
Universidade de Aveiro Departamento de Engenharia Mecnica
2020

Diogo Augusto
Rodrigues de
Figueiredo

Remote Control for Operation and Driving of
ATLASCAR2

Controlo Remoto para a Operação e Condução do
ATLASCAR2

Universidade de Aveiro Departamento de Engenharia Mecnica
2020

Diogo Augusto
Rodrigues de
Figueiredo

Remote Control for Operation and Driving of
ATLASCAR2

Controlo Remoto para a Operação e Condução do
ATLASCAR2

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação cient́ıfica de V́ıtor Manuel Ferreira dos
Santos, Professor Associado C/ Agregação.

o júri / the jury

presidente / president Prof. Doutor Miguel Armando Riem de Oliveira
Professor Auxiliar da Universidade de Aveiro

vogais / committee Prof. Doutor Carlos Fernando Couceiro de Sousa Neves
Professor Coordenador do Instituto Politécnico de Leiria - Escola Superior de Tec-

nologia e Gestão

Prof. Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado C/ Agregação da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

A realização desta dissertação de mestrado contou com importantes apoios
e incentivos. A todas as pessoas que me acompanharam neste projeto quero
deixar aqui o meu sincero agradecimento.
Ao Professor V́ıtor Santos, pela sua orientação, apoio e disponibilidade
durante todo o semestre.
Aos meus amigos, em especial ao David, que, dentro e fora do contexto
curricular, me ajudaram a creser e aprender ao longo destes 5 anos.
Aos meus companheiros do projeto ATLAS, Rúben e Rui, pela amizade e
boa disposição transmitida ao longo do semestre.
Aos meus pais, pelo apoio e confiança que depositaram em mim durante
todo o percurso académico.
À Raquel, por toda a compreensão, motivação e companhia demonstrada
em todos os momentos.

keywords Controller Area Network; SocketCAN; ROS Architecture; Remote Control;
Electronic Control Units; Steering System; Propulsion System

abstract Obtaining a Self Driving Vehicle requires a well-planned collaboration be-
tween different areas and technologies, namely, it is crucial to effectively
combine the sensory systems with the ability of remotely control the vehi-
cle. This dissertation, integrated in the University of Aveiro Autonomous
Driving project ATLASCAR2, links the vehicle’s actuators to the percep-
tion, navigation and decision making algorithms by creating a control and
monitoring infrastructure and presents solutions to remotely control vehi-
cle’s direction and speed.
The control and monitoring infrastructure developed in this work uses the
Controller Area Network of the vehicle for communication purposes and
to access the current status of the vehicle by processing the messages ex-
changed between control units. In order to obtain solutions to remotely
act on the direction and speed of the vehicle, the operation logic of the
steering and propulsion systems of the Mitsubishi i-MiEV was studied and
solutions that replicate the behaviour of the sensors used on these system
are implemented.
The results show the appropriateness of the developed solutions to control
and monitor the vehicle and prove the feasibility of the method used to
remotely control the steering wheel and accelerator pedal of the vehicle.
However, for the braking system, an external mechanical actuator acting on
the brake pedal is required to effectively control this system.
Based on the results, the presented solutions show the great potential of
utilizing the ATLASCAR2 to be used as a test platform of Autonomous
Driving applications in a near future.

palavras-chave Controller Area Network; SocketCAN; Arquitetura ROS; Controlo Remoto;
Electronic Control Units; Sistema de Direção; Sistema de Propulsão

