
Fast Point Feature Histograms (FPFH) for 3D Registration

Radu Bogdan Rusu, Nico Blodow, Michael Beetz
Intelligent Autonomous Systems, Technische Universität München

{rusu,blodow,beetz}@cs.tum.edu

Abstract— In our recent work [1], [2], we proposed Point
Feature Histograms (PFH) as robust multi-dimensional features
which describe the local geometry around a point p for 3D point
cloud datasets. In this paper, we modify their mathematical
expressions and perform a rigorous analysis on their robustness
and complexity for the problem of 3D registration for overlap-
ping point cloud views. More concretely, we present several
optimizations that reduce their computation times drastically
by either caching previously computed values or by revising
their theoretical formulations. The latter results in a new type
of local features, called Fast Point Feature Histograms (FPFH),
which retain most of the discriminative power of the PFH.
Moreover, we propose an algorithm for the online computation
of FPFH features for realtime applications. To validate our
results we demonstrate their efficiency for 3D registration and
propose a new sample consensus based method for bringing
two datasets into the convergence basin of a local non-linear
optimizer: SAC-IA (SAmple Consensus Initial Alignment).

I. INTRODUCTION

In this paper we tackle the problem of consistently aligning
various overlapping 3D point cloud data views into a com-
plete model (in a rigid sense), also known as 3D registration.
A solution to this can be found by formulating it as an
optimization problem, that is, by solving for the best rotation
and translation (6 DOF) between the datasets such that the
distance between the overlapping areas of the datasets is
minimal, given an appropriate metric space. Without any
information on their initial pose in space or the datasets’
overlapping areas, the problem is even more difficult and
most optimization techniques are susceptible to fail in finding
the best possible solution. This is because the function to
be optimized is multidimensional and has local optimum
solutions possibly close to the global one.

A simple classification of 3D rigid registration methods
can be made based on the type of the underlying optimization
method used: global or local. Perhaps the most well known
efforts in the first category are based on global stochastic
optimization using Genetic Algorithms [3] or evolutionary
techniques [4], with their major deficiency being the actual
computation time. A lot of the work done in 3D registration
however falls into the second category, and the most popular
registration method to date is indubitably the Iterative Closest
Point (ICP) algorithm [5], [6].

The ICP method has seen many improvements from its
original form, from using non-linear optimization meth-
ods [7], [8], finding good initial guesses [9], [10], or es-
timating better point features [9], [11], [12], to addressing
the problem of ICP’s computational complexity [13], [14],
to name a few.

Our present contributions fall within the area of feature
estimation and selection for point correspondence search,
used in geometrical-based alignment methods which bring
the datasets into the convergence basin of non-linear opti-
mization algorithms. The work present in this paper con-
stitutes incremental work from [1], [2], [15], [16]. Due
to space constraints and since we already covered related
publications which treat initiatives similar to ours there, we
will not address them again here. Instead, throughout the
remaining of the paper we will reiterate their usage through
brief discussions and refer the reader to the most appropriate
reference. The key contributions of the research reported in
this paper include the following ones:
• optimizations of the PFH computations that reduce run

time drastically by reordering the dataset and caching
previously computed values;

• a revised set of features to form Fast Point Feature
Histograms (FPFH) that can be computed online and
which have a computational complexity of O(k) (as
opposed to O(k2) for PFH) while still retaining most
of the descriptive power of the PFH.

• a Sample Consensus based method for the initial align-
ment of two datasets to fall into the convergence basin
of a local non-linear optimizer (SAC-IA).

The remainder of this paper is organized as follows. The
next section (Section II) introduces the Point Feature His-
tograms (PFH). In Section III we revise the PFH theoretical
formulations and create the Fast Point Feature Histogram
(FPFH). Section IV presents the applications of FPFH for the
3D registration problem using a new sample consensus based
initial alignment algorithm, and to test the FPFH efficiency
on noisy scanned datasets, we perform several experiments
and discuss the results in Section V. Finally, we conclude
and give insight on our future work in section VI.

II. POINT FEATURE HISTOGRAMS (PFH)
As we previously proposed in [1], [16], Point Feature His-

tograms (PFH) are informative pose-invariant local features
which represent the underlying surface model properties at
a point p. Their computation is based on the combination
of certain geometrical relations between p’s nearest k neigh-
bors. They incorporate 〈x, y, z〉 3D point coordinates and
estimated surface normals 〈nx, ny, nz〉, but are extensible
to the use of other properties such as curvature, 2nd order
moment invariants, etc.

