3DNet: Large-Scale Object Class Recognition from CAD Models

Walter Wohlkinger and Aitor Aldoma and Radu B. Rusu and Markus Vincze

Abstract—3D object and object class recognition gained
momentum with the arrival of low-cost RGB-D sensors and
enables robotics tasks not feasible years ago. Scaling object
class recognition to hundreds of classes still requires extensive
time and many objects for learning. To overcome the training
issue, we introduce a methodology for learning 3D descriptors
from synthetic CAD-models and classification of never-before-
seen objects at the first glance, where classification rates and
speed are suited for robotics tasks. We provide this in 3DNet
( 3d-net.org ), a free resource for object class recognition
and 6DOF pose estimation from point cloud data. 3DNet
provides a large-scale hierarchical CAD-model databases with
increasing numbers of classes and difficulty with 10, 50, 100
and 200 object classes together with evaluation datasets that
contain thousands of scenes captured with a RGB-D sensor.
3DNet further provides an open-source framework based on
the Point Cloud Library (PCL) for testing new descriptors and
benchmarking of state-of-the-art descriptors together with pose
estimation procedures to enable robotics tasks such as search
and grasping.

I. INTRODUCTION

Central tasks for robots are to find, grasp and manipulate
objects. While an industrial robot helper needs to know about
the specific objects in production, home robots should know
about all the object classes typically found in human living
space. And certainly, the user expects that the robot can learn
novel objects and object classes.

Especially the domestic setting with its plethora of cat-
egories and their intraclass variety demands great general-
ization skills from a service robot. The categories are char-
acterized mostly by their shape ranging from low intraclass
diversification as in the case of fruits and simple objects
like bottles up to high intraclass variety of classes such as
liquid containers, furniture, and especially toys. With robots
starting to tackle real-word scenarios, we require fast and
reliable object and object class recognition. Especially in
robotics manipulation, where object recognition and object
classification have to work from all possible viewpoints of
an object, data collection for training becomes a bottleneck.
Especially for classes with high intraclass variability it is
required to obtain a very large number of objects in the
training phase.

With the arrival of an affordable RGB-D sensor, the
Kinect, and the increasing number of mobile manipulators,
e.g., WillowGarage’s PR2, learning classes and objects for
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Fig. 1. System overview: For classification, the RGB-D image is segmented
to obtain a point cloud cluster and to calculate a cluster descriptor. The
descriptor is then compared to synthetically rendered views of CAD-models.
The most similar view delivers the best 3D model, view and class label.
3DNet provides the means for this system: A large set of organized 3D CAD
models and an extensible framework with needed algorithms and descriptors.

each one of the objects and robots seems like a waste of
resources. The goal should be to have a common knowledge
database shared between the robots. So when one robot in
place A is trained on novel objects or classes, another robot at
place B can update the reference database and detect the new
object classes (maybe with the exception if objects differing
too greatly from country to country). This also holds true
for the introduction of new features and descriptors: once
introduced and integrated, everyone should be able to use
these algorithms. This is especially true for researchers not
working in the field of object and object class recognition,
as for them, classification is a necessary step to achieve their
own research to provide the robot with new functionalities.

To gain momentum towards that vision, we introduce
3DNet ( 3d-net.org ), a free resource providing training
data in the form of 3D CAD models, a framework for
implementing and evaluating existing and new 3D shape
descriptors and out-of-the-box object recognition and object
classification. Figure 1 depicts the proposed system with 3D
CAD models or scanned 3D models as input for training and
a view based matching against the sensor data. We encourage
the community to exploit and add to this open framework,
which presents state-of-the-art performance compared to



Lai [11], as robotics research focused on object and object
class recognition based on 3D shape from depth sensors are
almost at the very beginning and the features and descriptor
possibilities are not fully exploited yet. Our contributions
encompass three distinct but related areas:

« First, we propose to use synthetic CAD models collected
from the web. The models are organized according to
WordNet [6] and are provided through 3DNet ( 3d-
net.org ). This enables the robotic community to fast
and easily train many object and object class recognition
algorithms without tedious object scanning.