resumo A obtenção de um Véıculo Autónomo requer colaboração entre várias áreas e
tecnologias, nomeadamente, é fundamental conseguir combinar os sistemas
sensoriais com a capacidade de controlar o véıculo remotamente de forma
eficaz. Esta dissertação, integrada no projeto de Condução Autónoma da
Universidade de Aveiro ATLASCAR2, conecta os atuadores do carro aos
algoritmos de perceção, navegação e tomada de decisão criando uma in-
fraestrutura de controlo e tomada de decisão e apresenta soluções para
controlar remotamente a direção e velocidade do carro.
A infraestrutura de controlo e monitorização desenvolvida neste projeto uti-
liza a Controller Area Network do véıculo para efetuar a comunicação e
aceder ao atual estado do véıculo através do processamento das mensagens
trocadas entre as unidades de controlo do mesmo. Para obter soluções para
a atuação remota da direção e velocidade do véıculo, foi estudado o modo
de funcionamento dos sistemas de direção e propulsão do Mistubishi i-MiEV
e a solução implementada replica o comportamento dos sensores utilizados
nestes sistemas.
Os resultados obtidos demonstram a adequação das soluções desenvolvidas
para o controlo e monitorização do véıculo e comprovam a viabilidade dos
métodos utilizados para controlar remotamente o volante e acelerador do
carro. No entanto, para o sistema de travagem seria necessário utilizar o
atuador mecânico externo a atuar no pedal do travão para controlar este
sistema remotamente.
Os resultados apresentados evidenciam que o véıculo ATLASCAR2 possa
ser utilizado como plataforma de testes de Condução Autónoma num fu-
turo próximo.

Contents

1 Introduction 1

1.1 Project Context and Motivation . 1

1.1.1 The ATLAS Project . 1

1.1.2 Self Driving Vehicles and Technology 3

1.2 Problem Description and Objectives . 4

1.3 Document Structure . 5

2 State of the Art 7

2.1 Background - Automotive Electric Systems 7

2.2 Related Work . 8

2.2.1 Mitsubishi i-MiEV . 8

2.2.2 Other Vehicles . 10

2.3 Related Work in Other Contexts . 11

2.4 Current Implementations on Automobile Industry 12

2.5 Summary . 13

3 Experimental Infrastructure 15

3.1 Hardware . 15

3.1.1 CANalyze . 15

3.1.2 ATLASCAR2 . 16

3.2 Software . 18

3.2.1 ROS - Robot Operating System . 18

3.2.2 SocketCAN . 19

3.3 Summary . 22

4 Car Status Monitoring 25

4.1 Understanding CAN Protocol . 25

4.2 Identification of the Mitsubishi i-MiEV CAN Frames 27

4.2.1 Mitsubishi i-MiEV CAN Bus . 27

4.2.2 Locating and Reading the CAN Bus 28

4.2.3 Perform Message Identification . 29

4.3 Summary . 31

i

5 Remote Control Solutions 33
5.1 Steering Wheel Remote Control . 33

5.1.1 Mitsubishi i-MiEV Power Steering Logic 33
5.1.2 Proposed Solution . 35

5.2 Vehicle Speed Remote Control . 40
5.2.1 Mitsubishi i-MiEV Propulsion Logic 40
5.2.2 Mitsubishi i-MiEV Braking Logic 43
5.2.3 Proposed Solution . 43

5.3 Summary . 46

6 Actuators Control Management 49
6.1 Remote Control Using the CAN Bus . 49

6.1.1 External ECU . 49
6.1.2 Creating CAN Messages . 51

6.2 Driving Modes Compatibility . 51

7 Tests and Results 55
7.1 Direction Remote Control . 55
7.2 Speed Remote Control . 64

8 Conclusions and Future Work 69
8.1 Conclusions . 69
8.2 Future Work . 70

A Arduino IDE Code 71

B Steering wheel response to different types of surfaces 77

C Instruction Manual 79
C.1 Monitor the vehicle status . 79
C.2 Control the Steering Wheel and Accelerator Pedal 79

ii

List of Tables

4.1 OBD-II port pinout. 28
4.2 Relation between the shift position and the value of the first byte of the

message 0x418. 30
4.3 Relation of message 0x424 with some of the instrument panel variables. . 31

5.1 Signals of the B-114-2 connector terminals [24]. 35
5.2 Arduino UNO specifications [32]. 39
5.3 EV-ECU terminals regarding accelerator pedal position [24]. 45

6.1 Description of the CAN messages created to send commands to the con-
trollers. 51

7.1 Analysis of the signals sent to the EPS-ECU and the respective steering
wheel state with the vehicle stationary and in motion. 61

7.2 Response of the steering system to the same electrical signals at different
positions. 63

iii

.

