IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

implementation of this solution has been described, with most
attention devoted to reliability problems.

At this preliminary stage of design, the main parts of a first
prototype have been built. These include a single-cylinder en-
gine installed on a test bench, with suitable measurement in-
strumentation, as well as the microcomputer system and inter-
faces. A modeling and simulation of the four-bar mechanism
and optimal valve-timing adjustments have been performed. A
final assembly based on these results is expected to be opera-
tional shortly. :

117

REFERENCES

[1] K. Ikeura, A. Hosaka, and T. Yano, ‘‘Microprocessor control
brings about better fuel economy with good drivability,”” Society of
Automotive Engineers, paper no. 800056.

[2] T. Toyoda, T. Inoue, T. Yaegashi, and K. Acki, ‘‘Electronic
engine control systems for the smaller passenger car,”” Society of
Automotive Engineers, paper no. 800894.

[3] UPI41 User’s Manual, Intel, Santa Clara, CA.

[4] 8085 User’s Manual, Intel, Santa Clara, CA.

[5] A.D. Toelle, ‘“Microprocessor control of the automobile engine,””
Society of Automotive Engineers, paper no. 770008.

[6] A. Avizienis, ‘‘Fault tolerance: The survival attribute of digital
systems,”” Proc. IEEE, vol. 66, no. 10, Oct. 1978.

A Real-Time Engine Simulator Using Multiple
Microcomputers

JUAN R. PIMENTEL, MEMBER, IEEE, AND MICHAEL T. LOEFFLER, MEMBER, IEEE

Abstract—A multiple microcomputer system which is useful for
real-time simulation of both complex and fast response systems has
been designed and constructed. Interprocessor communication be-
tween five microprocessors is done in parallel using direct memory
access techniques. Tests on system performance indicate that it is
capable of fast processing element execution times and fast inter-
processor message transfers.

The system was used to simulate a spark-ignition internal combus-
tion engine in real time. The simulation provides manifold pressure,
net torque, engine speed in response to throttle angle, spark advance,
exhaust gas recirculation, and load torque inputs. The engine simula-
tion model was decomposed into four sections: carburetor, intake
manifold, combustion, and dynamics. Potential applications of the
engine simulator include the development of control algorithms and
engine designs.

I. INTRODUCTION

YSTEM SIMULATION has been useful in engineering

design for various reasons: first, the designer might want
to know how the designed system behaves in different situa-
tions [1]; and second, simulation is used as a tool for the
design process [2]-[4]. Real-time simulation consists of
obtaining the simulated variables in the same time frame that
the actual variables evolve in the system being simulated. The
relationship among all variables involved in the simulation is
given by a model for the system. There are basically three

Manuscript received June 1, 1982; revised December 22, 1982.

J. R. Pimentel is with the Department of Electrical and Computer
Engineering, GMI Engineering and Management Institute (formerly
General Motors Institute, General Motors Corporation), Flint, MI
48502.

M. T. Loeftler is with Pontiac Motor Division, General Motors
Corporation, Pontiac, MI 48053.

approaches used for real-time simulation: analog, digital, and
hybrid (a combination of analog and digital).

Latest developments in microprocessor and microcomputer
technologies add a new dimension to real-time digital simula-
tion. The advances have been so phenomenal that it is now
possible to buy an integrated circuit that has a central proces-
sing unit, enough memory to hold most practical programs,
analog to digital converter, timers, and input/output (I/O)
ports. These circuits, called microcomputers, are revolutioniz-
ing design concepts is several engineering areas. Moreover,
microcomputers are designed in such a way that they can be
interconnected in any array configuration (multiple micro-
computers) to perform more difficult tasks.

If one could decompose the system under simulation into
functional units such that each unit could be simulated by one
microcomputer, then it appears that multiple microcomputers
are very promising for real-time simulation. The main advan-
tage of using multiple microcomputers is that they increase
system throughput. In simulation they can be used to decrease
processing time and achieve real-time simulation. The object
of this paper is to present a multiple microcomputer hardware
configuration for real-time engine simulation. The simulator,
which consists of an array of five microcomputers, simulates
a spark-ignited, internal combustion engine.

I1. SIMULATION OF AN INTERNAL COMBUSTION ENGINE

Automotive vehicle simulation is useful in several stages of
the automobile process. Gilmore [3] considered an analog
simulation for a hybrid gasoline-electric vehicle in order to
study the effects of engine size, electric motor size, flywheel

0278-0046/83/0500-0117$01.00 © 1983 IEEE

118

TABLEI
SUMMARY OF AUTOMOBILE ENGINE MODELS

METHOD FEATURES AUTHOR
Regression Applied to Data Obtained from Tennant
Techniques Automated Dynamometer Tests

Process Model Valid Only for Certain Morris
Identification Operating Conditions

Taylor Series Model Valid for Certain Cassidy

Expansion Operating Conditions

Model Valid for All Operating Dobner

Conditions

Table Look-Up
Based on
Engine Data

size, and battery pack requirements on overall vehicle per-
formance. Mitchell er al. [2] considered a digital simulation
of vehicle dynamics to driver inputs such as steering or brak-
ing, and to external disturbances such as wind gusts. Reid and
Graf [5] considered linear models to represent driver response
during an obstacle avoidance maneuver. Kotwicki [6] con-
sidered a dynamic model for a torque converter to allow
mathematical analysis and performance prediction of power-
train controls.

In the last few years, automobile manufacturers are using
electronic controllers to control certain variables such as
air-fuel ratio, idle speed, cruise speed, etc., in order to min-
imize fuel consumption and emissions. Dynamic engine
models that would allow one to design or evaluate engine
controllers are important because they would reduce con-
troller design time and cost. Tennant et al [7] considered
a model that uses regression techniques on data obtained from
automated dynamometer tests. Morris et al. [8] considered a
process identification approach to model an engine at a given
operating condition. Cassidy et al. [9] used a linearization
method to obtain a model valid also for a given operating
condition. Dobner [10] and Coats and Fruechte [11] at-
tempted to characterize an engine by a nonlinear model use-
ful at all operating conditions. Table I summarizes the major
models for an automobile engine.

