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Abstract

We show results on object recognition using the Kinect
3D camera. Several algorithms are tested along with au-
tomatic segmentation and model learning. The analysis
of the environment is of great importance for autonomous
robots. Depth of objects in the scene (is therefore) [then
represents a] very useful data.

As 3D cameras previously existed only as very expen-
sive devices, the research into algorithms for analysis of
their data is limited. This has changed since the Kinect has
been introduced into the market last year as a low priced
3D camera and now there is a sharp increase in research
into such algorithms. The Robot Operating System (ROS)
software the Point Cloud Library (PCL) has integrated the
Kinect into several of its applications. On this library some
state-of-the-art algorithms have been created. We will use
both the ROS and the PCL library, evaluating the results
and introducing some improvements and hints for future
work. We will introduce also some state-of-the-art algo-
rithms in order to apply the conversion from Computer-
Aided Design (CAD) into Point Cloud Data (PCD) models
which represent the format used by the PCL.
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Chapter 1

Introduction

This thesis project evaluates the use of two 3D object recognition feature descriptors
with the use of the Kinect [2] and describes some improvements and hints for future
work on them. Some new algorithms for the conversion of Computer-Aided Design
CAD [3] into Point Cloud Data PCD [31] models are also introduced in order to
have a wide range of models which can be used for the experimentations.

This master thesis represents the final project in my academic studies for the
Master of Science in Computer Science Engineering, which has been conducted ini-
tially at Politecnico di Torino (Italy) and afterwards at Kungliga Tekniska Högskolan
(KTH) in Stockholm (Sweden) as an exchange student in an Erasmus project.

The project has been carried out at the Computer Vision & Active Perception
laboratory [4] which is part of the School of Computer Science and Communica-
tions (CSC ) at KTH. This department has provided the necessary material for the
development of the thesis.

The people I worked with during this project were:

• John Folkesson [5]: He has been the reference person at KTH. He is a
Research Scientist working in the CAS department and his field involves the
mobile robotics, with particularly attention for the navigation.

• Marina Indri [6]: She has been the reference person at my own University
in Italy - Politecnito di Torino. She is an Associate Professor of Automatic
Controls and Robotics and Automation in the Italian University. Industrial
and mobile robotics are two of the fields involving her research.

• Aitor Aldomà and Bastian Steder [7]. They are the creators of the two
descriptors I used during this work. Aldomà is currently doing his second year
PhD at the Vienna University of Technology. His supervisor is Markus Vincze
and his research interests are basically perception for robots including object
recognition, pose estimation, grasping and modeling affordances. Steder is a
PhD student in the Department of Computer Science of the Albert-Ludwigs-
University of Freiburg. When some issues were found during the development
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CHAPTER 1. INTRODUCTION

of the project, those researchers were really available in order to help the
resolution of those problems.

1.1 Object recognition
The creation of mobile autonomous robots requires development in fields like con-
trol, estimation and localization, vision and programming. The main application
of this project is object recognition within the mobile robotics field via. One of the
challenges in mobile robots is that its environment is variable in terms of objects,
colors and illumination. The ability of mobile robots, to recognize objects is of
primary importance, because a robot has to be able to carry out tasks with the
objects.

The object recognition consists in identifying an object in an image scene while
using the object model is given as input. The recognition should be possible in
conditions where the object has been rotated/translated or when different point of
views of the object are considered.

The first step for doing object recognition consists in finding features from the
image. A feature is defined as a piece of information deriving from a specific point
of an image. The set of features of the global image defines the image itself. The
feature descriptors are the algorithms which extract this information from the image.
Depending on the feature descriptor used, the information is extracted in a different
way. Then the information extracted is saved into vectors called feature vectors [1]
or descriptors.

There are several methods for object recognition in a 2D dimension space where
the information is extract taking into account the pixel color information (RGB).
But, since the development of the 3D dimension techniques, we can add a new entry
to the recognition in order to get better results, because we can immediately know
the distance of the object from the robot without the need of elaborating data to
get this new information like some object recognition methods do. This is essential
if the robot needs, for example, to pick up or avoid objects. Furthermore the scalea
is inherent to the distance from the objects, because it is possible to determine the
size of the object just evaluating its relative size in an image by multiplying this
value by the depth of the object from the camera.

The device used to acquire scenes with the depth information is the Kinect,
which is a new revolutionary video-game tool integrated with the Microsoft XBOX
360. With this tool it is possible to capture 3D images plus depth. This last
parameter is the most important information we need in order to use a 3D model
in an object descriptor.

1.2 Object models to build and recognize
The models we worked with during the project were:

• A kitchen cup (figure 1.1(a)).

2



1.3. CONTRIBUTIONS

• The Kinect box (figure 1.1(b)).

• A small red-black box (figure 1.1(c)).

• The green cup present in the “KIT ObjectModels Web UI” [33] (figure 1.1(d)).

• The spray flask present in the “KIT ObjectModels Web UI” [33] (figure 1.1(e)).

(a) Kinect box (b) Kinect box (c) small red-black box

(d) Green Cup (e) Spray flask

Figure 1.1. Object models used during the experimentations

We have created the 3D model representation of the kitchen cup, the Kinect box
and the small red-black box objects. How this has been done will be explained in the
Segmentation section. The 3D model representation of the green cup and the spray
flask was already available [33]. The features descriptors have been used with those
models and the object recognition results will be presented in the Experimentation
section of this report.

1.3 Contributions
Contributions during the development of this project were done on different aspects.
First of all segmentation algorithms had been introduced in order to create 3D Point
Cloud Data (PCD) object models with methods that will be described in the next
sections.

Available open-source code has been taken and integrated with new code in
order to get improvements in the results. A “reverse” segmentation has been intro-
duced in one of the descriptors used to get the object recognition. The aim of this
segmentation is to remove planar surfaces on which the objects lie in order to re-
move irrelevant information from the scene. This will be discussed in section 5.1.2.

3



CHAPTER 1. INTRODUCTION

In addition testing of the Clustered Viewpoint Feature Histogram [19] descriptor
algorithm, before its publication, has been done in collaboration with its creator,
Aitor Aldomà.

A Simultaneous Localization and Mapping (SLAM ) software has been used for
the acquisition of the PCD model and some useful suggestions for better results will
be given in the Discussion section of the Experimental Results section.

During the progress of this work a good knowledge of some libraries has been
acquired and issues regarding the use and installation have been solved. A guide
[8] describing the procedure of installation and execution has been done in order to
reproduce the results and facilitate a future work.

I have also created an algorithm which is able to convert Waveform Object
(obj) [9] into Point Cloud Data files maintaining the color information. This code
has been sent to Radu Bogdan Rusu who is the main responsible of the Point
Cloud Library(PCL [21]). He will then integrate this code into this library in order
to add a tool able to do this conversion considering that a parser that makes the
conversion maintaining the color information does not exist yet. Another algorithm
for the conversion from Waveform Object to Polygon File Format(ply) [30] has also
been implemented.

1.4 Outline
The thesis is organized as follows. After discussing related work in Chapter II, I will
present the environment tools used, including the Kinect, in Chapter III. I will then
describe in Chapter IV the segmentation algorithms created in order to reconstruct
the model and the parsers created in order to convert models in different formats.
In Chapter V I will present the Normal Aligned Radial Feature and the Clustered
Viewpoint Feature Histogram descriptors with analysis of the code present in some
available libraries. Subsequently I will give the description of the experimental
results in Chapter VI and then some final conclusions in Chapter VII.
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Chapter 2

Related work

Images contain interesting points which represent information about the scene. The
way in which this information is extracted and how the description of those items
is done distinguish the variety of available object recognition methods. Then these
methods use the extracted data in order to identify the object in an image which
contains the specific object.

A brief explanation is provided about some descriptors: the Scale Invariant
Feature Transform (SIFT ) [10], the Speeded Up Robust Features (SURF) [12], the
Point Feature Histogram (PFH ) [15], the Fast Point Feature Histogram (FPFH )
[14] and the Viewpoint Feature Histogram (VFH ) [18] descriptors.

2.1 SIFT and SURF

The Scale Invariant Feature Transform (SIFT ), created by David Lowe in 1999,
can be applied to different fields of computer vision such as object recognition,
face recognition and 3D modeling. According to [10], these features are “invariant
to image scaling, translation, and rotation, and partially invariant to illumination
changes”.