Intentionally blank page.

List of Figures

1.1 ATLAS robots at the 2010 Robotics Festival - Atlas2010 and AtlasMV3 [2]. 2

1.2 ATLASCAR1 test platform [2]. 2

1.3 ATLASCAR2 test platform [3]. 3

1.4 Levels of Driving Automation [5]. 4

1.5 Dissertation function in the ATLASCAR2 project. 4

2.1 World’s first self driving taxi [13]. 8

2.2 Mitsubishi i-MiEV used in the AUTO C-ITS project in Madrid [14]. . . . 9

2.3 Remote control solution for the braking system in the AUTO C-ITS
project in Madrid. 9

2.4 ISEAUTO autonomous minibus [16]. 10

2.5 Attack surfaces existing in a modern vehicle [22]. 11

3.1 CANalyze - open source hardware to receive and transmit CAN messages
[23]. 15

3.2 Control unit responsible for the steering operation in the ATLASCAR2. . 16

3.3 Control unit responsible for the propulsion operation in the ATLASCAR2. 16

3.4 General operation logic of Mitsubishi i-MiEV. 16

3.5 Mitsubishi i-MiEV steering components. [24] 17

3.6 General operation of the Mitsubishi i-MiEV propulsion system. 18

3.7 Basic operation architecture of ROS. [25] 18

3.8 SocketCAN communication layers [11]. 19

4.1 Voltage levels of the CAN bus to data transmission [24] 26

4.2 Standard CAN frame structure, with the number of bits of each field [28]. 26

4.3 Mitsubishi i-MiEV CAN Bus [24]. 27

4.4 OBD-II port pinout [29]. 28

5.1 Electric Power Steering-ECU System Construction Diagram. 34

5.2 Operation of the Mitsubishi i-MiEV power system. 34

5.3 EPS-ECU connectors [24]. 35

5.4 Voltage values generated by the torque sensor while turning the steering
wheel completely to the left with the vehicle stationary. 36

5.5 Voltage values generated by the torque sensor while turning the steering
wheel completely to the right with the vehicle stationary. 37

5.6 Voltage values generated by the torque sensor while turning the wheel
completely to the left with the vehicle at the speed of 6 km/h. 38

5.7 Voltage values generated by the torque sensor while turning the wheel to
completely the right with the vehicle at the speed of 6 km/h. 38

v

5.8 Arduino UNO [32]. 39

5.9 Low-pass filter [33]. 40

5.10 Electric motor control unit [24]. 41

5.11 EV-ECU operation logic [24]. 42

5.12 Torque command logic of the EV-ECU using basic control [24]. 42

5.13 Electric motor used in the brake electric vacuum pump [24]. 43

5.14 Mitsubishi i-MiEV braking system [24]. 44

5.15 Regenerative braking system [34]. 44

5.16 Relation between the voltage of the accelerator pedal position sensor main
and sub line and the opening of the accelerator pedal [24]. 46

5.17 Voltage values of the accelerator pedal position sensor main and sub lines
when the accelerator pedal is pressed completely. 47

6.1 External ECU. 50

6.2 Using an OBD-II port splitter in the ATLASCAR2 to connect all the
devices to the vehicle’s network. 50

6.3 Circuit used in the transition between driving modes of the steering system. 52

6.4 Transition between autonomous and manual driving modes. 53

6.5 Circuit used in the transition between driving modes of the steering system. 54

7.1 Steering wheel position of the car in stationary state with the correspond-
ing voltage values sent to the EPS-ECU. 56

7.2 Detail view of the steering wheel position of the car in stationary state
with the corresponding voltage values sent to the EPS-ECU. 56

