Automatic Management System for the AtlasCar Gearbox

Pedro Filipe Pinto Pinheiro

Department of Mechanical Engineering University of Aveiro

July 20, 2012

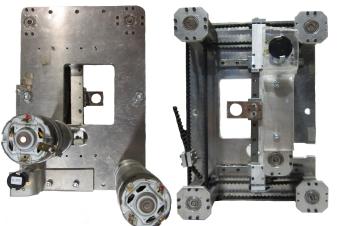
The Atlas Project

The Atlas Project (2003 - Present)

- Advanced Driver Assistance Systems (ADAS);
- Safety Systems Development;
- Acquisition of sensory data;
- Autonomous Navigation.

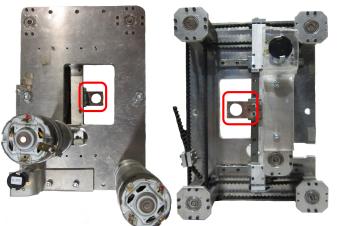
The AtlasCar Actuators

The AtlasCar Actuators


- Throttle;
- Brake pedal;
- Clutch pedal;
- Handbrake;
- Ignition;
- Steering;
- Lights.

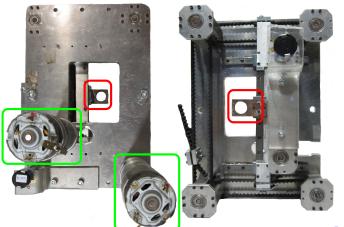
The Problem

The Problem



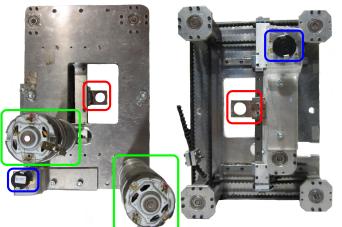
The Problem

The Problem



The Problem

The Problem



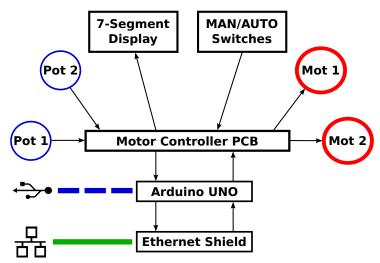
The Problem

The Problem

Objectives

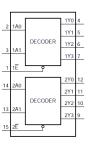
- Slight changes on the mechanical system;
- Development of a control PCB;
- Controller firmware programming;
- Robust communication messaging system;
- System simulation and laboratory tests.

The Arduino UNO


- Open-source;
- Flexible and robust;
- C++ similar language;
- Modularity.

Arduino DC Motor Controller Tasks:

The Power Controller


- H-bridge IC VNH3SP30-E;
 - ► 12 V;
 - ▶ 20 A.
- Coded Inputs.

Top View

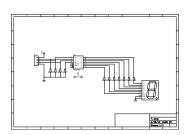
Bottom View

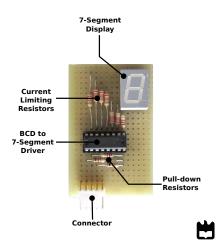
Multi-turn Potentiometers and MAN/AUTO Switches

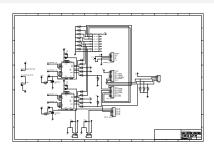
Multi-turn Potentiometers:

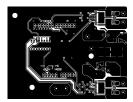
- 3 Turns;
- Mechanically coupled to the shafts;
- Analogue variable voltage output;

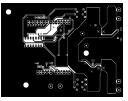
MAN/AUTO Switch:


- 3 Buttons;
 - Shift Up;
 - ► Shift Down;
 - Switch Mode.




Seven Segment Display

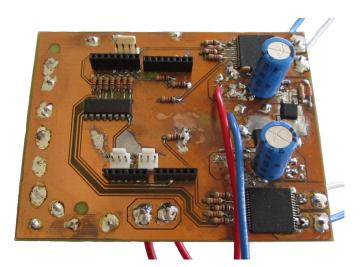

- BCD to 7-Segment Driver;
- Control 8 digits using only 3 bits;



PCB Development

Top Layer

Bottom Layer

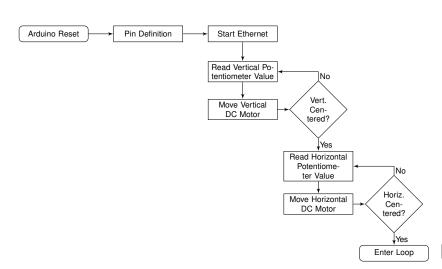


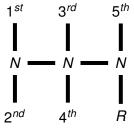
3D Model

Final Controller

Firmware Programming

Arduino's two main cycles:


- The Setup Cycle:
 - Start communication settings;
 - Define pin functions;
 - Reset the mechanism.
- The Loop Cycle:
 - ► MAN/AUTO Modes:
 - ▶ 7-Segment Control;
 - DC Motor Management.



└ The Setup Cycle

The Setup Cycle

The Loop Cycle

Gearbox H-Pattern

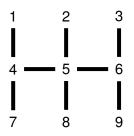
- Coexistence of Manual and Automatic modes;
- Sequential and non-sequential operation;
- Shortest path between two gear positions.

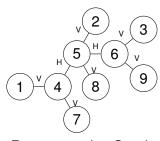
└ The Loop Cycle

The Loop Cycle

Gearbox H-Pattern

- Coexistence of Manual and Automatic modes;
- Sequential and non-sequential operation;
- Shortest path between two gear positions.


