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ABSTRACT 
This paper explores 3D object recognition based on local shape 
descriptor. 3D object recognition is becoming an increasingly 
important task in modern applications such as computer vision, 
CAD/CAM, multimedia, molecular biology, robotics, and so on. 
Compared with general objects, CAD models contain more 
complicated structures and subtle local features. It is especially 
challenging to recognize the CAD model from the point clouds 
which only contain partial data of the model.  
We adopt the Bag of Words framework to do the partial-to-
global 3D CAD retrieval. In this paper the visual words diction-
ary is constructed based on the spin image local feature descrip-
tor. The method is tested on the Purdue Engineering Benchmark.  
Furthermore, several experiments are performed to show how 
the size of query data and the dissimilarity measurement affect 
the retrieval results. 

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: Shape, Representa-
tions, data structures, and transforms. 

General Terms 
Algorithms, Performance, Reliability. 

Keywords 
CAD model retrieval, bag of words, spin image. 

1. INTRODUCTION 
Large number of 3D models are created everyday and stored in 
databases. In order for these 3D databases to be useful, we 
should be able to search on them. Therefore, identification, re-
trieval and classification of 3D objects are becoming an increas-
ingly important task in modern applications such as computer 
vision, CAD/CAM, multimedia, molecular biology, robotics, 
and so on.  

With recent developments in 3D range scanners it is possible 
to capture 3D shapes in real time. However, because of the limi-
tation of the point of view, the occlusion in the scene, and the 

real time requirement, only parts of the object can be captured 
during scanning. This proposes a challenging research problem: 
given an incomplete point cloud of an object, how to retrieve the 
corresponding complete model from a database. Solving this 
problem will also benefit several other applications, such as data 
registration [Mitra06], model fixing [Founkhouser04], and so 
on. 

Nevertheless, most of the 3D shape retrieval methods are 
based on global shape descriptors, which require the complete 
geometry of a 3D object, such as Light Field descriptors 
[Chen03], spherical harmonics descriptor [Kazhdan03], D2 
shape distribution [Osada02]. That these methods are not suit-
able for solving the problem provides an impetus to create meth-
ods for partial-to-global 3D shape identification and matching.  

Besides the benefits of partial-to-global retrieval, local de-
scriptors can capture more local details than can the global ones. 
Compared with general objects, CAD models have more com-
plicated structure with holes and other local features. Using 
global information, these subtle details can be neglected. From 
this aspect, local descriptors are better.  

In this paper, we present a complete framework for perform-
ing 3D partial shape identification on 3D CAD parts. Several 
experiments are performed to show how the size of query data 
and the dissimilarity measurement affect the retrieval results. 

The organization of the paper is as follows. Several related 
works are summarized in Section 2. Section 3 outlines the whole 
framework of our method, and introduces two crucial terms: 
bag-of-words and spin image. Then, the procedures of feature 
extraction and similarity computation are described in Section 4. 
In Section 5, we provide the 3D shape retrieval results on the 
Purdue Engineering Benchmark. 

2. RELATED WORK 
In order to perform 3D partial-to-global shape retrieval, the 
following methods have been proposed. [Podolak06] exploits 
the symmetry of the shape. [Mitra06] [Frome04] develop local 
shape signatures. Because of its simplicity and generality, the 
bag-of-words method, which is insensitive to deformation, ar-
ticulation and partial missing data, has attracted lots of interest 
in 2D [Li05] and 3D [Shan06] [Liu06] [Ohbuchi08] fields. In 
[Li05], the method is applied to images by using a visual ana-
logue of a word, formed by vector quantizing two regional de-
scriptors: normalized 11*11 pixel gray values and SIFT descrip-
tors. In [Shan06] and [Liu06], visual feature dictionary is consti-
tuted by clustering spin images in small regions. In order to 
procure partial-to-whole retrieval, Kullback-Leibler divergence 
is proposed as similarity measurement in [Liu06], while a prob-
abilistic framework is introduced in [Shan06]. For the sake of 
collecting visual words, Ohbuchi et. al. [Ohbuchi08] apply SIFT 
algorithm to depth buffer images of the model captured from 
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uniformly sampled locations on a view sphere. After vector 
quantization, Kullbak-Leibler divergence measures the similari-
ties of the models. But these methods focus on the retrieval of 
general objects.  