III. ENGINE MODEL

Dobner’s model has been chosen for the real-time simula-
tion because it is a global model as opposed to the incremental
one used by Cassidy. The model accepts the following vari-
ables as inputs: throttle position (), spark advance (S), air-
fuel ratio (A/F), exhaust gas recirculation (EGR), and load
torque (7L). The output variables are: engine speed (NV),
net torque (7V), intake manifold pressure (PM), exhaust
manifold pressure (PE), and friction torque (TF). The model
gives functional relationships for the output variables in terms
of the input variables. The basic approach of the model is to
take into account available engine data obtained from dyna-
mometer tests for a specific engine and to model the dynamics
separately. The dynamics are given by time delays and in-
tegrations in the “intake manifold”, “combustion”, and “dy-
namics” sections, respectively.

Due to the complex (highly nonlinear) relationships among
variables, a brief description of the model will be described us-
ing arbitrary functions which will give a certain variable in
terms of other variables shown explicitly in the relationships.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

SPARK LOAD

AIR/FUEL Hor ADleel vo].ul
L | o2,] INDICATED ENOINE
THROTTLE A INTAKE A ToRGUE $PEED
MANIFOLD
FUEL FUEL
IFOLD 'l"
PRESSURE TORQUE
Fig. 1. Basic model configuration for an internal combustion engine.
MAXIMUM AIR/FUEL
AIR FLOW COMMAND
AR
THROTTLE —
CHARACTERISTIC
z -
THROTTLE @ <N\ e FUEL
[-4 -
< = Cs
* |
THROTTLE AIR FLOW
CARBURETION
z CHARACTERISTIC
S
PRESSURE | = ACCELERATOR
RATIO . < PUMP
INFLUENCE | # oo SSURE RATIO
PRESSURE
RATIO
MANIFOLD ATMOSPHERIC
PRESSURE PRESSURE
Fig. 2. Carburetor model.

Furthermore, some variables have to meet certain constraints
which will be stated after the relationships. For example,
manifold pressure can never be greater than atmospheric
pressure. The engine characteristics are: 8-cylinder, 7 1, bore =
4.25 in, stroke = 3.76 in, manifold temperature = 110°F.
Fig. 1 shows the basic model configuration which was moti-
vated by the physical arrangement of the engine. The input and
output of each block is a variable that is measurable in the
laboratory. Each section is briefly described next.

A. Carburetor

The carburetor provides the air and fuel flow into the
intake manifold in response to the accelerator throttle posi-
tion. Air flow is a function of throttle angle «, and manifold
pressure PM. Fuel flow is mainly a result of the carburetor
characteristic (except for power enrichment and accelerator
pump). Functional relationships for the carburetor model
are summarized as

AR = fi[=, PM]
FR = f,[AR] Carburetion characteristic.

(1)
(€3]

Where AR is the mass air rate and FR is the mass fuel rate. Fig.
2 shows the carburetor model in detail.

B. Intake Manifold

This section models the air, fuel, and EGR rates into the
cylinders. The carburetor and EGR valve controls the flow
into the manifold, while the demands of the cylinders dictate
the flow out of the manifold. The flow through the manifold
is treated with transport delays, and the mass of each con-
stituent is calculated by integrating the difference between
the flow in and the flow out. Relationships for the intake

PIMENTEL AND LOEFFLER: ENGINE SIMULATOR USING MULTIPLE MICROCOMPUTERS

FLOW OUT
FLOWIN ast FLow - —. |
EGR PN _ EGR
S N J
AR A\ * DELAY.
o SMOOTHING, I
A) 3 FLoW out FUEL-FAST
FUEL FUEL-FAST ﬂ CALCULATION
FUEL SPLIT
FUEL-SLOW
S s J. - FUEL-SLOW
ILTER
4 | Sum—
SLOW FLOW “]l n-—

GAS

GAS TIME FLOW MASS
NOTE: THE FUEL SPLIT AND LAG FILTER DELAY DEMAND INTEGRATION
PARAMETERS ARE AFFECTED BY
INTAKE MANIFOLD TEMPERATURE TIME DELAY &
FLOW DEMAND
CALCULATION
MANIFOLD
PRESSURE P“ESSU?E "
ALCULATI
VOLUMETRIC RATIO | CALCULATIO
EFFICIENCY)
CHARACTERISTIC

EXHAUST MANIFOLD
PRESSURE PRESSURE

ENGINE
SPEED

Fig. 4. Combustion model.

COMBUSTION
EFFICIENCY SPARK
CHARACTERISTIC CONTROL
CHARGE
5] DENSITY Py
ENGINE § INngER:CE RET ADV
SPEED —em] #
SPEED
AR TORQUE INTAKE- SPARK- oRovE
o i
—] AMR/FUEL gl j\ AIR/FUEL
. S INFLUENCE
F AIR/FUEL
INTAKE-
EXHAUST
DELAY
EXHAUST
AIR/FUEL
Fig. 3. Intake manifold model.
manifold are summarized as
ARO = f3[MA, N] 3)
FRO = f4[MF, N] 4)
ERO = fs[MEGR, N] (5)
MA = /(AR —ARO) dt 6)
MF =/(FR — FRO) dt @)
MEGR = | (ER — ERO) dt ®)
PM = fs[MA,MEGR]; PM < 14.7 psi)

where ARO, FRO, and EROQ are the air rate, fuel rate, and
EGR rate out of the manifold. MA, MF, and MEGR are the air,
fuel, and EGR masses in the manifold. Fig. 3 shows further
details of the intake manifold mode.