« Secondly, we provide an open-source framework based
on PCL [18] with state of the art descriptors for use with
the 3D model database. These descriptors are automat-
ically trained on the 3d models and enable real-time,
high performance object and object class recognition to
be integrated into common robotics frameworks such as
ROS [15]. The framework provides templates to easily
integrate new descriptors.

e And third, we propose benchmarks with increasing
complexity to be used as test environment to enable
objective comparison of descriptor performance. The
benchmark datasets are in addition to the RGB-D
dataset by Lai [12] and the SHREC Range Image
Retrieval Contest [5] where we provide out-of-the-box
evaluation scripts to be tested on these already available
datasets. To provide an unbiased test dataset for our 200
category model database, datasets from the community
are being added via 3DNet.

After reviewing related work we present the 3DNet
database in in Section III and the classification framework
in Section IV and present benchmarks and evaluation results
in Section V.

II. STATE OF THE ART

Our reference is the hierarchical RGB-D object test dataset
that was made available to the community by Lai [11].
It presents 51 object classes also organised according to
WordNet relations. In the accompanied approach [12] mul-
tiple features are combined, trained, and evaluated on this
dataset and the authors showed that shape together with
color leads to improved object recognition. Although the
authors collected a large dataset from multiple viewpoints,
the authors did not make the code nor evaluation tools
available to the community. The KIT Object Models Web
Database! is also a free resource of 3D models with texture
scanned with a structured light setup representing mostly
household items. The closest benchmark to our system is
the SHREC Shape Retrieval Contest of Range Scans? where
a set of 800 3D models in 40 classes is given as target set and
120 range scans captured with a Minolta Laser Scanner and
converted to meshes are given as query set. The results were
presented in [5] where the top performer reached a nearest

Thttp://i61p109.ira.uka.de/ObjectModelsWebUT/
Zhttp://www.itl.nist.gov/iad/vug/sharp/contest/2010/RangeScans/

neighbor classification rate of 67.5% with a bag of words
approach with depth-sift features [7].

Regarding the development of datasets, an interesting
issue was brought up by Torralba and Efros [21]: Datasets
(e.g., Caltech-101 or the Pascal VOC) for measuring and
comparing competing algorithms are biased. This also halts
true for the RGB-D dataset of Lai [11], which has a selected
set of objects, poses, lighting conditions and objects on a
small turntable. The authors of [21] provide suggestions to
minimize the bias in datasets which include:

« Selection Bias: to avoid a bias towards human-selected
images, data should be collected automatically from
multiple sources, using multiple search engines from
multiple countries, or use a large set of unannotated
images and label them by crowd-sourcing as done with
ImageNet [4] or LabelMe [16].

« Capture Bias: as objects almost always appear in the
center of the image and objects tend to have a standard
position (mugs upright with handle to the right). In a
robotic-centered RGB-D context, the capture bias could
be resolved by capturing failed manipulation attempts
which lead to objects in random pose and distance to
the camera and thus avoiding human-biased viewpoints
(e.g., looking down 45 degrees).

« Negative Set Bias: is reduced if we add scenes to the
database that do not contain any of the database objects.

These suggestions motivated us to create a publicly avail-
able community-built test dataset for the unbiased, objective
and extensible comparison of classification and recognition
algorithms for robotics.

III. DATABASE

The intention is to build up and maintain a steadily
growing database of object classes for robotic applications.
We propose to adopt the paradigm of learning models of
classes from the web to easily capture intra-class variability
and simplify data gathering. We also link the classes to actual
scenes with (new) samples of these object classes.

To start with, we provide four CAD-model databases with
increasing size and complexity accompanied with corre-
sponding test databases. The model databases are constructed
by semi-automatically downloading models from Google’s
3D Warehouse and various smaller, free online repositories
for CAD models®. The models are linked to the WordNet [6]
structure, which provides a hierarchical semantic organiza-
tion of the classes. The idea to use 3D models from the
web has an additional advantage: By using 3D models, the
problem of coping with a large intraclass variety is inherently
addressed, as the number of available models is found to
be proportional to the intraclass variety. Scanned objects
can also be included into the databases and used with the
framework, the choice for using mainly 3D CAD models
was due to availability and completeness of the models, as
it takes some effort to scan complex objects as chairs for
example. 3D CAD models from the web are easily accessible
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but have some drawbacks on their own like non-consistent
normal directions, unequal tessellation of triangles and errors
in the mesh. Our approach of generating views of the models
by rendering them can cope with these errors.