In this section we perform a brief analysis on the compu-
tational model of the features, discuss their persistence over

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 3212

multiple scales (i.e. different number of k neighbors), and
give insight on how points on certain geometric surfaces are
represented in our feature space. Furthermore, we propose
an optimized algorithm that can be used to drastically de-
crease the features’ computation time by caching previously
computed values and re-using them on reordered datasets.

To illustrate and exemplify the theoretical aspects of our
proposed methods, we will use the Stanford bunny model,
because it is one of the best known and widely spread
datasets in the 3D registration community.

A. Theoretical aspects
In its most basic form, the computation of a PFH at a point

p relies on the presence of 3D coordinates and estimated
surface normals, and is computed as follows: i) for each
point p, all of p’s neighbors enclosed in the sphere with a
given radius r are selected (k-neighborhood); ii) for every
pair of points pi and pj (i 6= j) in the k-neighborhood of p
and their estimated normals ni and nj (pi being the point
with a smaller angle between its associated normal and the
line connecting the points), we define a Darboux uvn frame
(u = ni, v = (pj − pi) × u, w = u × v) and compute the
angular variations of ni and nj as follows:

α = v · nj
φ = (u · (pj − pi))/||pj − pi||
θ = arctan(w · nj , u · nj)

(1)

In our previous work [2], [15], besides the three features
mentioned above, we used a fourth one characterizing the
Euclidean distance from pi to pj . However, recent experi-
ments showed that its exclusion from the PFH presents no
significant decrease in robustness, especially when computed
in 2.5D datasets where the distance between neighboring
points increases as we move away from the viewpoint. For
these scans, where the local point density influences this
feature dimension, omitting the fourth feature value proved
beneficial.

Figure 1 presents an influence region diagram of the PFH
computation for a query point (pq). pq is marked with red and
placed in the middle of a circle (sphere in 3D) with radius
r, and all its k neighbors (points with distances smaller than
the radius r) are fully interconnected in a mesh.

Fig. 1. The influence region diagram for a Point Feature Histogram. The
query point (red) and its k-neighbors (blue) are fully interconnected in a
mesh.

B. Persistence analysis

In large datasets, the number of points with the same
or similar PFH might be very big and could lead to the
so called “sliding” problem in registration, where points on
certain surfaces do not contribute positively to the global
distance metric due to ambiguous correspondences [17].
A solution would be to either segment out these surfaces
at an a priori step, or to neglect all points with features
which are considerably dominant in the dataset and thus
concentrate on more prominent points. The latter can be
achieved by performing a so called persistence analysis, that
is observing which histograms are salient at which scale (k-
neighborhood).

The PFH selection criterion at a given scale is motivated
by the fact that in a given metric space, one can compute the
distances from the mean PFH of a dataset to all the features
of that dataset. As shown in [2], this distance distribution
can be approximated with a Gaussian distribution, and using
simple statistical heuristics, features whose distances are
outside the µ±β ·σ interval can be selected as less common
(therefore unique), where µ represents the mean PFH of
the dataset and σ represents the standard deviation of the
distance distribution. The parameter β controls the width of
the interval and acts as a band-stop filter cut-off parameter.

To account for density variations but also different scales,
the above is repeated over a discrete scaling interval (i.e.
each point is enclosed in spheres with varying radii and its
PFH values recomputed), and points which are marked as
unique over the entire interval are marked as persistent. In
particular, a point p is persistent if: i) its PFH is selected
as unique with respect to a given radius; and ii) its PFH is
selected in both ri and ri+1, that is:

Pf =
n−1⋃
i=1

[Pfi
∩ Pfi+1] (2)

where Pfi represents the set of points which are selected
as unique for a given radius ri.

The values of the ri radii set are selected based on the size
of the features that need to be detected. Based on the sensor’s
resolution, the neighborhood can contain anything from a
few points to thousands or even more. For most datasets,
fixing the value of α between 1..2 will give satisfactory
results. Figure 2 presents the individually selected points for
3 different radii (from left to right) and the overall persistent
points (right) for the Stanford bunny00 dataset.