C. Combustion

This block generates torque in relation to the air injected
into the cylinder. The torque produced is influence by air-

119

LOAD
TORQUE

ACCELERATING

INDICATED TORQUE ENGINE ENGINE
TORQUE ACINE |ACCELERATION| gpeep SPEED
INERTIA INTEGRATION
UES Y
FRICTION
TORQUE
BMEP
-
2
o
g £5$;7
1 - FRICTION
SFeEo— | CHARACTERISTIC
BRAKE
TORQUE

Fig. 5. Dynamics model.

fuel, efficiency of the engine, and spark advance angle. There
is a time delay that accounts for the fact that torque is pro-
duced a finite time after the charge is injected into the cylin-
der. The model employs a fixed crank angle delay of 270°
to provide a time delay which is inversely proportional to
engine speed. The indicated torque is expressed as

TI = F,[A/F,S,ARO,N]. (10)

Further details are shown in Fig. 4.

D. Dynamics

This block provides engine speed based on indicated torque.
The equations are

TF = fg[N, TB] (1)
TB=TN—TF (12)
TN=TB—TA (13)
TA=f4[N] (14)

1
=J—[(TN— TL)dt; 500 r/min <N < 5000 r/min
T
(15)

where TF, TB, TN, and TA are friction, brake, net, and acces-
sory torque. MV is engine speed and J is the combined engine
and load inertia. Fig. 5 shows further details of the dynamics
model.

IV. MULTIPLE MICROCOMPUTERS AND SYSTEM
DESCRIPTION

The area of multiple microcomputers has been an intensive
research area in the last few years [12]-[15]. However, most
contributions are theoretical in nature which deal with sug-
gested architectures, communication mechanisms, and imple-
mentations. Actual multi-microcomputer implementations
are few. Consequently, much experimental work is required
to gain experience with the numerous alternatives available.

The nomenclature used will be the following. A microcom-
puter consists of an interconnected system of microprocessor,
memory, and input/output devices. A multiple microcomputer
is an interconnected system of microcomputers. It will be
assumed that any microcomputer can communicate with any
other through a system interconnection mechanism. In the
context of multi-microcomputers, a microcomputer is also

120

called a processing element (PE). A path is a medium by which
a message is transferred between the system elements. A
switching element is an intervening intelligent entity between
the sender and the receiver of a message. A PE processing time
is the time required to execute the program associated with a
PE.

The following is a discussion of multiple microcomputers
as they relate to the simulation implementation of the engine
model.

Application of a multiple microcomputer system requires
that the problem can be broken down into units that are
each assigned to a single PE. The design of the system using
a multiprocessor approach brings about several problems:

a) functional decomposition of the problem;
b) task allocation among processors;

) processor interconnection structures;

d) control of system resources;

e) software structure; and

f) deadlock avoidance.

The following discussion will treat each of the above pro-
blems in the context of the design and development of the
engine simulator.

A. Functional Decomposition

Several decomposition schemes have been suggested in the
literature [16]. Most schemes attempt to minimize a perform-
ance measure to obtain optimal workload partitions over a
network configuration. Buckles and Hardin [17] use mathe-
matical programming methods to minimize costs for accessing
data, storing data and functions, running modules on PE’s, and
interprocessor transfer of control. Stone [18] approached
the problem using graph theory. He considered two cost
functions: the cost of interprocessor communications, and the
computational cost of a program. Gylys and Edwards [19]
considered an heuristic method to minimize the interprocessor
message transfers subject to constraints in the number of
PE’s, memory size of each PE, and PE execution time.

A heuristic method for system partitioning will be consid-
ered in this paper. This method works well for situations in
which the amount of interprocessor communication is not
high. The method is based on the fact that the blocks that
result from the partition of the overall system resemble the
physical process of the model. The main advantage of this is
that the processing blocks are associated with physical sec-
tions, and model implementation and verification can be easily
done. In addition, variables used in the interprocessor com-
munication have physical meaning, which can aid in the
understanding and interpretation of the model. Because the
partitioned system resembles the physical system of the
model, the disadvantage of the method is that it is problem
dependent. However, the advantages of the method far out-
weigh this disadvantage. The physical partitioning method is
a top-down approach applied to modeling. Consequently,
it has all the advantages of top-down techniques as used in
software development. These advantages are as follows.

a) The partioning is easy to make initially, since it follows
the physical arrangement of the system.

b) It is easy to change as the modeled system changes. This

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

feature makes it a highly modular system that could be adapted
for other systems as well.

¢) Program design is simplified. This is a direct consequence
of the top-down approach used.

d) Program coding is straightforward. It is easier to code
the small modules that result from the decomposition.

e) Top-down techniques for testing and debugging can be
used. For example, we can use “program stubs” to test the
program that does the message interchange.

Dobner’s engine model [20] is a table-lookup oriented
model that is able to describe the response of an internal com-
bustion engine to the following set of dynamically varying
inputs:

a) throttle angle:

b) load torque;

c) spark advance;

d) commanded air/fuel ratio; and
e) exhaust gas recirculation (EGR).

The model calculates the dynamic responses to these
inputs and presents the following outputs:

a) engine speed (RPM);
b) manifold pressure; and
c) net torque.

The engine model lends itself to the heuristic system
partition method described earlier. From Fig. 1 one can see
that the functional units are: fuel delivery (carburetion or fuel
injection), intake manifold dynamics, combustion characteris-
tics, and mechanical dynamics. Note the few variables that
these functional units need to share. These characteristics
enable a simpler system architecture and result in a message
intercommunication mechanism occupying a small fraction
of the overall system computation time.