Dijkstra's algorithm

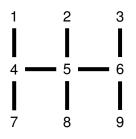


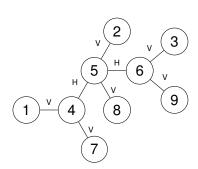
Firmware Programming

The Loop Cycle

Point Numbering

Representative Graph

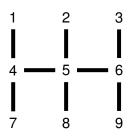


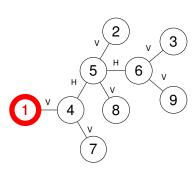


Firmware Programming

The Loop Cycle

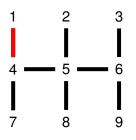
The Loop Cycle - Shifting from 1st to R

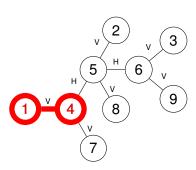


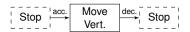


└─The Loop Cycle

The Loop Cycle - Shifting from 1^{st} to R

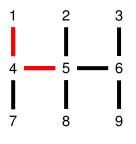


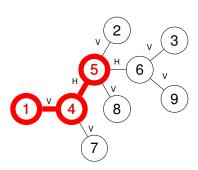



Firmware Programming

└ The Loop Cycle

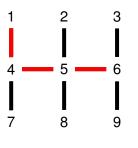
The Loop Cycle - Shifting from 1st to R

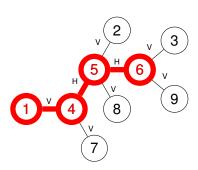




The Loop Cycle

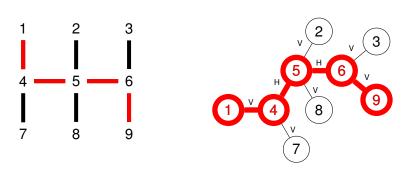
The Loop Cycle - Shifting from 1st to R





The Loop Cycle

The Loop Cycle - Shifting from 1^{st} to R


Move

Vert.

dec.

The Loop Cycle

The Loop Cycle - Shifting from 1st to R

Move

Horiz.

dec.

Stop

Move

Vert.

Firmware Programming

L The Loop Cycle

Resulting in...

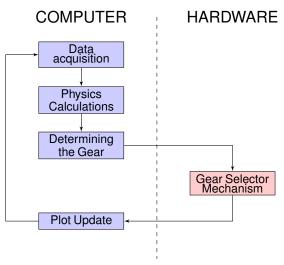
The Loop Cycle

Communication Protocol

Ethernet Cable and TCP/IP.

- PC → Arduino:
 - Set Command;
 - Get Command.
- Arduino → PC:
 - Answer to Set Command:
 - * Invalid Gear:
 - ⋆ Manual Mode;
 - ⋆ Gear OK.
 - Answer to Get Command:
 - * Changing from ... to ...;
 - Current Gear;
 - ► Unrecognised Command.

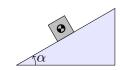
Arduino Ethernet Shield

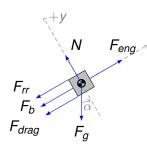


Arduino Ethernet

- Simulator Structure

Hardware-in-the-Loop Simulator Structure

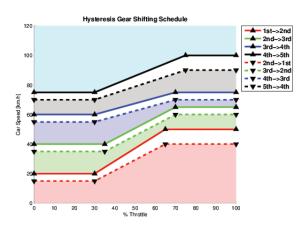



Vehicle Physics

Vehicle Physics

Main forces acting on the Vehicle:

- Engine Force (F_{eng});
- Drag Force (F_{drag});
- Force of Gravity (F_g) ;
- Rolling Resistance Force (*F_{rr}*);
- Braking Force (F_b) .



└ Vehicle Physics

Gear Schedule

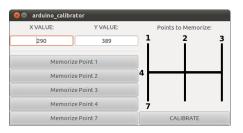
└ Vehicle Physics

Simulator GUI

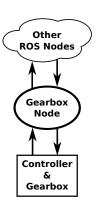
Parameters Window	
PHYSICAL CHARACTERISTICS:	
Maximum road angle: 19 [deg]	
Gravity acceleration: 9.8 [m/s²]	
Air density: 1.29 [kg/m³]	B
Drag Coefficient: 0.3 [-]	
Initial speed: [km/h]	
CAR CHARACTERISTICS:	
Clutching time: [s]	
Car mass: [1000 [kg]	
Maximum brake force: 5000 [N]	
Tire Pressure: 2,2 [bar]	
Vehicle frontal Area: 2 [m²]	
Transmission efficiency: 0.75 [-]	
Wheel radius: 0.34 [m]	
Differential ratio: 3.42 [-]	
Gear Ratios:	
1st: 2.66 2nd: 1.78 3rd: 1.3 4th: 1 5th: 0.74 Rev. 2.9	
Continue	

Simulator GUI

∢ロト∢御ト∢きと∢きと、き


└ Vehicle Physics

The Result



Auxiliary Software

Calibrator

ROS Node

Conclusions

- Reliability of the controller;
- Successful firmware control solution, using the Dijkstra's algorithm to achieve the sequential and non-sequential modes;
- Robustness of the communication messaging system;
- Good results achieved when tested in laboratory;
- Mechanical belt and pulley system not suited for the task.

Conclusions

Future Work

- Remake of the power transmission system, probably replacing it by a chain and sprocket;
- Mounting the system on the AtlasCar;
- Closed-loop speed control using the gearbox;
- More complex manoeuvres (parking, biting-point and start of movement);
- Higher speed tests;
- **.**..

Automatic Management System for the AtlasCar Gearbox

Pedro Filipe Pinto Pinheiro

Department of Mechanical Engineering University of Aveiro

July 20, 2012

