards the optical center will be well scanned whereas
points with normals at an angle near π/2 relative to the
viewing rays will not be visible. This can be seen in Fig.
2(b) where only two faces are completely visible.

Furthermore, the object itself contains plenty of ambi-
guities meaning that on the planar surfaces there will be
lots of similar dipoles that actually lead to false matchings.
Moreover, the identification of false matchings will not
work properly because of the incomplete scan data, which
results in false positive matchings that lead to false robot
movements. Choi et al. [15] address this problem by using
an extended set of dipoles for the search algorithm. For this
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extended set further computations have to be performed to
extract the needed parts for the dipole, namely line segments
or boundary segments.

B. Using 2d Image Analysis to Enhance the Localization
Performance

To overcome the problems of the RANSAM approach
when dealing with not uniformly distributed surface data,
a modification of the previously presented localization al-
gorithm is needed. This enhancement deals with the special
issues that occur when a scene is scanned from one viewing
direction only (the scanner is fixed and only has one viewing
direction). Regarding this, common 3d scanners not only
produce point clouds, but this point cloud can also be
understood as a depth image. Also, not only the depth values
of the scanners can be used but also the intensity of the
scanned points in the image. For a laser line scanner like
the one used in the experiments these intensities are the
reflectance values of the laser line giving hints to the surface
orientations. Both these images can be used to extract edges.
This can be done by simply applying the well-known Sobel
operator. Thus, planar surfaces are discarded and only edges
remain resulting in a much more uniform 3d point density.
Obviously, the same procedure has then to be applied to the
CAD model as well, either by using a 3d edge extraction
algorithm or by projecting the model onto the image plane
and using the same functionalities as mentioned above (see
Fig. 2 (c) and (d)).

C. Modification of the RANSAM algorithm

The RANSAM algorithm uses oriented point pairs for
localization. At this point of the work all planar faces have
been deleted. Estimating surface normals at edge points
is very unstable. To overcome this the RANSAM search
method is adapted to the new edge data sets. When no
normals are available, the used dipole would only contain
one invariant which is not enough. By adding a third point
and building a random triangle (tripole) using three random
vertices of the point cloud, three invariant features can be
computed using the three distances of the vertices . Using
this, two 3d relation tables can be built up and the algorithm
can now deal with point sets without normals. This method
was also proposed in [16].

The described pose evaluation remains the same, but only
uses the edge data which reduces the computation time and
enhances the robustness in the described scenario.

D. Advantages and Applications of Edge Variation

With the new version of the algorithm several parts of the
system can be adapted to deal with unsuitable data sets (cf.
Fig. 3). On the one hand, like mentioned above, it is possible
to only use edges for localization. But if the objects that
need to be localized are not causing the problems described
above (like the piston rods shown in Section V), the original
algorithm leads to more robust results because the dipole
contains more significant information as the tripole. There-
fore, on the other hand, it is possible to use the full data at

(a)

(b)

(c)

Fig. 3. Application of the RANSAM modification. Located Objects are
displayed in orange, scan data in gray. (a) Scan of a bin filled with four
joist hangers. (b) Erroneous localization result using the RANSAM with
dipoles. (c) Correct localization result using the tripole variation.

first and enhance the accuracy of the localization by applying
the edge version afterwards. This has the advantage that the
estimated pose of the first step can be used to generate the
edge data of the CAD model. The edge model that results
using the known viewing direction only consists of the edges
that are visible to the scanner. Furthermore, by checking if
edges in the scan data are adjacent to the edges of a located
object, false positive matchings can be dismissed. This step
can be done in 2d as well as 3d.

IV. GRASP PLANNING

As already mentioned in the introduction, in industry raw
parts are often sensitive to damages and are therefore only
allowed to be grasped at a very limited amount of areas.
Additionally, the grippers available in the portfolio of the
manufacturers are mostly parallel jaw grippers. Nevertheless,
an intelligent system for grasp planning is needed. If only a
small set of predefined grasp poses (defined relative to the
object coordinate system) is used, parts scattered in boxes
will in many cases not be accessible for the gripper even
though they could be grasped easily, hence leading to long
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cycle times when a large amount of objects needs to be
localized until one is found that is accessible. In this section
we introduce a ”semi automatic” grasp pose estimation that
overcomes the mentioned issues.

All collision handling mechanisms discussed in this sec-
tion use a CAD model of the end-effector as basis. In the
experiments a standard parallel jaw gripper was used which
was modeled using four cuboids consisting of 32 vertices
overall (see Fig. 4).