B. Task Allocation

Task allocation refers to the actual assignment of the func-
tional blocks discussed above to a given PE or a group of PE’s.
The assignment of blocks depends primarily on the real-time
constraints placed upon the system, dictating the number of
calculations that each PE is able to perform. Some blocks may
be further subdivided or combined to even the processing
time required by each PE. For the engine simulation, the
computational loads are roughly equal between the four func-
tional units, with the exception of the fuel delivery section.
This section is the simplest and requires much less proces-
sing time. The effects of this arrangement will be discussed
later.

C. Multiple Microcomputer Architecture

Multiprocessor architecture has been studied extensively
as it applies to distributed computing systems [21]. The en-
gine simulation application is real time in nature, limiting
the possibilities for system architecture. The control structure
of the multiprocessor configuration used must be simple, so
that the time constraints may be met without wasting proces-
sing time on complex control schemes.

The system architecture chosen consists of a central proces-
sing element and a number of peripheral PE’s connected to a

PIMENTEL AND LOEFFLER: ENGINE SIMULATOR USING MULTIPLE MICROCOMPUTERS

8 ANALOG

SIGNALS
«—

—
—

)

1/0

INTERFACE

ADDRESS,
DATA

PROCESSING ELEMENTS

ADDRESS,
DATA +
CONTROL

SHARED
MEMORY

BUS

CONTROL
4 3
BUS

Star configuration for the multiprocessor system.

Fig. 6.

TABLEII
MAIN CHARACTERISTICS OF THE MULTIPROCESSOR SYSTEM

Processing Element Number
0 1 2 3 4
3

M; K 3K 3K 3K 32K
(bytes)

Mot K 1K K 1K 1K
(bytes)

Tei 39 39 39 39 5
(usec)
M; = Memory size for the ith PE

Mgi = Shared memory size for the ith PE

Tei = Minimum time to transfer one byte to shared
memory

Ng = 5 (number of PE's)

star configuration (Fig. 6). The central PE maintains a parti-
tioned data base that is shared by all processors. This arrange-
ment supports direct interprocessor communication and al-
lows for a simple control structure and high processing speed
[22]. The architecture also allows for easy expansion and
flexibility, as will be discussed subsequently.

D. System Description

The key feature of the system hardware is the mechanism
by which the peripheral PE’s request communication from the
central processor to update the shared data base. The peri-
pheral PE halts its own operation and remains in a halted
mode until the central processor recognizes, services, and re-
starts it. This arrangement allows very simple control routines
in the central processor, amounting to servicing the peripheral
PE as merely an interrupting device, much as a printer or
terminal interface.

Each peripheral is composed of RAM (1K bytes), EPROM
(2K bytes), CPU, and interface devices (Table II). The RAM
in each peripheral is mapped into the central processor’s ad-
dressing space under control of the central processor. The
central processor is allowed to address the peripheral proces-
sor’s memory as if it were part of the central processor’s
memory map, thus allowing the data transfers to take place
in parallel fashion in a minimum amount of time. Fig. 7 shows
the block diagram for the interface of the central processor
to one peripheral PE (labeled PERIPH X, where X stands for
0,1,2,0r3).

The central processor has complete control of the peri-
pheral processors via the Reset, Halt, and buffer control lines.
This allows the central processor to initialize the peripheral
processors and to transfer data to and from the peripheral
memories. The peripheral processor, however, must initiate
the service by requesting it through the interrupt request
signal. This technique allows faster communication and

121

CENTRAL
PROCESSOR
r
Tra
RV M 167 18
EM

16 ADDR

DATA
8

Comnx L
CONTROL
PERIPH INTERFACE ¢ STATUS
RESTX I
HAD
BA Y
SX | |WEY LT RG> e

e {8 LoGIC

HALTX

R/W x L

16 ADDR PERIPH
RAM DATA X
2 RESET
g2z x cpPU
Tsx
l EPROM
Fig. 7. Block' diagram for the interface of the central processor to

one peripheral processor.

simpler service software, since the peripheral processor has
already given up control of its buses when the request is
made. The interrupt driven service method also frees the
central processor to perform the I/O functions for the
system in the foreground, while servicing the peripheral proc-
essors in the background.

The processors chosen for use in this system are Motorola
6800 series processors, the central processor being a 6809
housed in an Exorciser development system, and the peri-
pheral processor CPU’s being General Motors Custom Micro-
computer (GMCM) units. The GMCM processors are very
similar to the 6809E microprocessor in that the clock source
is external to the chip. This allows the peripherals to use the
same clock as the central processor thus simplifying the inter-
face design. The GMCM processors have an instruction set
that is compatible with the Motorola 6801 processor; thus
software compatibility is maintained. The peripheral PE’s
are constructed on prototype boards which are housed in the
Exorciser unit along with the central processor and the shared
data base memory.

E. Processor Interface Details

The address bus, data bus, and control lines of each peri-
pheral processor are connected to the central buses through
bus buffers which are controlled by the central processor
through a parallel interface. When no data transfers are taking
place, each processor has control of its own buses. When any
peripheral requests service, the central processor connects the
requesting peripheral’s buses to its own and in effect moves
the shared memory of the peripheral into its addressing space.

122
CENTRAL PERIPH X
FFFF FFFF
PROGAM (EPROM)
F800

BifFFp e e e = — B3FF

MEMORY IMAGE RAM
BOOO I = o e s o e = e < BOOO
7FFF

PROGRAM
AND

DATA STORAGE

0000 0000
Fig. 8. Memory map for the central and peripheral processors.

The peripheral interface allows the central processor to
read and modify the peripheral memory, transferring the
needed data between the peripheral memory and the central
memory. The interface only allows the central processor access
to the RAM of the peripheral processor, since this is the only
medium for data interchange which both processors are
able to read and modify. The memory map for this system
is shown in Fig. 8. The map shows the effect of the central
processor connecting the peripheral processor buses to its own,
producing a “peripheral memory image” in its address space.
Note that, since only one peripheral may be serviced at one
time, the peripheral memory images all fall at the same ad-
dresses. This allows the hardware for each peripheral processor
to be identical, greatly increasing flexibility and expandability
of the system.