The classes are organized in four increasingly challenging
datasets, as more sophisticated descriptors and additional
cues are necessary to differentiate between 200 classes in the
largest dataset. The according test-databases contain scenes
with only a single object per scene. The segmentation is
provided as a preprocessing step by the framework.

The four datasets with its properties are introduced in the
following sections.

A. Catl0: Basic Object Classes

The basic dataset consists of common, simple, geomet-
rically distinguishable but partially similar objects. Object
classes were chosen to also be suitable for robotic manipu-
lation. The database consists of 360 3D CAD models in the
classes apple, banana, bottle, bowl, car, doughnut, hammer,
mug, tetra-pak and toilet-paper. The test-database consists of
1600 scenes of single objects on a flat surface in multiple
poses and multiple instances per class. For each scene a color
image, a point cloud and a bounding box with the class label
is provided. In Figure 3, a representative sample of the Cat10
model and test database is given.

The challenges in these classes are twofold: Firstly the
intra-class variance of the classes hammer, mug and bot-
tle, as these three classes are to be found in hundreds
of shape variations in the real world. Secondly, the inter-
class similarity of the classes (mug,toilet paper),(apple,donut)
and (bottle,banana,car) when given only a partial view as
depicted in Figure2.

B. Cat50: Super-Classes

The Cat50 model database consists of the Catl0 database
with forty additional classes. The classes in this database
are still distinguishable by shape only, but also include sub-
categories (chair, office-chair, armchair and car, convertible,
pickup, formula-car). Table I gives an overview of the classes
sharing the same hypernym, i.e., belonging to the same
superclass.

From the point of view of object classification, organiz-
ing objects in a tree has an implicit advantage regarding
evaluation: The level of misclassification of an object can
be measured as the length between the nodes in the tree.
Clearly, misclassification inside a subtree — convertible as
car, or airplane as fighter jet — is better than outside a
subtree, especially when robustness and user acceptance is
of importance as in home robotics.

—
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Fig. 2. Similar partial views of the classes mug vs. toilet paper and and
donut vs. apple

Fig. 3. CAD models of the ten classes with selected test scenes. First two
columns present two typical cad-models from the according class followed
by two object instances from the testset with the whole scene and segmented
scene in point cloud representation.

The according test database for the CatSOMDB adds
another 1600 scenes which adds up to 3200 test scenes for
the 50 categories.

The challenges in this database include coping with large
shape differences although from the same class ( paper
airplane test objects to CAD model airplanes ), similar
objects from super-classes and accidentally matching views
— as already present in the Cat10 database — as a direct result
of scaling the number of CAD models up to 1500. Example
views of the challenges are depicted in Figure 4.

C. Catl00: Color

This database adds objects which are similar in shape
but can be uniquely distinguished when using color as an
additional cue. As stated in the work of Lai [12], color
together with shape leads to improved recognition of objects
and object classes. As depicted in Figure 5, color is not only
improving object class recognition, in these one hundred



TABLE I
HIERARCHICAL ORGANIZATION OF THE MODELS IN CAT50.

coarse categories (hypernyms)  shape categories (hyponym)

animal camel, cow, dinosaur, elephant
horse, shark

banjo, guitar

bottle, can, mug, tetra pack

apple, banana, lemon, pear

starfruit, pineapple, strawberry

car, convertible, locomotive
monster truck, pickup, race car, suv
tank, truck

food donut, pretzel, croissant

aircraft airplane, biplane, fighter jet, helicopter
seat armchair, chair, office chair, stool
footwear boot, sandals, shoe, heels, ski boot,
hand tool hammer, pliers, screwdriver, wrench

musical instrument
container
edible fruit

motor vehicle

object classes it is crucial to have color as an additional
cue to differentiate between the newly added classes. The
database now contains many natural objects like fruits and
vegetables, which share a common primitive shape such as
orange, apple, lemon, lime, watermelon, carrot-radish, etc.

Man made objects are largely excluded from adding to
this database, as color can not be assumed fixed, even with
common objects such as a tennis ball for example, as it
comes in additional colors to the standard yellow.