The main method used by SIFT to get the object recognition and described in
[10] can be summarized into these steps:

1. Extraction of a set of key points from different images and store them into a
database

2. The recognition of the object is done by comparing each feature of an image
with the features of the image saved into the database . The main method
used to compare features is to evaluate the Euclidean distance between the
key points feature vectors which are saved in hash tables

3. When three or more matching features of an object are found with correspond-
ing locations, further detailed verifications of the models are done

5
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4. The probability of the recognition of an object, due to the presence of those
features, is calculated considering the accuracy and the possibility of the ex-
istence of false positives

5. Key points that pass those tests then represent correspondences with objects
memorized in the database.

In order to reduce errors caused by local variations, SIFT is able to detect and
use a larger number of features from the images. An example of feature matching
using SIFT is shown in figure 2.1.

Figure 2.1. Example of a matching using the SIFT feature descriptor [11]

The Speeded Up Robust Features (SURF) has been presented by Herbert Bay
et al.(2006) [12] . This method, like SIFT, is invariant to image scaling, translation
and rotation, but it gains in performance because the computation and the com-
parison between features are faster and it is “more robust against different image
transformation”.

A public code for object recognition with SURF is available on a website source
[13]. This can be summarized into the following steps:

1. Creation of an integral image, known also as Summed area table [35] which
has been created by Franklin C. Crow. He defines this integral image like
“an algorithm for quickly and efficiently generating the sum of values in a

6
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rectangular subset of a grid”. This different structure allows a fast object
detection

2. Finding and extraction of interest points using the Fast-Hessian method

3. Initialize the SURF descriptor, compute the orientation and fill the descriptor
for every interest point

4. Proceed with the matching comparison once an image is given in input.

2.2 Point Feature Histograms and Fast Point Feature
Histograms

The Point Feature Histogram (PFH ) is a descriptor created and described by Radu
Bogdan Rusu in his PhD Thesis “Semantic 3D Object Maps for Everyday Manip-
ulation in Human Living Environments” [15].

The main idea of this descriptor is to analyze the surrounding information of
every point present in a Point Cloud Data structure in order to get a geometrical
representation using a “Multidimensional histogram of values” which is based on the
estimated surface normals of the point “k-neighborhood” as defined by the author.
The k value indicates the number of neighbors which are situated in a position
inside a specific radius r of a sphere around each point to be analyzed, and so which
neighbors to consider during the normal estimations, as shown in figure 2.2.

Figure 2.2. Neighbor range analysis using the Point Feature Histogram [16]

An implementation of this descriptor has been done using the Point Cloud Li-
brary [21]. In the Point Cloud Website [16] the steps to use this descriptor are
summarized as follows:

• the first step consists in taking the closest neighbors of each point into the
Point Cloud Data model

7
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• after that, it is necessary to evaluate the euclidean distance and to compute
the “three angular values” algorithm for each couple of neighbors

• results of this comparison need to be put into the output feature histogram.

The main problem of this algorithm is due to its computational complexity.
With thick clouds of data around one point, real-time applications can not be built
using this descriptor. This is the reason why Rusu et al. (2009) had improved this
method creating the Fast Point Feature Histograms which has been described in
their paper “Fast Point Feature Histograms (FPFH) for 3D Registration” [14].

This descriptor allows to lower the computation times in order to get an algo-
rithm complexity suitable for real-time applications. Like PFH, this descriptor has
been introduced into the Point Cloud Library and a tutorial for its use is available
into the Point Cloud Website [22]. This improvement is realized thanks to the intro-
duction of a “weighting scheme” between one point and its neighborhood. The first
step consists in apply the PFH in order to get the estimations between a point and
its k-neighborhood and so on for each point. After this step the weighting scheme
is introduced by recalculating the estimations considering not only the points which
are present into the k-neighborhood, but a wide range which allows to have “extra
FPFH connections”, as shown in figure 2.3.

Figure 2.3. Neighbor range analysis using the Fast Point Feature Histogram [17]

2.3 VFH

The Viewpoint Feature Histogram (VFH ) feature descriptor has been created by
Radu Bogdan Rusu et al. (2010). According to its creators “focus is perception for
mobile manipulation”, that means this descriptor will give reliable results in terms

8



2.3. VFH

of object recognition, and the pose estimation of the models should be accurate
enough because the robot has to know how to grab the object.

This descriptor works on a set of “clusters”, where a cluster is defined as a
“collection of 3D points” which can represent either an object or a scene. The main
goal of the creators working on this descriptor was to get a set of “candidates” which
could be the target objects which represents the input data. The pose position is
also given because of the main purpose of grasping applications.

Two different steps involve the use of this algorithm: a “training” and a “testing”
stage. In the first step a procedure is used to create a set of objects that will be
recognized. From this set, in the second step, the candidates will be matched to the
objects in the set.

The creation of the object set involves some phases according to [18]:

• The object should be placed on a structure which is easy to separate as an
isolated cluster.

• Some methods are used to get the pose estimation for the object placed above
the structure.

• This view is saved and the camera used to acquire the view or the object are
rotated.

• This new view is saved into the dataset and so on.

The second stage instead, according to [18], involves algorithmic procedures that
can be summarized as follows:

• Extraction of the clusters in a scene where the objects can be easily separated

• Considering the camera position, where the picture has been taken from, a
VFH descriptor is “computed” for each cluster

• The VFH descriptor is then used in order to to match the clusters to objects
in our dataset.

The training step is a significant difficulty. During the experimentations the
creators of this descriptor have used a camera sensor called “PR2 Sensor Head”
[23]. This is an expensive sensor, so the training phase implies high costs although
the results are very accurate. This means that it is difficult to use this descriptor
in order to do object recognition with own models although we have either CAD or
PCD models.

9





Chapter 3

The Kinect and the work environment

In this chapter the tools used during this project are introduced. First an overview
of the Kinect is presented, then the environmental work is described. After that,
there is an explanation of the Robot Operating System (ROS), the Point Cloud
Library (PCL), the RGBD 6D Simultaneous Localization and Mapping software
and the Meshlab system.

3.1 The Kinect

The Kinect is a tool that provides full 3D images comprised of 640x480 RGB plus
depth [27]. It is made of a RGB camera, an infra-red depth sensor, a multi-array
microphone and a 3 axis (XYZ) accelerometer (see figure 3.1).

Figure 3.1. The Kinect

The main reason why this device is being used in computer vision projects all
around the world is because of its relation between price and performance. Usually
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CHAPTER 3. THE KINECT AND THE WORK ENVIRONMENT

devices that can provide the same information are much more expensive than the
Kinect. The Kinect costs around $150 USD.

3.2 The work environment
The whole work has been performed in a MacBook Pro, 2.4GHz Intel Core 2 with
4GB of RAM although Ubuntu 10.04 has been the Operating System used during
the project.

3.3 The Robot Operating System
3D perception is one of the most important parts in the robotics field, considering
the availability of new hardware that researchers can use. This creates an increas-
ingly need for software in order to work with this new hardware.

The Robot Operating System is an innovative open-source software that tries
to follow hardware’s footsteps which is daily being updated in most of its libraries
(figure 3.2).

Figure 3.2. The ROS logo [28]

This is an Operating System that can be installed on a Robot. There are some
experimental versions for other Operating System as OSX and Windows, but this
software is not yet full-supported. This system, as described in its wiki page [28],
is organized as a set of “nodes that are combined together into a graph”. Node is
defined as a process that performs computation. This is done in order to “reduce
the code complexity and the fault tolerance” and to have an better overview of the
whole system.

In order to install this software the simple use of “sudo apt-get install” is needed.
Then to use the applications inside the software it is necessary to run commands.
The most important are:

• roscd: With this command it is possible to navigate into the ROS packages.
So this command is followed by the name of the package we want to visualize.
If we type roscd pcl we move into the pcl package directory.

• rosmake: This command creates the binaries of the ROS tools from the
source code available in the ROS system.

• rosrun: With this command it possible to run the binaries created in the
step before. It needs as input the name of the package where the binary is
stored and the name of the binary. For example rosrun pcl pcd_viewer runs
the binary pcd_viewer which is situated in the pcl package.

12
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• roslaunch: This command is able to execute nodes in ROS. For example, in
order to launch the Kinect driver installed inside ROS, the follow command is
executed: roslaunch openni_camera openni_node.launch. This launches the
node openni inside the openni_camera package.

ROS contains the driver that allows the connections between the computer and
the Kinect, and it contains the tools that were used in this project: The Point
Cloud Library to recognize the object using 3D model descriptors, and the RGBD
6D SLAM software necessary to reconstruct the object model.