Compared with general objects, CAD models have a more 
complicated topology with holes and other local features. In 
[Ip07], partial CAD retrieval is achieved based on segmentation, 
which directly affects the retrieval results. This paper aims to 
develop a new method for 3D CAD parts identification in simi-
lar circumstance as in [Ip07]. That is, given an unknown partial 
3D point cloud of a part, we are trying to identify the part based 
on the known CAD model in a database. Moreover, our frame-
work is closely related to that of [Liu06] and [Shan06], which 
does not require segmentation at all. 

3. OUR FRAMEWORK 
We first describe the whole framework of our method, and then 
introduce the concept of the spin image [Johnson99] and then 
give several examples. 

3.1 Our framework 
Our method is divided into two stages as shown in figure 1. The 
first stage is completed off-line, aims to construct a visual word 
dictionary based on a 3D database. First, local features are ex-
tracted from each model in the database. Second, a clustering or 
classification method is applied to the feature collection to con-
struct the visual word dictionary. The second stage is on-line 
comparison. For the query data, we extract local features and 
search the dictionary for the nearest visual word. We then repre-
sent the query data with a feature vector, in which each element 
corresponds to one visual word in the dictionary, and the value 
denotes the frequency of the word appearing in the query data. 
Finally, a certain dissimilarity metric is chosen to compare the 
difference between the query data and the models in the data-
base. A retrieval rank list is the output of the framework. 
 

 

Fig. 1. Our framework 

 

3.2 Spin image 
 

 

Fig. 2. Extracting low level features with spin images 

 
As shown in Figure 2, the spin image, which is invariant to the 
rotation and translation transform, characterizes the local ap-
pearance properties around its basis point p within the support 
range r.  It is a two-dimensional histogram accumulating the 
number of points located at the coordinate (α, β), where α and β 
are the lengths of the two orthogonal edges of the triangle 
formed by the oriented basis point p, whose orientation is de-
fined by the normal n, and support point q. The final size of the 
spin images is defined by the width and the height of the spin 
plane. We choose it as the low level feature descriptor in this 
paper.  Figure 3 demonstrates several spin images extracted 
from different positions from the bunny. 
 

 

Fig. 3. Demonstration of spin images. The support range r is 
defined as the radius of the model. The width and height of the 
spin image are all 256 

 

4. IMPLEMENTATION 
In this section we will elaborate the details of the method pro-
posed in previous section. 

4.1 Low level feature extraction 
Because the 3D meshes may be composed of large and tiny tri-
angles, instead of calculating spin images based on the mesh 
vertices [Johnson99], a two passes sampling procedure is per-
formed here. Using Monte-Carlo strategy [Osada02], for each 



3D mesh, Nb oriented basis points p with normal n and Ns sup-
port points q are sampled uniformly on the surface in two passes 
respectively, where Nb=800, Ns=50000. Other parameters of spin 
image are defined as: 1) r =0.4R, where R is the radius of the 
mesh.  2) the width and height of spin images is set as w=h=10.  

Now a large number of spin images are collected from the 
3D shape database. Each mesh is represented with Nb spin im-
ages.  

4.2 Visual words dictionary construction 
With Nb*Nm spin images, where Nb is defined previously and Nm 
is the number of 3D meshes we used for building the visual 
words dictionary, k-means algorithm is applied to agglomerate N 
clusters. Here N equals to 1500, which defines the size of the 
dictionary. Therefore, each spin image is assigned with the in-
dex of its nearest cluster. Actually, other clustering algorithms 
[Moosmann08] can be adopted to do the work. Further research 
needs to be done to analyze the effects of different clustering 
algorithms and the size of the dictionary. 

4.3 3D shape representation 
For a new shape data, no matter if it is a complete model or just 
a partial point cloud of an object; we represent it using the vis-
ual words in the dictionary. The representation can be derived 
via three steps as follows: 
1. Extract the low level features using spin images. 
2. Calculate the distances between the spin images and the 

visual words. The shortest distance indicates that we can 
use the corresponding visual word to record this spin im-
age. 