Fig. 2. From left to right: PFH persistence over multiple scales (r1 =
0.003, r2 = 0.004, r3 = 0.005) and the set of overall persistent points
for the bunny00 dataset.

3213

C. Geometric surface primitives signatures

To analyze the discriminating power of the PFH space,
we need to look at how features computed for different
geometric surfaces resemble or differ from each other. In
our previous work [1], we analyzed a set of primitive
3D geometric surfaces including planes, cylinders, spheres,
cones, tori, as well as edges and corners, for the purpose of
scene segmentation in indoor environments. Since the PFH
computation is based on normal information, the features can
be separately computed and grouped for both two cases of
convex and concave shapes (with the exception of the plane).
The results showed that if the computation parameters are
chosen carefully (i.e. the scale), the features are informative
enough to differentiate between points lying on different
surfaces.

Figure 3 presents the PFH signatures for points lying on 5
different convex surfaces, namely a sphere and a cylinder
with a radius of 5 cm, an edge, a corner, and finally a
plane. To illustrate that the features are discriminative, in
the left part of the figure we assembled a confusion matrix
with gray values representing the distances between the
mean histograms of the different shapes, obtained using the
Histogram Intersection Kernel [18]:

d(PFHµ1, PFHµ2) =
nrbins∑
i=1

min(PFHi
µ1, PFH

i
µ2) (3)

Fig. 3. Example of Point Feature Histograms for points lying on primitive
3D geometric surfaces.

D. Caching and Point Ordering

An interesting aspect regarding the computational com-
plexity of Point Feature Histograms is given by analyzing
the number of features that need to be recomputed in the
neighborhoods of two query points p and q if p and q are
each other’s neighbors. In this case, many points of p’s
neighborhood will also be part of q’s neighborhood, so if
their respective histograms are being computed, the temporal
locality of data accesses can be exploited using a cache.

The cache being employed in our implementation is grow-
ing as needed. If the size of the cache exceeds a certain limit,
elements get replaced on a FIFO basis. This doesn’t impact
the performance too heavily, since a cache occupying 2GB

can hold the feature values of more than 1.3 ·108 point pairs,
and in our application, the FIFO replacement policy behaves
quite similar to a least-recently used policy while imposing
less overhead.

Note that the theoretical runtime doesn’t improve with this
algorithm, since still all point pairs within a neighborhood
need to be considered. However, the lookups are considerably
faster than the feature computations. This is reflected in the
results presented in Figure 4. We conducted experiments
computing PFHs for varying radii for the bunny00 dataset
with unsorted (randomized) point indices and with the same
dataset where the points were resorted to optimize temporal
locality in the cache. That is, points that are close in the
point cloud should have indices which are close together.

The reordering is being performed using a growing al-
gorithm in Euclidean distance space using an octree to
achieve similar results as minimum spanning trees in graph
theory. The point order is represented in color, ranging from
red for low indices to blue for high indices. Note how
the cache impacts the PFH computation time considerably
for the ordered dataset with a reduced runtime of about
75% compared to the standard computation method. The
speedup is lower for the unordered dataset due to the random
point order which renders the FIFO replacement method
suboptimal.

Fig. 4. Complexity Analysis on Point Feature Histograms computations
for the bunny00 dataset: unordered (top), and reordered (bottom).

III. FAST POINT FEATURE HISTOGRAMS (FPFH)

The theoretical computational complexity of the Point
Feature Histogram for a given point cloud P with n points is
O(n ·k2), where k is the number of neighbors for each point
p in P . A straightforward optimization is to cache feature
values and reorder the point cloud dataset so that performing
lookups in a data container becomes faster than recomputing
the values (see Section II-D).

For realtime or near realtime applications however, the
computation of Point Feature Histograms in dense point
neighborhoods can represent one of the major bottlenecks in
the registration framework. Therefore, in the following, we

3214

propose a simplified version called Fast Point Feature His-
tograms (FPFH) that reduces the computational complexity
of the algorithm to O(n ·k), while still retaining most of the
discriminative power of the PFH.

A. Theoretical aspects

To simplify the histogram feature computation, we proceed
as follows: i) in a first step, for each query point p we
compute only the relationships (see Equation 1) between
itself and its neighbors – we will call this the Simplified
Point Feature Histogram (SPFH); ii) then in a second step,
for each point we re-determine its k neighbors and use the
neighboring SPFH values to weight the final histogram of p
(called FPFH):

FPFH(p) = SPF (p) +
1
k

k∑
i=1

1
ωk
· SPF (pk) (4)

where the weight ωk represents the distance between query
point p and a neighbor point pk in a given metric space.