E. Software Structure

The central processors serve the peripherals as if they are
interrupting devices such as parallel interfaces. Thus, if more
than one peripheral request service at one time, the central
processor must arbitrate the requests. By software polling,
the peripheral processsors are served by the central processor
on a priority basis. The priority is determined by the order
in which the peripherals are polled, with the highest priority
peripheral being polled first, as illustrated by the flow chart in
Fig. 9(a).

The flowchart for a typical peripheral program is shown in
Fig. 9(b). The peripheral processor executes its dedicated cal-
culation program, then halts itself and requests service from
the central processor. After the service is completed, the cen-
tral processor restarts the peripheral processor and the loop is
repeated.

The development system requires that the central processor
load the peripheral programs into the peripheral RAM as a
part of the system initialization. This allows easy program
modification and use of the resident assembler facilities of
the central Exorciser system. In a dedicated system, the peri-
pheral programs would reside in the EPROM provided.

A typical communication sequence between one peripheral
processor and the central processor involves the following
steps. (See Fig. 10 for timing relationships.)

1) A peripheral processor finishes its computation cycle
and halts itself (at time 7 on Fig. 10) sending its bus availa-
ble line (BA) high. This halting action causes an interrupt
request (IRQ) generated by the peripheral interface to be sent
to the central processor.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

CENTRAL)

CENTRAL
1/O-PROGRAM

PERIPH X
COMPUTATION

VECTOR TO IRQ SERVICE

|
I
|
|
e
I
|
|
|

l

HALT AND
REQUEST
SERVICE

IRQ SERVICE

TO OTHERS
\ o
nmy 1 l
PERIPH O IS \ !
HALTED WHILE THE NONE .
CENTRAL EXECUTES THIS \ CONNECT
SERVICE ROUTINE \ PERIPH O

READ/WRITE
PERIPH O
MEMORY

(a) DISCONNECT
AND
RESTART

FROM OTHERS
RETURN

(b)

Fig. 9. (a) Central processor flow chart. (b) Peripheral flow chart.

TONX

REST X

IRQ

BAX
AALT X
L g

TIME

Fig. 10. Timing relationships for a typical communication sequence.

2) The central processor recognizes that a peripheral has
requested service and starts executing an interrupt service
route (7,-T3) which polls the peripherals to determine
which one has requested service. If more than one peripheral
has requested service simultaneously, the highest priority
peripheral will be serviced first until all pending requests
are serviced.

3) The central processor connects the requesting peri-
pheral bus to the common system bus by sending the appro-
priate connect (CONNX) line low (T3).

4) The central processor then does the data transfers
(READ and WRITE) which are appropriate for the particular
peripheral (T3-T,).

PIMENTEL AND LOEFFLER: ENGINE SIMULATOR USING MULTIPLE MICROCOMPUTERS

5) After all data is transferred, the central processor re-
leases the peripheral from the system bus by setting the
appropriate connect line (CONNX) high (7).

6) The central processor restarts the peripheral by setting
the appropriate restart line (RESTX) low, thus signaling the
peripheral to restart a new computation cycle (Ts).

7) The peripheral processor restarts from its halted condi-
tion, taking control of its own buses and sending its bus avail-
able (BA) line low (T%).

8) The central processor recognizes that the peripheral
has restarted by monitoring the bus available line. When the
restart has occurred, the central processor resets the restart
line high (7) to be ready for the next service request.

At this point, the central processor returns to its main I/O
program. If another peripheral has requested service while
the first was being serviced, the central processor is immedi-
ately interrupted and the whole process starts at Step 2 again.

The service routines allow any number of bytes of data to
be transferred to or from any peripheral. This, along with
some mapping of the central shared data base, allows any piece
of data to be transferred from any peripheral or the central
processor to any other peripheral.

G. Deadlock Avoidance

Deadlock occurs when one processor has control of the
bus system and is waiting to communicate with another
processor which is waiting to access the bus and cannot be
accessed. This condition cannot occur on the system presented
because the central processor has control of the system bus
and arbitrates all simultaneous requests for access. A form of
resource hogging can occur, however, if two processors finish
their computations and request service in nearly the time it
takes to service one processor. This results in the central
processor always servicing these two peripherals to the exclu-
sion of all others. If only one peripheral finishes in a time
comparable to the service time, that processor must be the
lowest priority to insure that all others get serviced without
inordinate waits.

V. IMPLEMENTATION OF SIMULATION

The model is already partitioned into four functional
blocks. Each block was assigned to one PE as defined in the
previous section. An additional PE was used to handle the in-
puts to the system and output from the system.

A. Interprocessor Communications

This refers to the instances of time in which the PE’s
interchange messages. The processing elements perform
all message transfers at the same rate. Fig. 11 shows the
timing diagram that corresponds to this message transfer
technique. The advantage of this method is that the communi-
cations protocol is easy to implement. The disadvantage is
that some PE’s would have to wait a certain length of time
before the message transfer is done unless all blocks have the
same processing time. For real-time simulation, the following
relationship has to be satisfied:

Max (Tl + Tti) + <TS

i=1,2,",n

(16)

123

PROCESSOR
i 1
T Th on
1= T/ J
: |
. ! T2
2 - R)
i T T E Tn
N T T
i
|

I execurion nime
] MEssAGE TRANSFER TIME
T WAITTIME

Fig. 11. Timing diagram for a system with single sample rate message

transfer.