3.4 The Point Cloud Library
The Point Cloud Library (PCL, figure 3.3) [21] is a library developed byRusu et
al. (2010) who define this library as “one of our most recent initiatives in the areas
of point cloud perception” and they say that the goal of their work is to “provide
support for all the common 3D building blocks that applications need”.

During this project PCL has been full exploited. First of all because this library
uses the Point Cloud Data file format (PCD) that contains the XYZRGB infor-
mation. Moreover some 3D model object descriptors are already available in this
library so they can be easily used in order to get the final result.

A lot of modifications and updates are involving this library everyday. Pcl v.1
has been released only at the middle of May 2011 and its version has been defined
unstable because of those continuos changes that should expand and improve the
existent code.

During the experiments both this version and the previous one (Pcl v. 0.9 ) have
been used. The previous version is the default version installed in ROS. Update
completely the PCL version in ROS means to change a lot of the current ROS code.
Obviously this is not suitable for now considering that Pcl v.1 is unstable, as defined
by its creators. This is the reason why the ROS creators did not overwrite the Pcl
version in their repository.

Although they introduced the possibility to install the new version because the
new tools that are being created in ROS are using the current version keeping in
mind that old code is not going to work. This is done by overlying the previous Pcl
package with the new one. I managed to achieve their coexistence in order to work
with both of them.

Figure 3.3. The PCL logo [21]

PCL does not offer possibilities to work with CAD models, although we are
going to use both CAD and PCD models in our experiments. In order to use CAD
models, we will convert them into Point Cloud Data files with some methods and
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then deploy PCL in order to work with those models too. A parser converter will
be introduced and discussed in the next chapter.

PCD files, as said before, contain the information of the position in the space
(XYZ) of the pixels in one scene. One constraint that we need to respect is to place
the objects, we are interested in, at least 0.5 meters away from the Kinect. So pixels
in the Kinect image scene which are closer are not rendered because they are not
part of the working range of the Kinect.

The Point Cloud Library mailing list, available at <pclusers@code.ros.org> has
been a useful tool in order to solve problems deriving from the use of this library.
Developers were really available to help in the resolution of compiling and linking
issues too. Then I would strongly recommend the use of this tool for future projects
and work.

3.5 The RGBD 6D Simultaneous Localization And
Mapping software

This software is a tool that has been the winner of a ROS contest on the February
2011. Then it has been improved in the middle of the April 2011 and this is the
version of the software we used in this project.

Mainly RGBD 6D Simultaneous Localization And Mapping (RGBD 6D SLAM )
allows to generate a colored 3D model of an environment. This software is based
on the use of features descriptors like SURF or SIFT in order to “match pairs
of acquired images” and then uses a “RANdom SAmple Consensus” (RANSAC )
which is an “iterative method to estimate parameters of a mathematical model
from a set of observed data” in order to “estimate the 3D transformation” between
those acquired images. After those estimations a graph is built. Nodes of this graph
are represented by the “camera views”, the edges “correspond to the estimated 3D
transformations”. After that some mathematical optimizations are applied.

This software has been used to create the object model. In order to build this
model, the object has been placed in the middle of an indoor environment, so the
whole environment has been acquired and the object has been segmented with a
method that will be described in section 4.2.

3.6 The Meshlab System

Meshlab [34] (figure 3.4), as defined in its wiki page, is an “advanced mesh processing
system” which is able to manage different kinds of CAD models like Waveform
object and Polygon File Format models. Removing the Point Cloud Data header,
and saving the file into an asc format, using this open source tool, it is possible to
visualize Point Cloud Data files. This can be done in order to have a graphical view
of the model because in this way it is easy to evaluate the values and the distances
where an object is situated using the Meshlab XYZ axis with values above.
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Figure 3.4. The Meshlab logo [34]

This software then has been used to evaluate the position of the object we need
to extract in order to create the 3D model. This tool is also able to change the
format of CAD models, for example from an obj format into a ply format. The way
in which this is done will be replicated into a C++ code and it will be improved
in order to help future improvements. This is going to be discussed in sections 4.3
and 6.5.
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Chapter 4

Segmentation and Parser Conversion

The first step consists of the creation of the object model that needs to be recognized
with a 3D model object descriptor in the next step. This step is not necessary
when we are going to consider the CAD models because we already have the files
describing those models.

Two different segmentation approaches have been followed during the develop-
ment of this project. The first one is a basic approach that has as output a single
viewpoint of the whole model. In contrast the second approach, that we call com-
plete segmentation, is able to extract the whole 3D model. These two approaches
are going to be discussed in the next two sections.

As said before, CAD models are part of our experiments. In order to use those
models a parser able to convert this kind of model into a Point Cloud Data model
has been implemented. This is going to be discussed in section 4.3.

4.1 Basic Segmentation

This kind of segmentation is made by overlapping two different images captured by
the Kinect: the background image and the image containing the object we want to
segment. So once the background image has been acquired the object can be placed
in the background and another image can be acquired. Then, considering that we
know the background, we can easily extract the object from the global scene.

The basic idea of this process is to compare the depth information of the two
images taking into account first the points which are the same or similar. This
comparison is done by comparing the Z-value (or depth) of each pixel. So if they
are equal (or at least similar) the point is not saved in the final PCD model file.
This “similarity” can be evaluated by putting a threshold on the depth information
between the two images.

We are aware that two different images of the same scene will not have exactly
the same XYZ information due to the uncertainty of the Kinect device. But the
XYZ information is quite similar, and it is why including a threshold into the
segmentation algorithm, we can evaluate where the two images differ.
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In this way we find where there is a considerable difference between the two
images, and we can “extract” those points that correspond with the model.

Once the first process is computed we have a first model which includes some
noise as result of pixels which have not been removed. So, after this initial process-
ing, a reduction of noise is applied to improve the quality of the result. This is done
by analyzing the neighboring pixels and eliminating the pixels which are not part
of the main group because they have a few neighbors or they have no neighbors at
all. For a better understanding of this method the pseudo-code has been written in
Algorithm 1.

Algorithm 1 Basic segmentation pseudo-code
START main
Open input file BackgroundPcd
Open input file BackgroundObjectPcd

Read from BackgroundPcd
Read from BackgroundObjectPcd
for eachrow do

diffDepth⇐ Z_BgV alue− Z_BgObjV alue
if diffDepth > depthThreshold then

addPoint[numberPoints]⇐ currentPoint
numberPoints + +

end if
end for
applyNoiseReduction(pointToV alidate, numberPoints)
STOP main

START applyNoiseReduction
vector neighborpoints //contains the offset of the 8 neighbors of each point
totalNeighbors⇐ 8
for i⇐ 0→ numberPoints do

countNeighbors⇐ 0
for j ⇐ 0→ totalNeighbors do

if exists → pointToV alidate⇐ currentNeighbor then
currentNeighbors + +

end if
if countNeighbor ⇐ thresholdNeighbors then

insert→ modelPoints⇐ currentPoint
end if

end for
end for
STOP applyNoiseReduction
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4.2 Complete segmentation

This second approach is based on using the RGBD 6D SLAM software described in
section 3.5. The steps followed to reconstruct the 3D model are listed here after:

1. The object has been placed in the middle of an indoor environment.

2. The Kinect has been placed on the top of a shelf with wheels.

3. Then, maintaining a distance of at least 0.5 meters from the target object,
the shelf has been moved around the object.

4. More or less, every 10 centimeters new data has been acquired with the Kinect
using the software mentioned before.

5. Once we have moved the shelf all around the object, we can save the whole
scene in a PCD file.

This file then has been processed according to two methods in order to extract
the object model from the whole scene.

4.2.1 Extraction using the distance

The depth between the Kinect and the position where the target object has been
placed is known a priori. Furthermore we know also the X and Y position with
respect the Kinect camera.

With this information then it has been possible to remove most of the points
which are not part of the target object. The result is not so accurate because in
the vicinity of the object we have still some noise coming from the floor where the
object has been placed.

4.2.2 Removing the noise using HSV and RGB thresholds

The distance gives us a very coarse result, so in order to obtain a better result the
use of HSV and RGB thresholds has been introduced.

First the color of the kitchen floor has been taking into account. Considering
that it is almost uniform it has been possible to remove those points which are in
that range. Obviously the target objects should not contain those colors otherwise
some information from the object itself will be removed too.

Then, if the object has a uniform color, we can improve the previous noise
reduction by adding a second step in which we keep only the point information of
those points which are in the object color range.