Fig. 5. The influence region diagram for a Fast Point Feature Histogram.
Each query point (red) is connected only to its direct k-neighbors (enclosed
by the gray circle). Each direct neighbor is connected to its own neighbors
and the resulted histograms are weighted together with the histogram of
the query point to form the FPFH. The connections marked with 2 will
contribute to the FPFH twice.

A influence region diagram illustrating the FPFH compu-
tation is presented in Figure 5. For a given query point pq ,
we first estimate its SPFH values by creating pairs between
itself and its neighbors. We repeat this for all the points in the
dataset, and then we re-weight the SPFH values of pk using
the SPFH values of its neighbors, thus creating the FPFH for
pq . As the diagram shows, some of the value pairs will be
counted twice (marked with 2 in the figure). The differences
between PFH and FPFH are: i) the FPFH does not fully
interconnect all neighbors of pq as it can be seen from
Figures 1 and 5, and is thus missing some value pairs which
might contribute to capture the geometry around pq; ii) the
PFH models a precisely determined surface around pq , while
the FPFH includes additional point pairs outside the r radius
sphere (though at most 2r away); and finally iii) because of
the re-weighting scheme, the FPFH combines SPFH values
and re-captures some of the point neighboring value pairs.

A further PFH optimization can be pursued if we tackle
the correlation problem in the feature histogram space. So
far, the resulting number of histogram bins was given by qd,

where q is the number of quantums (i.e. subdivision intervals
in a feature’s value range) and d the number of features
selected (in our case: 53 = 125 bins). This can be described
as a subdivided 5× 5× 5 cube in 3 dimensions, where one
subdivision cell corresponds to a point having certain values
for its 3 features, hence leading to a fully correlated feature
space. Because of this however, our resulting histogram will
contain a lot of zero values (see Figure 3), and can thus
contribute to a certain degree of information redundancy in
the histogram space, as some of the subdivision cells of the
cube will never contain any values. A simplification of the
above is to decorrelate the values, that is to simply create d
separate feature histograms, one for each feature dimension,
and concatenate them together.

B. Persistence analysis

Using the formulation presented in Section II-B, a set of
persistent features in the FPFH space can be determined.
Figure 6 presents the individually selected points for 3
different radii (from left to right) and the overall persistent
points (right) for the bunny00 dataset. A direct comparison
to the results presented in Figure 2 clarifies that most of
the discriminative power of the PFH has been retained, but
indubitably some fine details are lost, especially in the areas
of the bunny face and the front leg. This arises the question
whether the FPFH uncorrelated space will still retain the
necessary information for finding good correspondences for
registration, as the PFH does [2].

Fig. 6. FPFH persistence over multiple scales for the bunny00 dataset.

C. Geometric surface primitives signatures

Similar to Figure 3, Figure 7 presents the FPFH signatures
for points lying on the above mentioned geometric surfaces.
Because the feature values are no longer correlated and the
FPFH space does not capture precisely all the information
included in the PFH, the resulted histograms are no longer as
informative. However, the assembled confusion matrix using
the formulation in Equation 3 shows that the FPFH signatures
are still discriminative with regards to the underlying surface
they characterize.

D. Online implementation

In most applications, the acquisition of 3D point cloud
data is performed through the movement of a sensor (e.g.
laser) beam using actuation elements. For situations when
single sweep scans are possible, e.g. actuating a 2D laser
sensor with a pan-tilt unit or a robotic arm, the FPFH
formulation allows online, incremental implementations. Al-
gorithm 1 presents a summary of the stages for our online
implementation of FPFH. The presented method processes

3215

Fig. 7. Example of Fast Point Feature Histograms for points lying on
primitive 3D geometric surfaces.

scanlines and maintains a list of nearest neighbors for all
points in the queue. Once a new scan line doesn’t affect this
list for a certain point, the point in question can be processed.
This introduces a small delay before a scanned point can be
used, but the algorithm can estimate features close to real-
time.