TABLE III
NORMALIZATION FACTORS FOR THE VARIABLES USED IN
THE SIMULATION

VARIABLE (x) NF_
Throttle angle (=) 2.83 degrees-1
Air flow rate (AR) 56.986 x 10° (1b/sec)
Fuel flow rate (FR) 56.986 x 10° (1b/sec) !
EGR flow Rate (ER) 56.986 x 10° (1b/sec) t
Manifold pressure (PM) 16 (psi)-1
Air mass (MA) 56.986 x IO3 (lb)-1
Indicated torque (TI) 32 (1b-£0)7!
-1
Moment of inertia (Jp) 8192 (lb_é%)
Engine speed (N) 1 (RPM)_l

where Ty; is the duration of the message transfers for the ith
PE, T is the sampling period, and T; is the processing time
for the ith PE.

A single sample rate method for interprocessor communi-
cation was used because it simplifies the discretization process
for the model. Synchronization of time steps was achieved
by introducing delays on each PE so that the sum of their
computation time plus transfer time was the same for all
PE’s. The sampling interval was chosen to be 4/1024 s which
is small enough to provide good results even at high engine
speeds. The programming was done using assembly language
to optimize execution speed. All simulation calculations were
done using integer arithmetic. Some internal calculations were
done using 24-bit precision to increase accuracy (manifold
pressure, for example).

A major problem that arises when writing an assembly
language program with integer arithmetic on a microcomputer
is the normalization of variables. The microcomputers used
have 8-bit and 16-bit precision, and all the variables had to be
scaled to fit in either precision. This was accomplished de-
fining a normalization factor Nz defined as follows:

xCll

NF, =¥

xeu

a7

xcu

where x.,, is the variable expressed in computer units and x,,,
is the actual variable expressed in engineering units. Table III
shows the normalization factors used for the simulation.

Some engine characteristics (such as throttle) and the in-
fluence of the interaction of several variables are readily

124

Manifold Prosaure
)

Fig. 12.

Typical simulation output.

TABLE IV
MEMORY SIZE AND EXECUTION TIMES FOR THE
DIFFERENT PE’S

Processing Element Number
1 2 3 4
Intake
Carburetor Manifold Combustion Dynamics 1/0

£ 272 599 %35 %31 1515

(bytes)

Tpi .22 3.2 2.35 3.8 ——
pi

(msec)

Tap 270 80 320 290 —

(usec)

Myj = Program memory size for the ith PE
Tpi = Program execution time for the ith PE
Tai = Actual message transfer time for the ith PE

available in tabulated form obtained from engine dynamom-
eter data. For example, the influence of spark advance and
A/F on indicated torque in Fig. 4 was obtained from engine
dynamometer tests and stored in memory for several operating
conditions. The influences of these variables were implemented
using subroutines based on lookup tables.

As shown in Fig. 4, the model involves the use of func-
tions of two variables, for example, the effect of speed and
charge density on torque. The implementation of such func-
tions was done using lookup tables having two indexes (one
for each variable). The first index is used to point to one of
several tables and the second index is used to point to a speci-
fic entry in the table chosen.

B. Simulation Results

A typical output trace from the engine simulation is shown
in Fig. 12. The graphical output shows the real-time response
of the simulation to a square wave throttle input. Note the
dynamic response characteristics of the engine speed and
manifold pressure. Within the limits of the complexity of
the mathematical model used, these traces correspond to the
results shown by Dobner for the mainframe executed version
of the model. Dobner’s results, in turn, correlate with actual
engine data.

The model mathematics require that the slowest functional
unit take no more than 4 ms to execute its program. Table IV
shows the actual execution times for the funtional units, as
well as the required communication times. The system does

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

TABLE V

SPEED COMPARISONS WITH OTHER SYSTEMS

Configuration Speed
Authors multiple 6802/09 (1 MHz) 1
Single 68000 (10 MHz) 1.38
Single 28002 (6 MHz) 0.79
Multiple 68000 in same architecture (10 MHz) 5
VAX - 11/780 (5 MHz) 1.38
PDP - 11/70 (7.5 MHz) 1.11

Higher speed values mean faster systems.

achieve real-time performance, and with further optimization,
could perform even better. This would allow the simulation
sampling interval to be shortened, thus increasing accuracy.

VI. COMPARISON WITH OTHER PROCESSORS

Table V shows a comparison in terms of speed of the mul-
tiple microcomputer system against other state-of-the-art high-
performance microprocessors and minicomputers. Execution
times figures used to obtain table estimates were obtained
from a comparison made by Patterson and Sequin [23]. A
10-percent overhead for message transfer times was assumed,
which is in accordance with Table IV.

From Table V, one can see that the results presented in
this paper could have been obtained by using a single high-
performance microcomputer or minicomputer. However,
the system presented here provides a very cost-effective
solution to the real-time simulation problem.

The main advantage of multiple microcomputers is that,
as technology advances, one can incorporate state-of-the-art
processors in the same architecture, thus achieving higher
throughput.

VII. ECONOMIC JUSTIFICATION

As pointed out previously, the results presented in this
paper could have been obtained using high-performance
minicomputers such as a PDP/11 or a VAX/780. However,
the cost of these systems was prohibitive for the particular
application that is described here. Consequently, cost was a
major factor for the design of the real-time simulator hard-
ware.

The multiple microcomputer system presented in this
paper is a low-cost system. The cost values presented in this
section will be for a complete processing element except power
supplies and enclosures. The hardware devices (with their asso-
ciated costs involved in a PE) are shown below (in U.S. dollars):

Board 62.00
Processor 10.95
Bus Transceivers 6.30
Memory 9.80
Additional Circuitry 3.05
Total 92.10

The multiple microcomputer system could be packaged
in a single self-contained enclosure as a general purpose real-
time simulator. All programming could be done off-line in
another development system, and the programs could be

PIMENTEL AND LOEFFLER: ENGINE SIMULATOR USING MULTIPLE MICROCOMPUTERS

down-loaded to the simulator. The main advantage of this
approach is that by changing some Programmable Read Only
Memories (PROM’s) different engines (or different systems)
could be simulated. The cost of such a compact simulator
is estimated to be approximately $1000, which is far less
than the cost of a typical general purpose computer that
could be used to do the same job.