7.3 Steering wheel position of the car in stationary state with the correspond-
ing voltage values sent to the EPS-ECU. 57

7.4 Detail view of the steering wheel position of the car in stationary state
with the corresponding voltage values sent to the EPS-ECU. 57

7.5 Steering wheel position of the car in stationary state over a surface of
road tar with the corresponding voltage values sent to the EPS-ECU . . . 58

7.6 Steering wheel position of the car in stationary state over a surface of
sand with the corresponding voltage values sent to the EPS-ECU. 59

7.7 Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU. 59

7.8 Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU. 60

7.9 Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU. 60

7.10 Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU. 61

7.11 Differences observed in the steering wheel with the vehicle in stationary
state and at different speeds. 62

7.12 Controlling the steering wheel angle with CAN communication. 65

7.13 Speed of the vehicle with the respective voltage values sent to the EV-ECU. 66

7.14 Speed of the vehicle with the respective voltage values sent to the EV-ECU. 66

7.15 Speed of the vehicle with the respective voltage values sent to the EV-ECU. 67

vi

B.1 Steering wheel position of the car in stationary state over a surface of
road tar with the corresponding voltage values sent to the EPS-ECU. . . 77

B.2 Steering wheel position of the car in stationary state over a surface of
sand with the corresponding voltage values sent to the EPS-ECU. 78

vii

.

Intentionally blank page.

Chapter 1

Introduction

Autonomous Driving (AD) has become one of the focus of the automobile industry over
the past years, as such, many technological advances have been developed at industrial
and academic levels. As the systems evolve, it becomes clear that AD is the future of
the automobile industry, since, in its complete development, it will drastically improve
the safety and efficiency of the vehicle’s mobility.

To obtain a level of Full Automation (the vehicle performs all driving tasks under
all conditions) different technologies must be combined. Road and obstacle detection,
trajectory planning and decision making algorithms are responsible for defining the speed
and direction of the vehicle. To move the vehicle based on this information, a full control
of its main actuators is required, which can be achieved by taking advantage of the high-
computerised operation methods on today’s automobiles.

Modern vehicles are no longer composed only by mechanical components. Instead,
they use several Electronic Control Units (ECU) communicating via an internal vehic-
ular network to monitor and control the car status [1]. Based on the understanding of
these concepts and the Mitsubishi i-MiEV operating logic, this dissertation aims to find
solutions for the remote control of the i-MiEV steering wheel and speed and integrate
these controllers in the AD global system in a robust and efficient way.

1.1 Project Context and Motivation

1.1.1 The ATLAS Project

This dissertation is part of the ATLAS project, created by the Group of Automation
and Robotics at the Department of Mechanical Engineering of the University of Aveiro,
Portugal. This project is focused on the development of a sensory architecture in order
to create autonomous navigation solutions in cars and other platforms [2].

The first step on the ATLAS project was the development of mobile autonomous
robots (Fig. 1.1), which took part at the Portuguese National Robotics Festival au-
tonomous driving competitions. The participation and success in this AD competition
allowed the project to proceed to the next step, the ATLASCAR1.

ATLASCAR1 (Fig. 1.2) is a Ford Escort model used as prototype for research on
Advanced Driver’s Assistance Systems. The vehicle was equipped with several sensors to
identify the surroundings and act on the vehicle mechanical components using external

1

2 1.Introduction

Figure 1.1: ATLAS robots at the 2010 Robotics Festival - Atlas2010 and AtlasMV3 [2].

actuators for that propose. After some interesting and successful results, the ATLAS
project evolved to a new full-sized platform, the ATLASCAR2.

Figure 1.2: ATLASCAR1 test platform [2].

The ATLASCAR2 (Fig. 1.3) is an electric Mitsubishi i-MiEV vehicle from 2015 in
which the research in this dissertation will occur on. This car is equipped with LIDAR
sensors, GPS and cameras used in navigation and perception algorithms. The fact that
it is a more modern car than the ATLASCAR1, brings new and easier possibilities to
test and control the algorithms, as this dissertation will describe.