Algorithm 1 Online calculus of FPFH for 1-sweep scans
k // desired size of neighborhoods
Q← {} // queue of pts with uncompleted neighborhoods
// queue entrys also hold a list nqi

of k neighbors and a sidqi
entry – see below

for all scanline S = {si} do
P ← {} // list of points ready for processing
increase(sid) // current scan line id number
for all points qj ∈ Q do

for all points si ∈ S do
if si is closer to qi than qi’s current neighbors then
nqi
← nqi

∪ si

if |nqi
| > k then

delete most distant point from nqi
update sidqj

← sid
if sidqj

< sid then
// qi’s neighborhood unaffected by cur. scan line
P ← P ∪ qj

Q← Q\qj

for all points si ∈ S do
Q← Q ∪ si

Initialize nsi
by using the same algorithm backwards

// go back through last scanlines until sidsi
stays unchanged

for all points pi ∈ P do
compute FPFH on pi’s neighborhood npi

IV. SAMPLE CONSENSUS INITIAL ALIGNMENT: SAC-IA
The Greedy Initial Alignment method described in our

previous work [2] is very robust since it uses point cloud
intrinsic, rotation invariant features. However, the computa-
tional complexity is relatively high since the merging step
requires to look at all possible correspondence pairs. Also,
since it is a greedy method, there are situations where
it might get trapped in a local minimum. Therefore, we
implemented a SAmple Consensus method that tries to
maintain the same geometric relations of the correspondences
without having to try all combinations of a limited set
of correspondences. Instead, we sample large numbers of
correspondence candidates and can rank each of them very
quickly by employing the following scheme:

1) Select s sample points from P while making sure that
their pairwise distances are greater than a user-defined
minimum distance dmin.

2) For each of the sample points, find a list of points in
Q whose histograms are similar to the sample points’
histogram. From these, select one randomly which will
be considered that sample points’ correspondence.

3) Compute the rigid transformation defined by the sam-
ple points and their correspondences and compute an
error metric for the point cloud that computes the
quality of the transformation.

Our scheme finds a good transformation fast by looking
at a very large number of different correspondence triplets1.
The error metric for the third step is determined using a
Huber penalty measure Lh:

Lh(ei) =

{
1
2e

2
i ||ei|| ≤ te

1
2 te(2||ei|| − te) ||ei|| > te

(5)

These three steps are repeated, and the transformation that
yielded the best error metric is stored and used to roughly
align the partial views. Finally, a non-linear local optimiza-
tion is applied using a Levenberg-Marquardt algorithm [8].
Figure 8 presents the results obtained after registration with
SAC-IA on two partial views (bunny00 and bunny90) of the
Stanford bunny model.

Fig. 8. From left to right: two partial views of the bunny model before
alignment; results obtained after applying the solution found using SAC-IA.

V. EXPERIMENTAL RESULTS ON NOISY DATA

To validate the FPFH space on data representing real-
world scenes encountered in mobile robotics applications,
we performed several experiments using the outdoor datasets
from [2]. Table I presents a comparison between the two
initial alignment methods, namely our previously proposed
Greedy Initial Alignment (GIA) and the Sample Consensus
Initial Alignment (SAC-IA), for determining the best reg-
istration solution between the two datasets presented in the
left part of Figure 9. The combinatorial nature of GIA makes
it extremely slow for large datasets, and thus a workaround
is to use downsampled versions of the data. However this
results in FPFH features being “averaged”, and most of the
fine details can be lost. The sample consensus based method
does not suffer from these shortcomings.

The datasets have an estimated overlap of ≈ 45%. As
shown in Table I, SAC-IA clearly outperforms Greedy IA
with respect to registration speed. Note that for GIA, the
number of tested combinations is directly dependent on the

1See attached video for details.

3216

TABLE I
INITIAL ALIGNMENT RESULTS FOR THE LJUBLJANA OUTDOOR DATASET.