A pseudo-code of this implementation has been written in algorithm 2.
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Algorithm 2 Complete segmentation pseudo-code
START main
Open input file wholeEnvironmentPcd
Open output file wholeModelPcd

Read from wholeEnvironmentPcd
for eachrow do
//save x, y, z and rgb values in local variables
stringstream(row)⇒ x⇒ y ⇒ z ⇒ rgbInteger;
//convert rgbInteger into 3 different values: r, g, b
rgb⇐ ∗reinterpretCast < int∗ > (rgbInteger);
r ⇐ (rgb⇒ 16)
g ⇐ (rgb⇒ 8)
b⇐ (rgb)
//positionThresholds, rgbThreshodls and hsvThresholds have been chosen
//considering the distance where the object has been placed and its colors
if x and y and z ∈ positionThresholds then

if (r and g and b ∈ rgbThresholds) and (h and s and v ∈ hsvThresholds)
then

write→ wholeModelPcd⇐ currentLine
end if

end if
end for
STOP main

4.3 Parser Conversion
In this section we will descrive the Parsers we have created. We call them Parsers
because they are able to read from a source file and create a file with a different
organization, but similar content, by analyzing the structures of both files.

4.3.1 Obj to Pcd Parser

With this tool we can convert Waveform Object CAD models into Point Cloud Data
models. The most important feature of this tool is that we can maintain the color
information inside the Point Cloud Data file after the conversion from the obj file.

In algorithm 3 a pseudo-code of the tool has been implemented.
The code is structured in this way:

1. First of all two files are needed in input. The .obj CAD model and the image
file (e.g. a Portable Network Graph (png) picture) describing the object model.
An example of png is shown in figure 4.1. Wavefront objects and image files,
which were used for the conversions, are part of the KIT ObjectModels Web
UI [33].
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Algorithm 3 Obj to Pcd converter pseudo-code
START main
Open input file fileNameModel.obj
Open input file FileNameModel.png

textureImage ⇐ cvLoadImage(FileNameModel.png);
Read from fileNameModel.obj
for eachrow do

if Header ==′ v′ then
v[numberV ertices]⇐ currentV ertex
numberV ertices + +

else if Header ==′ vt′ then
v[numberTextureV er]⇐ currentTextureV ertex
numberTextureV er + +

else if Header ==′ f ′ then
for foreachTuple v/vt ∈ line do

rgb⇐ getTextureRGBV alue→ vt
rgb[vertex]⇐ rgb

end for
end if

end for
fileNameModel.pcd⇐ v ⇐ rgb
STOP main

2. The image file is loaded into an OpenCV [32] structure. Instead the .obj file
is loaded using the standard C++ syntax.

3. The .obj file, as described in Appendix A.1 contains the information about
the vertices, the textured-vertices and the faces. The first two information are
saved in two different structures because when the faces will be read we need
to get the values inside the listed vertex-index values.

4. After this, for each vertex/textured-vertex tuple, the mapping between the
textured-vertex and the image is analyzed, and as result the RGB data is
given.

5. Then the 3 values (r,g,b) are converted in only one float value (as described in
Appendix A.3 and then this value is saved in another structured whose index
correspond to the current vertex position.

6. Then the Point Cloud Data is created in another file and it is saved with the
Obj name, although the extension is changed into .pcd.

The main problem of this conversion was the mapping between the textured
information and the image given in input which was achieved using the Bresenham’s
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Figure 4.1. Blue Salt Cube Image, available in the KIT ObjectModels Web UI

line algorithm. In order to get the conversion some internet material has been
analyzed [24] and Andrea Bottino, who is a researcher at Politecnico di Torino,
gave a good hint to use this bilinear interpolation and to get the desired result.
Both Waveform object and PCD models can be seen in figure 4.2.

(a) Meshlab CAD model
visualization

(b) PCL Point Cloud
Data visualization

Figure 4.2. Visualization of both the CAD and the PCD models

4.3.2 Obj to Ply Parser

This tool introduces a new utility in the transition between two different CAD
models: obj and ply. Software that is able to make this conversion is already
available (e.g. Meshlab), but this conversion works in only one direction. ply files
can have the information of the color in two different sections. It can be saved
inside the vertex section or inside the face section. Software like Meshlab makes the
conversion using the second way, but the first one is not implemented, or at least, it
is hard to find a tool that converts and saves the information into the first section.
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The second procedure has been created in our tool, that is able to save the
information in both ways. A pseudo-code of the tool is available in algorithm 4.

The explanation of the algorithm can be summarized in the following steps.

• The code gets in input both the .obj and the image file, and requires to add
an option that stands for the conversion to apply. 0 as option means to apply
a color conversion per face, instead the option defined as 1 means a conversion
per vertex.

• If the conversion is per vertex, the image is loaded and the Waveform Object
file is read. Vertices and texture-vertices are saved into two structures, then
the information from the faces is acquired and the color is calculated and saved
in another structure. In this case the values r, g and b are stored separately
inside the ply file.

• If the conversion is per face, instead, the image is not loaded, because the
texture-color information is already saved as in the .obj file, that is to say,
considering the values u and v that map the image information. So, the
information is acquired from the obj file, and it is saved into the ply file,
changing only the structure, in order to follow the ply syntax.

This parser has been mainly developed in order to introduce a color-factor into
the Clustered Viewpoint Feature Histogram descriptor for future work and improve-
ments.
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Algorithm 4 Obj to Ply converter pseudo-code
START main
Open input file fileNameModel.obj
Open input file FileNameModel.png
Option: 0 - color information saved per face, 1 - color information saved per
vertex
Read from fileNameModel.obj

if option == 1 then
textureImage⇐ cvLoadImage(FileNameModel.png);
for eachrow do

if Header ==′ v′ then
v[numberV ertices]⇐ currentV ertex
numberV ertices + +

else if Header ==′ vt′ then
v[numberTextureV er]⇐ currentTextureV ertex
numberTextureV er + +

else if Header ==′ f ′ then
for foreachTuple v/vt ∈ line do

rgb⇐ getTextureRGBV alue→ vt
rgb[vertex]⇐ rgb

end for
end if

end for
fileNameModel.ply ⇐ v ⇐ rgb

else if option == 0 then
for eachrow do

if Header ==′ v′ then
fileNameModel.ply ⇐ currentPoint

else if Header ==′ vt′ then
v[numberTextureV er]⇐ currentTextureV ertex
numberTextureV er + +

else if Header ==′ f ′ then
for foreachTuple v/vt ∈ line do

fileNameModel.ply ⇐ vertexPoint⇐ textureV ertexPoint ∈ vt
end for

end if
end for

end if
STOP main
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Chapter 5

The Feature Descriptors

The most difficult task during object recognition is to find point correspondences
between two images of the same scene or object. The feature descriptors approach
this problem by selecting interest points from a scene or an object. Information on
the vicinity around those key points is summarized in a descriptor which contains
a set of values that allows the corresponding feature identification.

During this project we use two different descriptors that contain the features
such as those required for the development of this thesis: the Normal Aligned Radial
Feature (NARF) [26] and the Clustered Viewpoint Feature Histogram (CVFH ) [19]
descriptor.

5.1 The Normal aligned radial feature descriptor
The NARF descriptor, as described in [26], Steder et al. (2010), allows identifying
key points and this information can be used for object recognition of a 3D model
component. The NARF method is suitable for our purpose because this descriptor
has been created with the intention of working with incomplete data depending on
a particular viewpoint, and this is what the Kinect provides.

To find interest points with this method three requirements are needed:

1. The surface in proximity of the point needs to be as “stable” as possible.

2. Around the point an adequate number of changes are needed in order to have
information about borders.

3. The selected points should not change even if the viewpoint changes.

The NARF key points depend on changes from foreground to background that
can be easily evaluated with the 3D information. It is only necessary to compare the
depth values of the pixels with its neighbors. If the difference between the distance
exceeds a specific threshold the border has been found. Obviously this depends on
the specific environment which is being observed.
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An example of border extraction using the NARF descriptor is shown in figure
5.1.

(a) Image captured by the Kinect (b) Border extraction 3D visualization

(c) Border extraction color-depth
2D visualization

Figure 5.1. Example of the border extraction considering the depth values

The main approach of this descriptor can be divided into three points. First of
all common features between the model and the scene are found in order to proceed
with the matching task. Then some potential object poses from the matches are
chosen. Then in the third phase those candidates that can correspond to suitable
object matches are filtered by thresholds involving border and surface estimations.