D. Cat200: Size

One important aspect of objects and object classes was
not used and not needed in the previous category databases:
size. To successfully distinguish among our 200 categories
database, the real world size of the objects becomes impor-
tant. As classification of objects is subjective — assume a
tennis ball with 30 cm diameter, is it still a tennis ball? —
we advocate a functional viewpoint on classification: If the
object affords the intended function, it is part of the class,
otherwise it is a new class, e.g. toy-tennis ball. Following
this schematic, a huge part of man-made objects depends on
the size cue, e.g., example in Figure 6.

Real world scale information is not yet present in the
database, as CAD models do not come with a common real
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Fig. 4. Challenges when matching real objects like inflatable and paper
airplanes to CAD models of planes which only share overall shape.
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Fig. 5. Some classes are almost identical in shape but differ in color.
Lemon and lime are two obvious examples, but most roundish shaped fruits
and vegetables having color as a distinct cue.

Fig. 6. Size matters: Depending on the real size of the depicted object
it can be waste-bin, a mug or a thimble. Shape, color and texture are not
sufficient any more to classify this object, which is a thimble.

word size information and therefore it has to be acquired
from other resources on the web or learned by the system
during successful detections of objects.

E. Community-built Test Database

The test database for these two hundred object classes are
open to be extended by the community to provide a large
unbiased test database. The test database will be fixed once
a minimum of five test objects per category are available for
evaluation in the database. We provide tools and web-space
for uploading test scenes to 3DNet. A test scene is defined
as binary pcd file including X,Y,Z,RGB values captured
with a Kinect-like sensor. Capturing can be done using
standard PCL tools or our provided ROS-based capturing
and annotation tools. To ease segmentation, objects have to
be on a flat surface, e.g. on the floor. Annotation is done by
3DNet according to the classes available. For the follow-up
database Cat300, classes can be requested by the community
via 3DNET.

IV. FRAMEWORK

The proposed open-source PCL-based framework targets
real-time classification and object instance 6DOF pose recog-
nition for robotics and provides an easy way of training
descriptors, adding new classes or specific objects. Adding
new descriptors is supported and encouraged by providing
code-templates for an easy transition of C++ code into
the framework. Evaluation and benchmarking are also part
of the framework, as is 6DOF pose estimation and object
recognition.

Usage of the proposed framework for object classification
requires the following steps:

1) SVN check-out framework provided on 3DNet

2) Download CAD models from 3DNet

3) Download test database from 3DNet

4) Use present descriptor or implement own one using

provided template

5) Run the program to fully automatically train on the

CAD models and evaluate on the test sets

6) Plug in a Kinect and classify objects

A. View Generation

The training on CAD models is done by rendering and
sampling the z-buffer from views around the model and
storing the generated partial views as point clouds. Descrip-
tors are computed on these partial views. The number of



views can be chosen from as few as 12 to several hundreds,
depending on the descriptor and application in mind. The
standard number of views used for the experiments in this
paper is set to 80, as this number provides sufficient views
even for complex objects.

Training on 3D models by generating synthetic views has
the following advantages:

1) Completeness: Viewpoints are evenly spaces around
the object, no missed views

2) Parameterizable: Easily re-trainable with different pa-
rameters such as number of views, resolution, noise
level or distance to object

3) Sensor independence: Simulation of favorite sensor
characteristics possible ( field of view, aliasing, noise
)

4) Additional information available: Entropy of the views
or the connectivity of the views using an aspect graph

can be calculated.
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Fig. 7. Partial views of a mug generated by sampling the depth-buffer
while rendering views around the object.
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B. Entropy

Having synthetic views and the original model at hand
enables the calculation of the entropy of each view i.e. the
expected value of the information contained in a view. This
follows the idea of using the different levels of information in
views as shown in [2], where an optimal set of views(images)
of a 3D model is found by adaptive clustering.

These entropy values for each view can be used in a post-
processing step to filter accidental views: Given a model of
a bottle, the view directly from the bottom only represents
a small portion of the object and thus has a low entropy
value assigned. If this view is matched against something
round and curved like an apple or donut, it can be filtered as
real world scenes are rarely represent such extremal views
of objects.

The entropy is calculated as the ratio of the surface area of
the whole model and the visible surface area. Experimental
evaluation of view filtering the nearest neighbor list is
given in SectionV. Another available post-processing step
for filtering is available in the framework using the approach
proposed in [24], where the similarity of nearby views is used
to filter accidental matches.