GIA - run 1 GIA - run 2 SAC-IA
run time > 17 min > 43 min 34 sec
points considered 200 250 10462
of combinations 37186 58300 1000

number of points considered (pc), since we generate all 2-
point correspondences and hierarchically merge them to form
16-point correspondences (totaling ≈ pc(pc − 1)(1 − 1/16)
combinations). Considering only 200 points is already close
to intractable, running for 17 minutes, or 43 minutes for
250 points. On the other hand, SAC-IA ran for 1000 iter-
ations, and found the best transformation in iteration 476.
Even though it created far less combinations, it incorporated
over 10000 points in its search. To refine the registration

Fig. 9. Left: two overlapping urban datasets before registration (shown
with red and green colors, persistent FPFH points are shown in blue); right:
the alignment results obtained after applying SAC-IA.

solution we applied a local non-linear Levenberg-Marquardt
optimization method as proposed in [8]. The results are
presented in Figure 10.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented two novel 3D robust features
which characterize the local geometry around a point, namely
the Point Feature Histogram (PFH) and its fast variant,
the FPFH. The features are pose invariant and their dis-
criminative power makes them good candidates for point
correspondence search in 3D registration. To illustrate their
properties, we tested their persistence over multiple scales,
showed that they are informative enough to differentiate
between the underlying primitive geometric surfaces they
represent, performed an analysis of their computational time
requirements, and presented methods for optimization. We
have also presented a sample consensus based initial align-
ment algorithm (SAC-IA) which performs fast searches in
an exhaustive FPFH correspondence space to find a good
alignment solution which can be further refined using a non-
linear optimization method.

Our future plans are to investigate the robustness of the
feature histogram spaces for noisier point cloud data, coming
from stereo or Time Of Flight cameras. Another direction of
future research is to learn classifiers in the FPFH space that
could be applied for fast scene segmentation, similar to our
previous work in [1].

Acknowledgements This work is supported by the
CoTeSys (Cognition for Technical Systems) cluster of ex-
cellence.

Fig. 10. Fine registration after SAC-IA, using a non-linear Levenberg-
Marquardt optimization method. The two individual registered datasets are
shown with red and green respectively.

REFERENCES

[1] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning
Informative Point Classes for the Acquisition of Object Model Maps,”
in Proceedings of the 10th International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV), Hanoi, Vietnam, December
17-20, 2008.

[2] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning Point
Cloud Views using Persistent Feature Histograms,” in Proceedings of
the 21st IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nice, France, September 22-26, 2008.

[3] L. Silva, O. R. P. Bellon, and K. L. Boyer, “Precision Range Image
Registration Using a Robust Surface Interpenetration Measure and
Enhanced Genetic Algorithms,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 5, pp. 762–776, 2005.

[4] O. Cordón, S. Damas, and J. Santamarı́a, “A fast and accurate ap-
proach for 3D image registration using the scatter search evolutionary
algorithm,” Pattern Recogn. Lett., vol. 27, no. 11, 2006.

[5] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, 1992.

[6] Z. Zhang, “Iterative Point Matching for Registration of Free-Form
Curves, Tech. Rep. RR-1658.

[7] A. Gruen and D. Akca, “Least squares 3D surface and curve match-
ing,” International Journal of Photogrammetry and Remote Sensing,
vol. 59, pp. 151–174, May 2005.

[8] A. W. Fitzgibbon, “Robust Registration of 2D and 3D Point Sets,” in
Proceedings of the British Machine Vision Conference, 2001.

[9] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust Global
Registration,” in Proc. Symp. Geom. Processing, 2005.

[10] A. Makadia, A. I. Patterson, and K. Daniilidis, “Fully Automatic
Registration of 3D Point Clouds,” in CVPR ’06: Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2006, pp. 1297–1304.

[11] A. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, May 1999.

[12] G. Sharp, S. Lee, and D. Wehe, “ICP registration using invariant
features,” 2002.

[13] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” 3-D Digital Imaging and Modeling, 2001. Proceedings. Third
International Conference on, pp. 145–152, 2001.

[14] A. Nüchter, K. Lingemann, and J. Hertzberg, “Cached k-d tree
search for ICP algorithms,” in Proceedings of the Sixth International
Conference on 3-D Digital Imaging and Modeling (3DIM), 2007.

[15] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Persistent Point
Feature Histograms for 3D Point Clouds,” in Proceedings of the 10th
International Conference on Intelligent Autonomous Systems, 2008.

[16] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue
on Semantic Knowledge), 2008.

[17] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy, “Geometri-
cally stable sampling for the ICP algorithm,” in Fourth International
Conference on 3D Digital Imaging and Modeling (3DIM), oct 2003.

[18] A. Barla, F. Odone, and A. Verri, “Histogram intersection kernel for
image classification,” in Proceedings of International Conference on
Image Processing (ICIP), 2003.

3217