Diogo Figueiredo Master Degree

1.Introduction 3

Figure 1.3: ATLASCAR2 test platform [3].

1.1.2 Self Driving Vehicles and Technology

As described above, the main objective of the ATLAS project is to create a Self Driving
Vehicle (SDV) – ATLASCAR2. The interest in this technology is one of the major
motivations for the development of this dissertation.

The International Society of Automotive Engineers (SAE International) has divided
the level of automation of a vehicle in six different levels (Fig. 1.4), based on four
principal parameters: execution of steering and acceleration/deceleration, monitoring of
driving environment, fallback performance of dynamic driving tasks and system capa-
bility [4].

In the first three levels (0-2), the human monitors the driving environment. These
are the most common degrees of automation on today’s automobile industry. In the
levels 3-5 the automated driving system monitors the driving environment. These are
the levels in which this dissertation will work on, since the steering and speed control
works with an automatic digital system. At the third level (Conditional Automation) the
vehicle performs all the driving tasks with the expectation that the driver will respond
appropriately to a request to intervene. In the level 4, called High Automation, the
driving tasks are performed by the vehicle even if the human does not respond to an
override request. In the last degree – Full Automation – the vehicle performs all driving
tasks under all conditions. At this level, no human attention is required.

The recent interest in the development of AD technologies is mainly driven by two
reasons: safety and time. In 2019 there were more than 135 thousand road accidents in
Portugal [6]. Most of these accidents were caused by human error, such as drink-driving,
over-speed situations or infringement of traffic laws. These situations would not have
happened in an autonomous driving environment where the human does not intervene
directly in driving task. Also, in a level of Full Automation, humans can be completely
free from driving tasks, allowing them to dedicate the travelling time to other purposes.
Statistics are that, in the U.S., the average time spend inside the vehicle is almost an
hour per day [7]; that time could be used in other activities if travelling in a last-level

Diogo Figueiredo Master Degree

4 1.Introduction

Figure 1.4: Levels of Driving Automation [5].

SDV.

What seems to be against the insertion of SDV on the roads are mainly ethical issues,
since no technology is 100% error free and the fact that a system mistake can cost a
human life can be a real issue. In Portugal, AD tests are allowed as long as a human
driver is ready to intervene in the vehicle at any time.

1.2 Problem Description and Objectives

The ATLASCAR2 project is in a phase where the perception and navigation algorithms
are ready to be incorporated within the Mitsubishi i-MiEV hardware. That said, the
next step in this project is to be able to remotely control the vehicle’s main actuators:
steering wheel, brake and accelerator pedal. Thus, the main focus of this dissertation is
to develop and manually test solutions to act on the ATLASCAR2 speed and direction, in
order to allow their further integration with the perception and navigation algorithms,
in case of success. A schematic representation of how this dissertation suits in the
ATLASCAR2 project is presented in Figure 1.5.

Perception and Naviga-
tion Algorithms (road

and obstacles detection,
trajectory planning, etc.)

Remote Control of
External Actuators

(steering wheel, braking
and accelerator pedal)

Objective:
Remote Manual Operation of the Actuators

Autonomous Algorithms Actuation

Figure 1.5: Dissertation function in the ATLASCAR2 project.

Diogo Figueiredo Master Degree

1.Introduction 5

To properly develop this type of remote control solutions it is necessary to have a
real-time update of the car status, which is also one of the tasks of this work.

In addiction, the integration and testing of the developed solutions in the ATLAS-
CAR2 global system are part of this work. The following topics summarise the main
objectives of the dissertation:

• installation of a unit to access the vehicular internal network;

• real-time monitoring and publishing of the status of the ATLASCAR2;

• development of a control unit for the vehicle’s actuators dedicated to the direction
and propulsion systems;

• test and integrate the designed systems.