(a) (b)

Fig. 4. The gripper used in the experiments. (a) Gripper. (b) CAD model.

A. Key Grasp Frame and Collision Volume

To achieve both goals – high variety of grasp poses at
limited object regions and easy definition of these poses
– the Key Grasp Frame concept (KGF) is introduced. A
KGF consists of a starting pose for the end-effector defined
in the CAD model coordinate system, a set of degrees of
freedom (DOF) and an associated range for each DOF in
which this starting pose can be varied. This concept will
still allow a wide variety of grasping positions (due to a
quasi continuous variation of poses), while maintaining the
demands of the industry to be in control of which region of
the object classifies as a picking position.

Besides automatic grasp pose variation, a concept for pose
evaluation is needed. State of the art collision avoidance
mechanisms often use point cloud based implementations
like RAPID [12]. Looking at sensors widely used in industry
this concept does not optimally use the available data. Fixed
viewpoint scanners can be seen as generating depth images
only and no real 3d data. Interpreting the scan data in this
way, collision analysis methods can be computed completely
in 2d as depth images can be treated as simple gray valued
images.

To use the depth images as basis for collision calculations,
a depth image of the gripper model is needed, too. For
this the gripper is separated into convex subparts which is
a simple task for common grippers. Then two images for
each part are generated using the simulated grip pose by
combining the located object frame in sensor coordinates and
the KGF basis frame. One image contains the upper part and
one the lower part of the gripper.

To evaluate a given pose, simple difference images are
computed using both gripper images and the depth image
of the scan. Whenever a pixel of the upper face of the end-
effector is above the scan, but the same pixel of the lower
face is located below, a collision in that pixel of the image
is located. With the value of the differences of the pixels

Fig. 5. Visualization of the KGF Concept

and the size of the pixels an exact collision volume can be
calculated for that pixel.

Whenever both surfaces are located below the scan, no
clear evaluation can be done for that pixel because the gripper
could be in occluded free space or in occluded collisions.
This state is called threat volume.

If both faces of the gripper are above the scan, no collision
volume exists.

To evaluate the whole pose, all single pixel collision
volumes for all single convex subparts of the gripper are
summed up. The threat volume can be added to the collision
volume with a predefined scaling factor. This scaling factor
depends on the situation and the degree of safety that is
needed for the specific task.

The overall collision (and threat) volumes build a penalty
value for each pose. To avoid collisions this penalty must
be under a defined threshold. This threshold cannot be zero
because due to the real life situation, the range data is subject
to a certain level of noise. In addition, the fingers of the
end-effector are chamfered, which makes minor collisions
harmless to the hardware.

B. Optimal Grasp Pose Estimation

With the previously defined KGFs it is possible to evaluate
each pose of the end-effector using the defined set of DOFs
and their ranges. To minimize computational costs a new
range image of both, the scan and the gripper is generated
using the gripper coordinate system transformed to the base
frame of each KGF. The z-axis of the gripper being the same
as the approach vector serves as depth axis. With this new
coordinate system the scan as well as the gripper is rendered
using orthographic projection. These rendered images can
be thought of taken ”looking through the gripper” using a
virtual orthographic camera.

The area of the rendered scene is directly given by the
type of the DOF (rotational or translational) and the range
of the free parameter. The concept is shown in Fig. 5. Here
the area for rendering is shown in green scattered lines, the
base frame for two exemplary KGF as coordinate system is
shown in red and blue.

Now, for the translational DOFs a simple correlation-like
procedure of both images is performed using only the free
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DOF. The gripper image is shifted pixel-wise along its free
axis over the scan image. The collision volume is stored for
each step resulting in a collision function dependent of the
variable parameter. Using this function, all parameter values
below the collision threshold are located and used to build a
distance map for all possible collisions. The distance maps
of all subparts of the gripper are then combined resulting
in an overall optimal value for the variable parameter. The
described procedure can be efficiently implemented using
integral images introduced in [17].

In the case of a rotational DOF a preprocessing step has
to be performed. To convert the rotational problem into a
translational one, the rendered images are transformed into
polar coordinates. The following steps are then the same as
before.

After the parameters for all defined KGF are computed,
the one with the lowest penalty volume is chosen.

The collision volume that comes from this calculation is
not as accurate as possible. Due to the (possibly) tilted point
of view of the gripper relative to the scan direction threat and
collision volumes may have changed. Therefore, a second
collision volume estimation as described above is performed
using the original depth data for only the optimal frame.

To visualize the concept, an example of the algorithm
estimating an optimal pose using a rotational DOF KGF is
shown in Fig. 6.