VIII. MULTIPROCESSOR PERFORMANCE

When working with multiprocessor systems, it is sometimes
useful to compare them with uniprocessor systems in terms of
speed. A performance measure has been developed [24] for
the system discussed in this paper which is based on a) execu-
tion times to evaluate a certain family of algorithms, and b)
message transfer times between processors in terms of bytes
transferred. The family of algorithms referred to previously
is of the inner product form which is used extensively in simu-
lation. A generic term is of the form

(k) = ayx (k) + ayxa (k) + - + ap xp (). (18)
The main result of the performance study is that the multiple
microcomputer system performs approximately NV times faster
than an equivalent uniprocessor system provided the num-
ber of terms M is large (about 64 or more), where N is the
number of PE’s in the configuration. If N is constant and M
increases, the performance increases. Conversely if M is con-
stant and NV increases, the relative performance decreases due
to the overhead involved in the message transfer times.

IX. OTHER APPLICATIONS

The hardware design used to implement the engine model
lends itself to any multiprocessing task which requires few
variables to be passed between functional units. The design
also allows more peripheral processors to be added easily,
only requiring that control lines be attached. All peripherals
are identical in hardware detail, making possible integration
of the peripheral processors on a single chip or small board.
Each peripheral can be treated as a dedicated co-processor,
allowing functional units to be added or removed as the appli-
cation warrants.

For example, an engine controller could be made of a
central processor that handles I/O functions and a number
of peripherals that each handle one function such as fuel
control, spark control, driveline control, etc. This type of
arrangement would allow minimum systems to be built from
the same building blocks as full-feature controllers. This
would save development time and allow the user of a control-
ler to configure the system as necessary from the appropriate
blocks.

X.SUMMARY

A multiprocessor system was presented which was designed
to run a simulation of an internal combustion engine in real
time. The system is composed of a central processor and four
peripheral processors in a star configuration. The hardware
design, software structure, and application constraints were
discussed. Results of the engine simulation application were

125

presented. Further application possibilities were suggested,
including flexible modular engine control systems.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Olin for his coopera-
tion in the procurement of hardware and facilities for this re-
search, and for his continued support. Also, the support of
General Motors Institute, Delco Electronics, and General
Motors Research Labs is greatly appreciated. This project
was the effort of other former GMI students as well, whose
participation is acknowledged. The aid of Dr. D. Dobner was
invaluable in applying his model to the hardware system.
Finally, the comments and suggestions of the reviewer were
very helpful.

REFERENCES

A. B. Bortz, **Computer simulation of engine control systems—A
tool for identifying critical components and interactions,”” pre-
sented at the Soc. Automotive Engineers Int. Congr. Exp., Detroit,
MI, Feb. 1980, paper no. 800055.

B. Mitchell, R. Abrams, and R. A. Scott, ‘*All-digital simulation
of simple automobile maneuvers,”” Simulation, vol. 37, pp. 179—
186, Dec. 1981.

(1]

(21

[3] D. B. Gilmore, ‘‘Analog simulation of a hybrid gasoline-electric
vehicle,”” Simulation, vol. 38, pp. 85-92, Mar. 1982.
[4] W. B. Gallis, ‘A microprocessor system simulation of engine

control modules,’” presented at the Soc. Automotive Engineers Int.
Congr. Exp., Detroit, MI, Feb. 1981, paper no. 810450.

L. D. Reid and W. O. Graf, ‘‘The fitting of linear models to driver
response records,”’ presented at the Soc. Automotive Engineers Int.
Congr. Exp., Detroit, MI, Feb. 1982, paper no. 820304.

A. M. Kotwicki, ‘‘Dynamic models for torque converter equipped
vehicles,” General Motors, Warren, MI, Res. Pub. GMR-3886,
Nov. 1981.

J. A. Tennant, R. A. Giacomazzi, J. D. Powell, and H. S. Rao,
‘‘Development and validation of engine models via automated dy-
namometer tests,”’ presented at the Soc. Automotive Engineers Int.
Congr. Exp., Detroit, MI, Feb. 1979, paper no. 790178.

R. L. Morris, H. G. Hopkings, and R. H. Borcherts, ‘‘An iden-
tification approach to throttle-torque modeling,”” presented at the
Soc. Automotive Engineers Int. Congr. Exp., Feb. 1981, paper no.
810448.

J. F. Cassidy, M. Athans, and W. H. Lee, “‘On the design of
electronic automotive engine controls using linear quadratic control
theory,”” IEEE Trans. Automat. Contr., vol. 25, pp. 901-912.
Oct. 1980.

D. J. Dobner, ‘‘Dynamic engine models for control development—
Part I: Nonlinear and linear model formulation,”’ General Motors,
Warren, MI, Res. Pub. GMR-3783, Jan. 1982.

F. E. Coats, Jr. and R. D. Fruechte, *‘Dynamic engine models for
control development—Part II: Application to idle speed control,”
General Motors, Warren, MI, Res. Pub. GMR-3789, Jan. 1982.
C. Weitzman, Distributed Micro/Minicomputer Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1980.

S. H. Fuller, J. K. Ousterhout, L. Raskin, P. I. Rubinfeld, P. J.
Sindhu, and R. J. Swan, **Multi-microprocessors,’ Proc. IEEE,
vol. 66, pp. 216-228, Feb. 1978.

G. A. Anderson and E. D. Jensen, ‘*Computer interconnection
structures: Taxonomy, characteristics and examples,”” ACM Com-
puting Surveys, vol. 7, pp. 197-213, Dec. 1975.