During the first step, the descriptor is computed by saving the information of the
vicinity of the key points that are found during the detection of the interest points.
This last procedure involves mainly two methods. First of all for each point in the
image a score is calculated considering the surface changes in the vicinity and the
stability of the surface itself. Then only some points satisfying specific thresholds
are chosen because they contain interesting information.

During the third step then multiple instances of the same object that had been
found in the same position are removed and, after that, the Iterative Closest Point
(ICP) [25] is apply in order to improve the object pose and get a 3D visualization
of the object in the scene.
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An implementation of object recognition has been done by one of the NARF
creators, Bastian Steder [7]. During the course of this thesis, this implementation
has been used and has been modified in order to improve the results which have
been obtained by Steder. A pseudo-code has been created in order to allow an easy
fast approach with the C++ code (see algorithm 5).

5.1.1 Description of the NARF object recognition code

In this section the code written by Steder and available in the Robot Operating
System will be described. Some changes have been made to improve the matching
results and this will be discussed in the next section.

When the code is called using the Robot Operating System (section 3.3), there
is the possibility to set some options which are really important in order to get
better results. Options that can be defined are:

• -v: “min validation point score”. This is the main option that we can set
and defines which is the minimum threshold that allows the recognition of the
object. The default value is 0.4. If the object has not been found with this
threshold, we can lower this value in order to get the recognition, although
this can introduce the recognition of false positives in the scene.

• -m: “set unseen pixels to max range”. Setting this option the borders of the
objects are found even if the area around the object was unseen. Considering
that NARF key-points depend on changes from foreground to background,
if the area around an object is marked as unobserved those areas are totally
ignored. In order to keep key-points on those areas, this option can be defined,
in this way these areas are marked as “far ranges”, so the interest points will
be extracted.

• -o: “use orientation invariant version”. With this option the descriptor is
invariant regarding the rotation around the normal. Without it for example,
a top left corner will not be matched with a top right corner. Setting this
option the search space gets bigger but this mean there might be more false
positives.

• -b: “activate single view model”. This option is useful when the model in input
is not composed entirely by points, but only single views of it are available.

• -s: “scene used to create the range image”. With this option it is possible
to set the origin of the scene model. The default is 0, that means a PCD
file. If The value is defined as 1, then the Kinect is chosen as scene input
data, and this has to be done by using: “input:=/camera/depth/image in-
put2:=/camera/depth/camera_info”.

• -h: “help”. Useful to visualize all the available options.
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As said before, the input model can be originated in two different ways setting
an option to distinguish which way is going to be applied. In both cases two different
windows are launched to have a graphical view of the current range scene, which
allow also a visual recognition of the object into the scene. The first window (see
figure 5.2(a)) is called “scene range image” and it visualizes the scene in a 2D
color depth dimension. The second window (see figure 5.2(b)) instead is called “3D
viewer” and it visualizes the scene in a 3D pointed structure, and, if the model is
found in the scene, it is colored in a random way.

(a) The color depth image viewer (b) The 3D viewer with colored models

Figure 5.2. Viewers using the NARF descriptor code

The number of models that are given in input is arbitrary. What we need to
consider is that the size of those objects should be similar. This is due to the fact
that the radius of the support size value, important to define the search wide for
each interesting point found, is defined taking into account just the first model given
in input.

After the models have been acquired, key points are extracting using the NARF
descriptor. Then key points are extracted also for the scene image and they are
compared in order to match the objects.

5.1.2 Method to improve the results
Optimizations of the NARF descriptor had been done by taking into account that
objects we are considering during our experiments lie usually on planar surfaces like
a table or the floor. So, when the data is acquired by the Kinect, before using the
NARF descriptor for the matching of the object, we remove the planar surface, in
order to delete points in the scene that do not contain interesting information.

This integration is done by using a code written by Radu Bodgan Rusu and
available in the Point Cloud Library. This code is able to segment planar objects and
then gives as result only the segmented surface removing all the other information.
In figure 5.3 an image captured by the Kinect is shown. This image contains a table
with some objects on it. A result of the previous surface segmentation can be seen
in figure 5.4(a).
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Algorithm 5 Complete segmentation pseudo-code
START main
Open input file(s) ModelPcd
Get Scene input from ScenePcdFile or from the Kinect
Get the list of the options and set them
supportSize⇐ firstModel.getRadius()
NarfKeyPointinterestPointDetectorModel(borderExtractorModel)
objectModels.extractNARFsForInterestPoints
//compare the main threshold with the matching border score
if minScoreV alidation > borderScore then

continue
end if
//compare the main threshold with the matching surface score
if minScoreV alidation > surfaceScore then

continue
end if
addModelMatching
drawModelInSceneV isualization
STOP main

Our purpose is instead to remove the surface information where the objects lie.
In order to get this different type of segmentation we have created a code in the
main object recognition C++ algorithm described above.

Figure 5.3. Sample image with some objects on the table

The main changes introduced in Steder’s code regarded the introduction of an
input option in order to decide if the input scene will use the planar segmentation
or not. The option introduced has been called -t and we will refer to this option as
“reverse planar segmentation” .

A result of our remotion of the planar surface can be seen in figure 5.4(b) where
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the planar surface is represented by a table.
Results of the matching improvements will be shown in section 6.5.

(a) Image containing only the table

(b) Image where the table has been removed

Figure 5.4. Different planar surface segmentation

5.2 Clustered Viewpoint Feature Histogram descriptor

This descriptor has been used in order to recognize CAD models available in the
KIT Web UI [33]. The main idea of its creator, Aitor Aldomà et al.(2011) takes
into consideration the properties of the viewpoints over the object surfaces.

CVFH works better than the Viewpoint Feature Histogram feature descriptor
(VFH ) when the training data sources and the recognition data source are different.
So in order to train the classifier only the CAD 3D models are needed. The concept
of the descriptor is similar to the VFH, but according to its author this descriptor
has been improved by the use of the CVFH considering the execution and processing
time and the results.

The C++ code of this object recognition is also available in the ROS package
since the beginning of May when it has been released by its creator, Aitor Aldomà.
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The explanation of this descriptor is given by considering this available ROS
code because the paper has not been released yet. The main approach of this
descriptor will be discuss in the next section.

5.2.1 Description of the CVFH object recognition code

There are different steps involving the object recognition using this descriptor. The
first step consists of a training process of the input data as in the VFH descriptor
described in section 2.3. The difference is that this descriptor needs as input CAD
models (ply format) than will be analyzed and converted in a set of PCD files and
there is no need of a particular camera sensor in order to acquire models as explained
in the VFH description section.

Each of the PCD file, which has been created, contains only a view of the global
input model. An example of this conversion is shown in figure 5.5 where 5 of the
spray flask model viewpoints are shown. A Meshlab view of the whole spray flask
model, which is available in [33], is instead shown in figure 5.6.

(a) view 1 (b) view 2 (c) view 3 (d) view 4

(e) view 5

Figure 5.5. 5 different views of the total 20 for the spray flask model

Once the PCD view models have been created and the classifier has been trained,
the second step consists of the object recognition matching. In order to achieve this
goal we can summarize the code as follows:

• Computation of the cluster through a segmentation procedure which sub-
stantially filters the scene with some bounds on the depth and performs seg-
mentation extracting the planar information in order to consider objects the
elements situated only on planar surfaces.

• Some parameters are defined in order to distinguish different clusters like
a minimum number of points per cluster and a minimum distance between
candidate objects which can stay in the same cluster.
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• Once the clusters have been calculated the matching step is computed in order
to find similar surfaces of the input dataset into the clusters which have been
calculated.

A limitation of this feature descriptor is that it only uses surface properties. This
leads to false positives for objects that have parts with similar surfaces as parts of
our dataset objects. This would require using more information such as colour to
disambiguate. We also need to consider that, in order to use this descriptor, the
objects should lie on planar surfaces like tables or floors.

Figure 5.6. Whole spray flask CAD model - Meshlab view
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Chapter 6

Experimental Results

In this chapter some experimental results of this project are presented.Results re-
garding the use of the segmentation algorithms (section 6.1), the NARF (section
6.2) and the CSVF (section 6.3) descriptors will be shown.

6.1 Segmentation Results

Two procedures have been presented in order to segment the models. In the next
two sections some results with relative image documentation are presented.

6.1.1 Basic segmentation

The kitchen cup has been used to show the results of this type of segmentation.
As explained in section 4.1, this segmentation is based on image comparison and
involves substantially the main zone of the images where they differ. After this
comparison a noise removal algorithm has been applied.