C. Pose Estimation

The Camera’s Roll Histogram [1] together with any of the
descriptors and ICP [3] is used to calculate the pose and the
scale of the model and align the 3D model with the scan
from the sensor as depicted in Figure 8, which for example,
enables robotic manipulation tasks as the full 3D information
of the model can be used. The 3D models in the database are
not aligned to each other, as robust automatic alignment of
3d models is still an open research field and unsolved given
a large intra-class variability. The estimated pose therefore
depends on the object’s coordinate system.
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Fig. 8. Pose Estimation: Given a scan from a Kinect (a,b), the segmented
point cloud (c) is matched against synthetic views of the model (e). Using
the best matching view (d), the model is aligned to the scan(f).

D. Extensibility

Adding a new object class is easily achievable by follow-
ing the following steps:

1) Download 3D models of new object class from the
various sources from the web or scan your objects

2) Convert the 3d models to PLY-format ( we suggest
meshconv* )

3) Put the 3d models into a subdirectory of the already
existing database and start the framework for view
generation

4) Optional: An XML-file in each class directory provides
the link to WordNet through the WordNet ID and
additional attributes to the class.

E. Descriptors

The proposed framework comes with a set of available
descriptors. The choice of descriptors is based on speed,
availability and stability. Therefore global 3D descriptor are
the first to be entering the framework such as VFH, CVFH,
SHOT and shape distributions based descriptors as these
provide the needed speed for robotics applications. Reimple-
mentation and adaptation of Spherical Harmonics [10] and
Spin Images [9] as global descriptors are the next to be put
into action. Local descriptors with Bag-of-Words approaches
as used in [5], [13] and [8] require an extra step of learning
the visual-words which is not yet available in the framework.

1) VFH: The Viewpoint Feature Histogram (VFH) in-
troduced in [17] is a viewpoint global descriptor based
on angular normal distributions extracted from the surface
normals and a reference coordinate system obtained by
averaging the normals and points on the whole surface. It
was designed to robustly describe the geometry of objects
seen from a certain viewpoint using the same depth sensor
for training and detection. The average time for calculation

“http://www.cs.princeton.edu/ min/meshconv/



and matching is approximately 70 ms where the normal
calculation is accountable for most of the calculation time.
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Fig. 9. VFH rank plot on the 10 classes test database against 10 Classes.
VFH produces good results but fails on two classes.

2) CVFH: The Clustered Viewpoint Feature His-
togram [1] is a semi-global view based descriptor based on
VFH. Because of its semi-global nature, only certain parts
of the objects are used to build the reference systems on
which the computation is based but uses the whole available
view information to build the angular normal distribution
histograms. Because of its multivariate representation of a
partial view, it can deal with partial occlusions and cope with
different data characteristics between training and detection.
The parts of the object used to build the coordinate systems
are obtained by a smooth region growing stage aiming
to detect stable regions which are robustly estimated by
the depth sensor. The descriptor computation time depends
strongly on the region growing step, both in the number of
points and the number of stable regions found. The average
time for computation and search is approx. 208 ms, ranging
from 50 ms and 300 ms.
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Fig. 11. SDVS rank plot on the 10 classes test database against 10 Classes.

Most confusion is between the classes mug and toilet paper and between
bowl and apple as partial views of these classes resemble parts of the other

class.
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Fig. 12. ESF rank plot on the 10 classes test database against 10 Classes.
The tetra pak class is working for this descriptor, but it still has problems

with the similarity of mug and toilet paper classes.
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CVFH rank plot shows improvement over VFH
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10 classes,

5) SHOT: The SHOT descriptor introduced in [20] is
aimed at surface matching with local descriptors, but is
used here as a global descriptor for the whole object. The
descriptor showcases a high classification rate, but compared
to the other approaches the calculation time is up to a
magnitude larger, so the feature calculation and matching
takes from 130 ms to 400 ms on our test database.

but also has problems with two classes.

3) SDVS: The Shape Distribution on Voxel Surfaces de-
scriptor is a descriptor based on histograms of point-to-point
distances and was introduced in [22]. The point distances are
classified to be either on the surface of the partial view, off
or mixed. This descriptor is calculated directly on the point
cloud and does not need any normals to be computed and
takes an average of 25 ms for calculation and matching.