W. C. Mcdonald and R. W. Smith, **A flexible distributed testbed
for real-time applications,”” Computer, pp. 25-39, Oct. 1982.
P.R.Ma, E. Y. S. Lee, and M. Tsuchiya, **A task allocation model
for distributed computing systems,”” /[EEE Trans. Comput., vol.
C-31, Jan. 1982.

B. P. Buckles and D. M. Hardin, *‘Partitioning and allocation of
logical resources in a distributed computing environment,”’ General
Res. Corp., Huntsville, AL, 1979.

H. S. Stone, *‘Multiprocessor scheduling with the aid of network
flow algorithms,”” IEEE Trans. Software Eng., vol. SE-3, pp.
85-94, Jan. 1977.

V. B. Gylys, and J. A. Edwards, *‘Optimal partitioning of work-

(3]

(6]

(7]

(81

(91

[10]

(1]

[12]

(13]

[14]

[15]
[16]

[17]

(18]

[19]

126

loads for distributed systems.”” in COMPCON Dig. Pap., Fall
1976 IEEE cat. no. EHO 15H.

D. J. Dobner, ‘‘A mathematical model for development of dynamic
engine control,”” Society of Automotive Engineers, paper 800054,
Feb. 1980.

P. H. Enslow, Jr., ‘‘Multiprocessor Organization—A Survey,”’
ACM Computing Surveys, vol. 9, no. 1, Mar. 1977.

[22] J. R. Pimentel and M. Loeffler, ‘‘An exorciser-based multi-

(20]

[21]

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. IE-30, NO. 2, MAY 1983

microcomputer system for distributed processing applications,”’
General Motors Inst., Elec. Eng. Res. Rep. no. 2, Jan. 1982.

[23] D. A. Patterson and C. H. Sequin, ‘*‘A VLSI RISC,”’ Computer,
pp- 8-18, Sept. 1982.
[24] J. R. Pimentel, ‘‘Performance of a multiple microcomputer system

for distributed processing in control applications,’” presented at the
25th Midwest Symp. Circuits Systems, Michigan Tech. Univ.,
Aug. 1982.

A Microcomputer-Controlled Powertrain for a Hybrid
Vehicle

CLEMENT B. SOMUAH, MeMBER, 1Eké, ANDREW F. BURKE, BIMAL K. BOSE, SENIOR MEMBER , IEEE,
ROBERT D. KING, MEMBER, IEEE, AND MICHAEL A. POCOBELLO

Abstract—The design and testing of a microcomputer-controlled
powertrain for a hybrid (heat engine/electric) vehicle are described in
this paper. The detailed control strategy used and its software imple-
mentation on the Intel 8086 microcomputer are discussed. The power-
train is made up of an electric motor, gasoline engine, automatic
transmission with the torque converter removed, engine and electric
motor clutches, and Hy-Vo transfer chains. The drive system has
been installed in vehicles and tested on a chassis dynamometer. Test
results show smooth shifting of the transmission and sequencing of the
clutches in the different hybrid operating modes. The overall per-
formance of the hybrid car is good, and driveability is comparable to a
conventional automobile.

I. INTRODUCTION

YBRID passenger cars, which utilize both an electric

motor and a gasoline engine, could become an attractive
alternative to the conventional ICE-powered automobiles if
gasolines prices continue to rise and/or the gasoline supply
becomes uncertain. The use of all-electric vehicles would,
of course, eliminate completely the need for gasoline/diesel
fuels for powering on-road vehicles. However, electric vehicles
have performance and range limitations. Including a small
gasoline engine in the driveline, as in the vehicle in this paper,
offers a means of overcoming these limitations.

The objectives of the United States Department of Energy’s
Near-Term Hybrid Vehicle Program was to design, build, and
test a full-size hybrid car that would provide the same utility
and comfort as a conventional full-size car but, in addition,
minimize the use of petroleum and utilize, instead, wall-plug
electricity. To meet this goal, a microcomputer-controlled

Manuscript received August 30, 1982; revised December 8, 1982.
This work was supported by the U.S. Department of Energy, Office of
Electric and Hybrid Vehicles, and was managed for the D.O.E. by the
Jet Propulsion Laboratory.

C. B. Somuah is with the University of Petroleum and Minerals,
Dhahran, Saudi Arabia.

A. . Burke, B. K. Bose, and R. D. King are with the General
Electric Company, Research and Development Center, Schenectady,
NY.

M. A. Pocobello is with Triad Services, Troy, MI.

| POWER CONTROL FUNCTIONS
[EM J

POWER
| CONTROL
|

INPUT FUNCTIONS

ELECTRIC
MOTOR

OPERATOR POWER
PEDAL DISTRIBUTION
INTERFACE | AND BLENDING

=]

-| TRANSMISSION I
CONTACTORS,
CLUTCHES,
DISPLAYS

BATTERY
CHARGER

Hybrid vehicle controller functions.

VEHICLE
SENSORS

[|

Fig. 1.

hybrid powertrain was designed and built [1]. The use of a
microcomputer was necessitated by the degree of complexity
of the overall control system for the powertrain.

The major vehicle functions under microcomputer control
are shown in Fig. 1. Propulsion sequencing is concerned with
all the decisions associated with transitions from one mode
of operation to another, such as closing/opening of electrical
contactors and clutches and turning on/off the heat engine
and electric motor. Transmission shifting is also under the con-
trol of the microcomputer. The optimum gear of operation is
dependent on the vehicle speed, propulsion units operating,
and the power demand. The electric motor clutch is modu-
lated by the microcomputer using closed-loop feedback con-
trol for smooth vehicle operation.

Section II of the paper gives a brief description of the
powertrain and a discussion of its different modes of opera-
tion. The transmission shifting strategy and sequencing algo-
rithms are discussed in Sections III and IV of the paper.
The control strategy and algorithms for controlling the modu-
lation of the vehicle drive clutch are described in Section V.

0278-0046/83/0500-0126$01.00 © 1983 IEEE