V. EXPERIMENTAL RESULTS

A. Prototype Hardware

To evaluate the usage of the proposed approach, a proto-
type system was built up including a Stäubli RX-60 industrial
manipulator equipped with a parallel jaw gripper and a SICK
IVP Ruler E1200 laser line scanner mounted on a linear axis
(cf. Fig. 7). All computations were executed on a PC with a
3.6 GHz CPU and 8 GB of RAM.

B. Experiments

To give an experimental evaluation of the proposed system
a series of 156 pick attempts was executed. Using our small
box, this means that it was filled 12 times using 13 objects
which were randomly dropped. Besides the already shown
joist hanger (as example for a planar object) a piston rod (see
Fig. 8) (as example for a free form surface object) was used
for the experiments. Unfortunately, there was no ground truth
available describing the object poses. Nevertheless, to give
a measure of the accuracy of the approach we measured the
distance of the real end-effector after it arrived at the grasp
poses in the scan.

This measure is not very accurate but sufficient to show
the applicability of the localization approach. Furthermore,
this error includes calibration errors of the scanner and the
robot as well as errors in the kinematic parameters of the
robot. The average error of this measure was 1.1 mm with a
standard deviatation of 0.2 mm leading to a pick success rate
of 100% which means that all grasp attempts of the robot
were successfull and no collisions occured during the test
series.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Example for the optimal grasp pose estimation algorithm only
using the palm of the gripper. The KGF is centered in the hole of the
object. The part will be grasped by opening the gripper. (a) Depth image
of the scan rendered in gripper coordinates, centered and oriented using the
base frame of the KGF (blue) at a located object (orange) surrounded by
obstacles that would lead to a collision (1 & 2). Dark values are near, bright
values are far. (b) Depth image of the gripper palm model. (c) Section of
the depth image, reduced by all pixels that do not collide with the gripper
due to their height or distance to the KGF base frame. (d) Polar coordinate
representation of the gripper palm (green, below) and the interesting parts
of the scan (red, above) respectively. This data is used to solve the best pose
problem. (e) Collision function dependent on rotational DOF (above) and
distance function to all occuring collisions (below) with defined collision
threshold t. (f) Superimposed result of the optimal pose.

To generate valid pick poses we used 3 different KGFs
with both, rotational and translational DOFs. The KGFs were
defined manually. After an object has been detected, one
KGF after another is evaluated. As soon as a possible grasp
frame is computed this frame is executed. The case that an
object that lies under other objects is located occurs and
is purposely not avoided. If this object can be picked, the
resulting movements in the bin often changes unpickable
objects poses and enables the robot to grasp these parts.

The average time in which an object was localized and an
optimal pick pose generated measured from the moment on
the scan data was available was 5.5 seconds with a standard
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(a)

Fig. 7. Prototype bin-picking system.

(a) (b)

Fig. 8. Piston rod. (a) CAD model, (b) scan from above.

deviation of 2.6 seconds. This measure includes situations in
which the first located object was not pickable and a second
one was located. Regarding only the attempts in which the
first localization led to valid grasp poses (which was the case
in 85.9% of the test cases) the average time reduces to 4.5
seconds with a standard deviation of 0.3 seconds. The time to
scan the bin as well as the robot movement was not measured
because these times are very dependent on the used scanner,
robot, workspace, etc.

The implementation of the system is not parallel so that
all KGFs are processed in a row each taking approx. 0.1-0.3
seconds dependent on the dof type. The computation time
can therefore be reduced by parallelizing the single KGFs.
Furthermore, the search algorithm can be parallelized, as
demonstrated in [16] which is not done in the experiments.

VI. CONCLUSION AND OUTLOOK

This document presents an approach for a generic bin-
picking system. It can be built up using commercially
available hardware only and is applicable to many kinds of
objects. A prototype using the described approach shows
its great potential. By introducing an easy to implement
variation of the localization algorithm the system even works
for objects that are hard to locate using a surface based
localization algorithm and a sensor that has a fixed viewpoint
(see Fig. 3).

To optimally use the available data, a collision avoidance
mechanism was introduced that can also be used to choose
optimal grasp poses for the picking procedure. This algo-
rithm can effectively reduce cycle times of the system be-
cause the automatically computed parameters for predefined

degrees of freedom mostly lead to valid grasp poses for the
first localized object which often could not have been grasped
using predefined static grasp poses.

To enhance the applicability of the proposed system for
industrial applications, the computation times should be
optimized. This can be done by parallelizing the individual
algorithms and using multi core systems.
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