4) ESF: The Ensemble of Shape Functions descriptor
introduced in [23] is based on the SDVS descriptor and
includes multiple shape function as described in Osada [14],
such as A3(angles), D2(lengths) and D3(areas) which in-
creases the classification performance. The descriptor re-
quires 45 ms for calculation and matching. A supplemental
video representing 3DNET of classifying object with this
descriptor is available on 3DNet ( 3d-net.org/video ).
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Fig. 13. SHOT rank plot on 10 classes provides good results with no class
less then 20%, but is also the slowest descriptor in this benchmark.

F. Weight Learning on Synthetic Views

Parameters and descriptor weights can be learned on the
synthetic views without having to see a single real scene.
The improvement of the descriptor performance is showcased
in Figure 14 where a 2 % improvement was achieved by
learning the descriptor sub-histogram weights on a sample
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(b) ESF descriptor with learned weights from synthetic views shows 2 %
performance improvement.

Fig. 14.
rate.

Weights learned on synthetic views for increased classification

of the synthetic views. This method for tuning descriptors
can be accomplished with any descriptor having sub-parts
in its histogram and therefore weights can be learned. The
big advantage here is that this can be done offline, without
having a test database to split in training and evaluation parts.

V. BENCHMARK & EVALUATION

3DNET’s intention is to provide benchmarks for 3D
shape descriptors on the test databases in a similar way the
Middlebury Stereo Benchmark [19] is for dense stereo.

For every descriptor rank-plots, confusion matrices and
overview statistics are generated for the test sets against the
model databases, e.g. 10-10, 10-50, 10-200, to provide in-
sight and conclusions on descriptor performances. A sample
benchmark is given for the ESF descriptor for 200 classes
in Figure 15 and Table II.

As speed is a key issue in addition do classification
performance for robotics, we do not follow the approach of
the Middlebury Benchmark providing user to submit bench-
marks. To foster sharing open-source code and enabling com-
parable performance measures, users are invited to include
their descriptor in the framework, add test scenes to the test
databases and add new categories, but benchmarking and
providing the results on 3d-net.org is done by 3DNet itself.
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Fig. 15. ESF rank plot on Catl0 test database against 200 Classes.

VI. CONCLUSIONS

A novel methodology is presented for rapid and scalable
training of 3D shape descriptors using CAD models. To ac-
complish objective comparison of shape descriptors, 3DNet
( 3d-net.org ) is presented as a free resource providing an
open-source framework and test databases for benchmarking.
Model databases with CAD models in 10,50,100 and 200 cat-
egories are presented as a common training resource. 3DNet
offers to be extended by the community by adding new
categories, creating a common test database and sharing new
shape descriptors. 3DNet provides all necessary resources
to process scenes captured with a Kinect style camera as
depicted in Figure 16. At the current state, segmentation is
the main performance bottleneck, detaining us from having
higher frame-rate classification. This leaves a lot of scope for
future improvements in the challenging areas of handling
touching objects, occlusions and sensing inadequacies and
speed. We hope that with 3DNET, progress in these specific
areas and in 3D object and object class recognition is
accelerated.

Fig. 16.  Classification using ESF with nearest neighbor on a scene
with multiple objects. Challenges are wrong and missing segmentations,
sensor noise and missing data on shiny and transparent objects and parts
and descriptor flaws, which cause mis-classification. As this classification
is done per frame, using multiple, successive frames and/or alignment of
3D models to sensor data, wrong classifications can be filtered as a post-
processing step.

TABLE I
NEAREST NEIGHBOR CLASSIFICATION AND MOST CONFUSING CLASS

class name 1-NN 10-NN  confusing class
per scenes OVERALL 5822 %  78.23 %

per class OVERALL 49.10 %  71.39 %

apple 81.40 %  98.45 %  pumpkin
banana 5479 %  69.86 %  pistol
bottle 4877 %  79.01 %  suv
bowl 50.00 % 7647 %  hat

car 1152 %  43.64 %  suv
donut 20.00 % 62.00 % cap
hammer 8341 % 96.10 %  axe
mug 91.96 %  99.46 %  watch
tetra pak 47.09 %  72.09 % mug
toilet paper 211 % 16.84 %  armchair
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