In figure 6.1(a) is shown the image without the object model. Instead figure
6.1(b) shows the model inside the scene image.

(a) The background (b) The background with the object

Figure 6.1. Example images used in the basic segmentation
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After the first comparison the result we have got can be seen in figure 6.2(a) ,
and then a view of the model without noise is shown in figure 6.2(b).

(a) The object before the noise re-
moval function

(b) One viewpoint of the object after the
noise removal function

Figure 6.2. Noise removal function

6.1.2 Complete segmentation

To demonstrate this method, we used three different models: the kitchen cup, the
Kinect box and the small red-black box. In figure 6.3 there is one example about
the phase of reconstruction of the Kinect box model using the RGBD 6D SLAM
ROS software.

Those models are going to be part of the results we are going to show using the
NARF descriptor.

Figure 6.3. The whole Kinect box model inside the kitchen environment
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6.2 Object recognition with NARF descriptor - Results

How this descriptor works has been presented in section 5.1. In this section we want
to focus on the results of the recognition using the NARF descriptor.This descriptor
is already used in the PCL libraries to recognize objects. The main problem was
obtaining the model, but we solved that problem using our segmentation algorithm.
So experiments will refer both to the models we have acquired in the previous
section (the kitchen cup (6.4(c)), the Kinect box(6.4(a)) and the small red-black
box (6.4(b))) and to the CAD models converted into PCD files (the green cup
(6.5(a)) and the spray flask (6.5(b))).

Those CAD models have been converted into PCD files by a simple parser
code whose implementation has been reproduced in a pseudo-code (see algorithm
6). This is a simple conversion because it does not consider the color information
stored inside the CAD models because the current NARF descriptor code does not
consider this data.

(a) The Kinect box (b) The small black-red
box

(c) The kitchen cup

Figure 6.4. 3D model views

(a) The Green Cup (b) The Spray Flask

Figure 6.5. CAD models transformed in full PCD 3D models

Then, moving into the recognition part, figure 6.6(a) shows a scene acquired
with the Kinect with one of the previous mentioned objects, and in figure 6.6(b) it
is possible to observe the image recognized by coloring the part where the object is
situated.
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Algorithm 6 Simple parser converter from obj to pcd pseudo-code
START main
Open input file modelObj
Open output file modelPcd
READ modelObj
for eachline do

if line[0] ==′ v′ then
write→ modelPcd⇐ line[2→ end]

end if
end for
STOP main

These models had been given as input to the object function described before.
In figure 6.6(b) it is possible to see a 3D environment where the models, which have
been found in the scene, are painted by the visualizer. The images are captured by
the Kinect, with a frequency of 1Hz.

(a) One scene from the Kinect (b) Object successfully recognized

Figure 6.6. Kinect box recognition

We considered a set of 4 different scenarios where the objects have been placed.
For each scenario 2 different methods have been applied with different parameters.
We will refer to those methods as method A and method B. The analysis has been
done in the following way:

• Once an object, which is given as input to the NARF code descriptor, is
recognized, in order to verify the matching, further acquisitions are done

• Those acquisitions are done close to the initial matching with a different point
of view

• By using method A, each scene acquired can give a matching recognition or
a false positive matching of the objects in the scene.

• By using method B the object has to be recognized for a total of 4 times in
a row of 5 scene acquisitions. If the object which passes those verifications is
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not the real object is considered like a false positive. Instead if the object is
present in the scene but it is not considered for a total of 3 times in a row it
is considered like a failure matching.

6.2.1 Recognition of the kitchen cup in a simple scene

The first scenario that is analyzed consists of a table where the kitchen cup and the
spray flask lie (see figure 6.7). The object recognition is performed on the kitchen
cup.

Figure 6.7. Simple scenario

As said before the cup itself did not exist as a 3D model, so the first step
consisted in creating that model and then recognizing it. The model of the cup
was created using the tool RGBD-SLAM which has been presented in section 3.5.
After some experimentation using RGDB-SLAM, we were able to define the best
conditions to build a 3D model using this software. We present these results in the
Discussion section of this chapter.

The cup has been placed in the middle of the laboratory where the project has
been developed. By using the RGBD-SLAM we could reconstruct the laboratory
model with the cup inside (see figure 6.8).

(a) 3D full environment (b) Capture procedure

Figure 6.8. Creation of the 3D cup model
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Then the next step regarded the segmentation of the cup using the procedure
which has been already discussed in section 4.2. Once the model was acquired
it needed to be recognized. In order to do some experiments in this scenario the
Kinect streaming mode has been used. The results have been taken looking at the
output of the 3D viewer. Different options have been used in order to evaluate
different matching scores and to find the best solution in this scenario. Results and
options by using boht method A and B are shown in figure 6.9.

(a) Recognition results by using method A

(b) Recognition results by using method B

Figure 6.9. Kitchen cup recognition in a simple scene

The option “reverse planar segmentation” introduced by the author of this thesis
together with the option “set unseen pixels to max range” increased the object
recognition matching when the “min validation score” has been lowered. We need
to use the option -m due to the fact the surface in proximity of the point needs
to be as “stable” as possible. We remove information which is irrelevant because
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does not contain the object, but it could help to find more interesting points into
the objects. This has been taking into account since the beginning because we can
force the descriptor in order to find more key-points where there are not so much
information as explained in section 5.1.

By using all the three options with a lower min_validation_score value than
the default value, we obtained a good result in the object recognition matching,
although this increased also the number of false positives which have been found in
the scene.

6.2.2 Recognition of the Kinect box
In this scenario the Kinect box, the spray flask, the green cup, a wallet, a tape, the
kitchen cup and the small red-black box lie on the table (see figure 6.10). We have
acquired the Kinect box model as explained in the previous section for the cup.

Figure 6.10. Scenario for the Kinect box recognition

The results and options by using method A are shown in figure 6.11.

Figure 6.11. Kinect box recognition results - Method A

For method B we show two different approaches used during the experiments.
The first one considers the variation of the main threshold using the option “min
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validation point score”. We can lower the threshold until we obtain a really perfect
accuracy but this introduces a high number of false positives. By setting the v option
we obtained the results shown in figure 6.12(a). The second approach consists in
keeping the main threshold to 0.3 and combine the other options (figure 6.12(b)).

(a) Recognition results by setting the v option

(b) Recognition results by keeping the v option

Figure 6.12. Kitchen cup recognition in a simple scene

Comparing the only use of the main threshold with combining this value with
the other options, the results we obtain are better without the need to lower the
main threshold too much like in the first approach in order to get high matching
scores.

In order to evaluate those results we need to consider the Kinect position where
the scene is acquired. Taking into account the shape of the box, if the Kinect
captures more than one face of the box, this means that more interesting points are
found and the matching score is higher than scenes where only one face is available.
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6.2.3 Recognition of two objects

We used the green cup and the spray flask for the second experimentation using
this descriptor. These objects have been placed on the laboratory floor where the
work has been done. This has been done in order to test the planar segmentation
introduced into the main code also in this conditions. Figure 6.13 shows results and
options used during these tests by adopting both methods presented above.

(a) Recognition results by using method A

(b) Recognition results by using method B

Figure 6.13. Green cup and spray flask recognition results

First consideration to do is about the order in which the models are put in input
into the object recognizer code. As said before, the value of the size of the sphere,
where to evaluate the neighbor area, is computed by considering the support_size.
In Steder’s code, this value is only equal to the support_size of the first model which
is given in input, but as we have two different object with two different support_size
values (see table 6.1), we need to put in input the object whose support_size is
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Object Support Size
Green cup 0.0393835
Spray flask 0.0634842

Table 6.1. Green cup and spray flask support size values

higher in order to have evaluated all the points of its size. In this way we will
evaluate also the object which has a smaller support_size considering a big range.
This could introduce more false positives, because increasing the research area it is
possible to find more false positive matching.

Although the objects have been found, the pose estimation has not brought
improvements to the initial pose which has been found, and which differs from the
real pose. In figure 6.14(a) the 3D visualization of a test scene is shown, instead
the wrong pose estimation can be seen in figure 6.14(b)).

(a) 3D test image visualization (b) Pose estimation of the object found

Figure 6.14. Wrong pose estimation

By lowering the main threshold (min_validation_point_score) from the default
value (0.4) to 0.3, the rate of object recognition success has a good result when
we combine this value with the three other options. The problem is that setting
this value, more than one instance can been found in the same position during the
object recognition process (see figure 6.15). This can be easily solved by considering
only the value with the higher match score if we know that only one instance of the
object is present into the scene.