3. Count the number of times each visual word appears on 
this shape.  

Therefore, each shape is represented by a vector fv=( x1, x2, …, 
xN ). This is explained visually in figure 4. 
 

 

Fig.4.  Shape representation 

 

4.4 Dissimilarity computation 
The requirements for dissimilarity measure for the partial-to-
global retrieval task are quite different than the global-to-global 
retrieval problem. As described in [Liu06], suppose there are 
query data composed of a head and a torso, it is highly probable 
that a human model is a candidate shape for this query. How-
ever, the human model is not a part of this query data. That 
means the distance between the query data and the model does 
not equal to the distance between the model and the query data. 
The dissimilarity metric should reflect this asymmetric property.  

To satisfy this requirement, an ordinary symmetric distance 
measurement, such as L1, L2, is not a suitable choice. KL diver-
gence is one of the metrics which satisfies the asymmetric prop-

erty. We will demonstrate the different retrieval results using L1 
and KL distance metric in the next section. 

5. EXPERIMENTAL RESULTS 
The Purdue Engineering Benchmark (PEB) [Jaynti06], which 
contains 801 3D CAD models, is chosen as the 3D shape data-
base. It is classified into 42 classes such as, “Discs”, “T-shaped 
parts” and “Bracket-like parts”. 

Figure 5 shows the Precision Recall curves [Shilane04] with 
KL divergence measurement when using different partial sizes 
of the object as query data. G-G means it is the PR curve for the 
global-to-global retrieval, P2-G means half of the original model 
is used as the query data, P3-G means one third of the original 
model is used as the query data, and so on. It verifies the intui-
tive feeling that less information will lead to worse retrieval 
results. However, even with reduced information reasonable 
performance is observed, suggesting robustness of the method.  
 

 

Fig. 5. The precision recall curves regarding with different size 
of the query data 

In order to show the effects of using different distance metric, 
we draw two PR curves corresponding to these two metrics (see 
figure 6). Only one sixth of the model is used as query data. 
 

 

Fig. 6. The precision recall curves regarding with different dis-
similarly metrics 

Figure 7 provides two examples comparing the retrieval re-
sults of global-to-global retrieval and partial-to-global retrieval. 
The top figure shows the results when using a door as query 
shape. For Partial-to-Global retrieval, the left top part of the 
door is used as query data. In fact PEB contains only 7 door 



models; both G-G and P6-G retrieval rank all the 7 door models 
on the top of the retrieval list. The bottom figure shows results 
when using a gear as query shape. It shows that the P6-G re-
trieval is better than the G-G one, since P6-G find out more 
gears than G-G. Why does the partial-to-global retrieval perform 
better? It seems impossible. However, recalling the definition of 
the feature vector will provide some clues to the answer. The 

feature vector describes the frequency of the visual words ap-
pearing in the shape. When using the entire gear model to be the 
query data, the plane-kind of visual word overwhelm the other 
features. However, using partial of the object to be the query 
data, the gear teeth shape dominates the whole shape. So more 
gears are picked out, and listed on the top of the list. 

 

 

(a) First example to show the difference between Global-to-Global (G-G) and Partial-to-Global (P-G) retrieval. The left figures show the 
Global-to-G-G retrieval result using a complete model (the first image listed in the first line) as the query. The right figures show the P-G 
retrieval result using 1/6 part of the complete model (the second image listed in the first line) as the query. The top 20 models are listed 
orderly according to the similarity metric. 

 

(b) The second example to show the difference between G-G and P-G retrieval. The layout of the images is the same as that of (a). 

Fig. 7. Two examples of retrieval results 



 

6. CONCLUSIONS 
In this paper, we propose to use the bag-of-words model for 3D 
CAD parts retrieval. The spin image is chosen as the local fea-
ture detector. We perform experiments to study the effectiveness 
of the method to solve the problem of partial-to-global 3D shape 
recognition. The results demonstrate the effectiveness of the 
method.  
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