Figure 6.15. More instances of the same object
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Figure 6.16. Scenario for the spray flask, Green cup and small red-black box

(a) Recognition results by using method A

(b) Recognition results by using method B

Figure 6.17. Green cup,spray flask and small red-black box recognition results

6.2.4 Recognition of three objects
We then did experiments with three different models given as input using this
descriptor and evaluate those results. The spray flask, the green cup and the small
red-box have been put on a table as shown in figure 6.16. Results and options used
are shown in figure 6.17.
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Results show a higher matching for all of three objects when using all the three
options (-m, -t, -o) lowering the main threshold to 0.3. One evaluation that we can
do is about this last parameter which represents the most important value when
we work with this descriptor because by changing its value we are able to increase
significantly the number of object matching introducing however a high number of
false positives.

6.3 Object recognition with CVFH - Results
In this section some results using the CVFH descriptor will be shown.

As we have seen in section 5.2 where CVFH has been explained, this descriptor
has been used in order to use the available CAD models from the KIT on-line
database [33]. Two of those models have been used for the experiments using this
3D descriptor: the green cup and the spray flask.

(a) The Green Cup (b) The Spray Flask

Figure 6.18. CAD models recognized into the scene

We are going to use the main object recognition code inside the ROS package
called “vfh_recognizer_test” and make some considerations about future improve-
ments in the discussion section. Once objects are going to be recognized, we will get
images like the ones shown in figure 6.18. Considering that this algorithm matches
the objects using only the surface properties, it will be easy to have some false
positives in the scene. An example of false positive can be seen in figure 6.19.

Figure 6.19. An example of false positive detected into the scene using CVFH
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Figure 6.20. Spray flask and green cup table scenario

(a) Recognition results by using method A

(b) Recognition results by using method B

Figure 6.21. Green cup and spray flask recognition results in a simple scenario

To test the matching rate for this descriptor we have done experimentations in
two different scenarios. The acquisition scene procedure was the same used during
the NARF descriptor experiments. In the first scenario, we placed only the green
cup and the spray flask on an office table (see figure 6.20) removing all the other
objects.

In figure 6.21 results of the object recognition in this condition are shown. The
distance from the center of the table, when those scenes were acquired, was around
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70 cm.
As we can see results of the object recognition matching are quite accurate with

high matching rates. As explained in section 5.2, the background has been removed
by filtering the depth and the table has been segmented. In this case only two
clusters containing the model information have been found.

Occlusion conditions for those objects have been considered during this test. As
we can see in figure 6.22 the spray flask has been occluded by the cup considering
the position of the camera where the scene has been acquired. Although the spray
flask does not contain part of its model information because of the occlusion, the
object is found with a good pose estimation.

(a) Image capture by the Kinect - Occlu-
sion on the spray flask

(b) Object recognition view

Figure 6.22. Success matching in occlusion conditions

However there can be scenes where, due to the occlusion, the object is not found
as happened during the previous test. This is why, as you can see in figure 6.23,
one failure was obtained during total acquisitions.

(a) Image capture by the Kinect - Occlusion
on the spray flask

(b) View of the not successful Spray flask
recognition

Figure 6.23. Failure matching in occlusion conditions

The second scenario instead consisted of the spray flask and the green cup as the
previous one, but here we added two other objects: a wallet and an indian statue,
as shown in figure 6.24.
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Figure 6.24. Spray flask, green cup, wallet and indian statue table scenario

In figure 6.25 results of the object recognition in this scenario are shown.As in
the previous example, the position of the Kinect from the center of the table was
around 70 cm.

(a) Recognition results by using method A

(b) Recognition results by using method B

Figure 6.25. Green Cup and Spray Flask recognition results in a more complex
scenario

Occlusion conditions have not been considered, it is why the matching in this
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experiment for both of objects is 100%. The weak spot of this algorithm is when
objects which are not introduced as input lie in the same environment of the objects
to recognize. Considering that for the match recognition only surfaces of single point
of view are used, the surfaces of new objects can match with some of those point
of views of the model. Considering that, in order to be recognized, an object needs
to be matched at least 4 times in a row of 5 acquisitions, it happened, due to the
surface properties of the objects in the scene, that the models given as input have
been matched also in the wrong place. This is the reason of the false positive rate
during the experimentations. An example of false positive obtained during the tests
is shown in figure 6.26.

(a) Cup false positive detected on
the indian statue surface

(b) Spray false positives detected
on the wallet and indian statue
surface

Figure 6.26. False positive matching using CVFH

6.4 Discussion
There is a substantial difference between the two methods which have been used
during the experimentations. By using method B we are simulating the behavior
of a robot which is not going to trust only one image but it is going to elaborate a
set of images.

The acquisition of the 3D model using the software RGBD-6D-SLAM took some
time considering that some conditions should hold in the environment to get a good
result. Bright scenes, with many features (textures on the object and background)
facilitate a fast acquisition of the model although sunlight is too bright for the
infrared sensor, which means the environment should be illuminated artificially. We
have noticed that the sensor error is lower for near objects, so textured foreground
represents a good idea. This is the reason why our kitchen cup has been texturized.

The software can work either in continuous mode (acquiring data when the
Kinect is moved) or just taking individual picture shots when a good position
is reached. Although the continuous mode provides a good result if the number
of features is increased in the “globaldefinitions” C++ code considering that the
speed is not important for our acquisition because increasing the number of sam-
ples acquired, the speed of elaboration is slower and this does not allow a real-time
application.
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As regards the 3D object recognition descriptors evaluated during this project,
considering the object recognition matching score, the CVFH offers excellent results,
including also some scenarios where objects have in part been occluded by other
objects. The object pose estimations is also really accurate. The problem of this
descriptor regards the false positive rate matching when objects models are not
given in input to the descriptor and can be found into the scene. The NARF
descriptor instead has a different behavior depending on the scene and the objects
to recognize. It depends strongly from the min_validation_score value, but, as we
have seen, keeping the default value and changing the other options can give us a
higher recognition matching with lower false positives that we could obtain by only
lowering this value.

6.5 Hints for future improvements
In this section some suggestions that can improve the object recognition results will
be given.

Working with Point Cloud Data files give us information about the color. This
2D information could be integrated in the NARF descriptor used above for those
objects from which key points are extracted in the scene. The main idea could be to
lower the min_validating_score to add another filter(besides the surface and bor-
der filter inside the code called falsePositivesFilter::validationPoints()) which
concerns the color information. This filter could represent the global color of the
object (if uniform) or a viewpoint of it. I would suggest the use of HSV, so the
scenes are not conditioned so much by the light conditions. Furthermore a support
size for each model given in input could be added to the main code.

In a similar way texture information coming from the CAD models can be
considered. For models bringing this information a mapping between the object file
and an image file is provided. So when CAD models are converted in Point Cloud
Data files, this information needs to be converted too. The main problem here is
to understand how the color information is stored in the CAD models and how
to generate the training clusters into the Clustered Viewpoint Feature Histogram
descriptor. The first point has been already solved introducing the Parser which is
able to do this conversion. So the main problems is represented by the training of
the data color and the use of this data in the testing step.
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Conclusions

The work done in this project is a demonstration of the importance of 3D data
acquisition. The launch of the Kinect is revolutionary in the computer vision and
robotic fields not only for the low cost of the device itself, compared with other tech-
nologies for the acquisition of three data as sterocameras, but also because the way
in which these data can be captured and processed can be easy and straightforward.
A big community is working on the processing of 3D data captured by the Kinect
to manipulate them and develop new functionalities, such as segmentation, parser
conversion and object recognition. This project is an example of how powerful these
can be if combined together.

The objectives of this project were to reconstruct object models to give as input
to 3D object recognition descriptors and to be able to handle those descriptors using
the Kinect to get a streaming recognition.

The segmentation goal has been achieved using the RGBD-6D SLAM software.
With this software we were able to reconstruct a full 3D environment model where
the object has been placed in the middle, and then extracted. A simple segmentation
has also been implemented which allows to segment simple views of the object.

Test trials in order to acquire the object have shown that, during the acquisition
of the models using RGBD-6D SLAM, better results can be achieved if the models
have texture properties.

CAD models (ply and obj) have also been part of the experimentations. This
has been done to have a wider number of models whose matching object recognition
results can be evaluated during the testing stage. Those CAD models have been
converted into PCD files with parsers that have been created in this project for
this purpose. The innovation of those parsers are the possibility to maintain the
color information during the conversion. This has been done by applying a bilinear
interpolation algorithm and the implementation created will be part of PCL.

The object recognition has instead been achieved by employing two different 3D
feature descriptors: the NARF and the CSVF descriptors. Their experimental code
is part of the ROS package although they work with different Point Cloud Library
versions. During this project we managed to handle those 3D object recognition
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descriptors by testing and evaluating their results, introducing some improvements
and giving some hints for future work.

Results of the NARF object recognition analysis have shown that for the object
recognition matching both the “reverse” planar segmentation introduced in this
project together with the option “set unseen pixels to max range” and the option
“use orientation invariant version” give some good rate results. The main problem
of the first option is the number of false positives introduced.

Considering the CVSF we have seen that its object matching success rate is
quite high in conditions where only the models which are given in input are present
into the scene. In different scenarios, considering that the recognition is doing
considering the object surfaces, the rate of the false positives which are found into
the scene has a high value. In order to decrease the number of false positives, some
hints for both descriptors have been introduced to improve the rate matching.

52



Appendix A

File Formats

A.1 Wavefront Object Structure

According to the researcher Martin Reddy [9], a Wavefront Object model is made
of different sections. In the first one there is the information of the vertices of
the model. Three values are needed to create a vertex in the space (XYZ) and
they are given in the file after the initial header v. After the first section there is
an optional section where the texture-color information is stored. The header that
introduces this section is vt. This information is given in two values defined as u and
v. These values contain the necessary access to the image picture which is provided
together with the textured CAD model. With this 2D coordinate representation,
it is possible to have a mapping into the 3D model by using the Bresenham’s line
algorithm [24], which represents a bilinear interpolation of points.

Then there is another section which contains the faces. With this information
vertices are linked together in order to build the small faces which the model is
made of with. Usually each face is composed by a set of three different vertices,
which means small triangles meshes are created in order to build the whole model
(see figure A.1).

The lines in the file containing the faces start with the header f. If both the vertex
and texture-vertex sections are available, the face section contains many tuples of
vertices and texture-vertices information stored in this way: f v0_index/vt0_index
v1_index/vt1_index v2_index/vt2_index. The values stored actually represent the
line on the section (v or vt) where the vertex/texture-vertex has been stored. In
this case, the reference to the image is needed, and it is introduced by the header
usemtl.

If the Wavefront Object model does not contain the texture-vertex section, then
the face section is made of only vertex indices (e.g. f v0_index v1_index v2_index).
So in this case the reference to the image picture is not needed.

An example of Wavefront Object Structure is given in listing A.3.

We will consider the case in which the texture-vertex information is available,
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Figure A.1. A graphical example of the triangle meshes which a CAD model
is made of with

because the final goal of our parser is to create models containing the color infor-
mation.

Some Wavefront object models can also contain information about the normal,
but for our purpose, the explanation given above is enough.

A.2 Polygon File Format Structure

According to the description given by Greg Turk[30], the content of a ply model is
divided as follows:

• In the first part of the ply file, which is called header, there is the information
of how the data is stored into the file. The number of vertices and faces
is given in this header as well as the description of the properties for each
element contained into the file.

• For each vertex the information of the X, Y and Z position is mandatory.
Instead optional information like the RGB color data, density and luminosity
can be stored into the file after the vertex position. We will consider the RGB
data in the parser described afterwards, in order to have the color information
stored per vertex.

• For each face a minimum of 3 values is required to create the structure. The
color information can also be saved per face as well as it is stored into the obj
file. In this case then the color information is stored into the 2D coordinates,
u and v. Then, by using the Bresenham’s line algorithm [24], it is possible
to map this information into the 3D model. The number of vertexes and
texture-vertexes is introduced before listing those elements. So, for example,
when the face section starts, elements are listed in this way:
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n_tot_vertexes vertex_1 vertex_2 vertex_3 n_tot_textured_vertexes u1 v1
u2 v2 u3 v3.

An example of ply model taken from the Turk’s website [30], and modified in
order to show the explanation before, is given in listing A.5. Afterwards we will see
we can create a ply model from an obj model, and we will be able to store the color
information either per vertex and per face.

A.3 Point Cloud Data Structure
According to the description given by the creators of the Point Cloud Library, the
Point Cloud Data file has the following structure:

• In the first part of the file, a header is defined. It contains the information
about the properties of the file in terms of version, fields, size, type, width,
height, number of points and the type of the data (ascii/binary).

• Fields that can be part of the PCD model are, for example, the X, Y and Z
coordinates needed to identify the point in the space, the information about
the color, which is actually stored in only one float value but its conversion
into three different values (r, g and b) is easy to implement, (the instructions
to achieve this conversion are showed in listing A.1). The reverse conversion
(from (r, g and b) to a unique float value) is instead shown in listing A.2).

• Size is referred to the dimension of each field in bytes. Width can represent
either the total length of the file (that means there is only one row with all
the information saved in only one row, and from this derives that the value
of the Height is equal to 1), or the length of the data memorized per line
(if the width is for example 640 and the height is 480, this means that the
information is stored like in a matrix structure).

� �
uint8_t r , g , b ;
// . . . va lue s de f ined somewhere in the code
int32_t rgb_integer ;
rgb_integer = ( r << 16) | ( g << 8) | b ;
/∗ ca s t from in t e g e r to f l o a t .
This i s the value which i s s to r ed in to the PCD f i l e ∗/
f loat rgb = ∗( f loat ∗)(&rgb_integer ) ;� �

Listing A.1. Conversion from uint8_t r, uint8_t g and uint8_t b into float rgb

� �
f loat rgb ;
// rgb value de f ined somewhere . .
uint32_t rgb_integer = ∗reinterpret_cast<int∗>(&rgb ) ;
uint8_t r = ( ( rgb_integer >> 16) & 0 x f f ) ;
uint8_t g = ( ( rgb_integer >> 8) & 0 x f f ) ;
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uint8_tb = ( rgb_integer & 0 x f f ) ;� �
Listing A.2. Conversion from float rgb into uint8_t r, uint8_t g and uint8_t values

After the header, all the information is considered as data. An example of PCD
file is given in listing A.4.
v 0 .1 0 .2 0 .2
v 0 .2 0 .3 0 .4
v 0 .5 0 .6 0 .7
v 1 .2 1 .6 1 .7
. . . .
vt 0 1
vt 1 0
vt 0 .1 0 . 2
vt 0 .3 0 . 5
. . . .
usemtl textureImage . png
f 3/2 2/1 1/2
f 3/1 1/2 2/2

Listing A.3. Example of a obj file

# .PCD v .7 − Point Cloud Data f i l e format
FIELDS x y z rgb
SIZE 4 4 4 4
TYPE F F F F
COUNT 1 1 1 1
WIDTH 63815
HEIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 63815
DATA a s c i i
−10.1025 −38.3424 −33.2597 2.03191 e−39
−8.78072 −38.2784 −33.3098 2.30849 e−39
−8.10687 −38.2322 −33.2899 1.20214 e−39
−8.78072 −38.2784 −33.3098 2.30849 e−39
−8.10687 −38.2322 −33.2899 1.20214 e−39
−8.78072 −38.2784 −33.3098 2.30849 e−39
−8.10687 −38.2322 −33.2899 1.20214 e−39
. . . . .

Listing A.4. Example of a pcd file

ply
format a s c i i 1 . 0
comment author : Greg Turk , modi f iyed by f av iu z
element ver tex 4
property f loat x
property f loat y
property f loat z
property uchar red { s t a r t o f ver tex c o l o r }
property uchar green
property uchar blue
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element f a c e 4
property l i s t uchar int vertex_index { number o f v e r t i c e s for each

f a c e }
property l i s t uchar texture−ver tex
end_header
0 0 0 255 0 0 # vertex 0
0 0 1 255 0 0 # vertex 1
0 1 1 255 0 0
0 1 0 255 0 0 # vertex 3
3 0 1 2 6 0 .1 0 . 2 0 .4 0 .5 0 .2 0 .3 # fa c e 1
3 0 2 3 6 0 1 1 0 0 1 # fa c e 2
3 0 1 3 6 0 .54 0 .31 0 .34 0 .53 0 .23 0 .32
3 2 1 2 6 0 .12 0 .421 0 .42 0 .21 0 .12 0 .32 #fa c e 4

Listing A.5. Example of a ply file
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