1.3 Document Structure

This document is organised in eight chapters. In the first two chapters, the dissertation
is presented by introducing the problem and objectives and describing related works
from different authors. Chapters 3 explains the infrastructure of the work, divided in
two categories: hardware and software. In Chapter 4, the proposed solution to publish
the vehicle’s state to the global system is described. Chapters 5 and 6 refer the proposed
solutions to remotely control the vehicle’s actuators and explain the control infrastruc-
ture created for that purpose. The tests made to evaluate the proposed solutions and
the results obtained are presented in Chapter 7. Finally, in Chapter 8, the conclusions
of this work and future directions are explained.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 2

State of the Art

As mentioned before, this dissertation will take advantage of the high degree of comput-
erization of modern vehicles to remotely control the actuators of the ATLASCAR2. This
chapter presents some works that use similar techniques to control external actuators of
a Mitsubishi i-MiEV and other vehicles.

2.1 Background - Automotive Electric Systems

In order to understand some of the concepts mentioned in this dissertation and the pre-
sented solutions, it is important to provide a basic background concerning the automotive
embedded systems architecture.

In the late 1970s, due to requirements of California Clean Air Act, the vehicle pro-
duction in U.S. implemented the first digital control embedded system [8]. This device,
called Engine Control Unit, was able to improve efficiency and reduce pollutants by ad-
justing the fuel/oxygen mixture before combustion. The success of this control technique
led to the integration of similar systems controlling and monitoring other functions of the
vehicle. Currently, these digital systems cover, literally, all the vehicles features, includ-
ing the throttle, transmission, brakes,passenger climate and lighting controls, external
lights,entertainment, and so on [1].

Indeed, premium cars can have up to 100 ECUs [9] that must communicate with
each other to monitor and control the vehicle status. To fill the need for an efficient and
reliable communication between ECUs, in 1985, Bosh developed the Controller Area
Network (CAN) standard protocol. The internal network of a vehicle can be accessed
via the On-Board Diagnostics II (OBD-II) port, which is mandatory in all cars in U.S.
after 1996 and Europe after 2004 [10] and can be normally found under the steering
column on modern cars. The CAN bus protocol and the characteristics of the OBD-II
port are explained in detail in Chapter 4.

Several research links and documentation that explain the evolution of computeriza-
tion in modern vehicles are available online. However, very few of these documents look
at this topic in a logic of penetrating the car network and ECUs. As an introduction
on how to penetrate cars and its potentials, the online tutorial ”How to hack a car —
a quick crash-course”, by Kenny Kuchera [10], is a good first article to understand the
principals of cars networks and perform the first tests on reading and writing messages
on the car network. A deeper and more complex explanation on this theme can be found
on the book ”The Car hacker’s handbook: a guide for the penetration tester”, by Craig

7

8 2.State of the Art

Smith [11].

2.2 Related Work

2.2.1 Mitsubishi i-MiEV

As mentioned on the ATLASCAR2 project presentation, the Mitsubishi i-MiEV is a full
electric vehicle that brings a lot of possibilities for developing and testing AD applica-
tions. This fact, associated with the low market price of the car, makes it a good option
when trying to turn a regular car into a SDV. Thus, there are several AD projects which,
directly or indirectly, use this model as a platform.

In 2013, an autonomous vehicle startup - nuTonomy [12] - was founded and proposed
thousands of self-driving taxis in Singapore by the year of 2019. One of the models used
was the Mitsubishi i-MiEV (Fig 2.1). They were able to remotely control all the car
actuators, but, unfortunately, the solutions used are not available.

Figure 2.1: World’s first self driving taxi [13].

Another work that involves self-driving applications in a Mitsubishi i-MiEV is the
demonstration project AUTO C-ITS [14], that ATLASCAR2 project is also part of.
This project is co-financed by the European Union and have been creating AD imple-
mentations in Portugal, Spain and France. In Spain, the project has been developed
in partnership with the Polytechnic University of Madrid and the vehicle used as the
project platform is the Mitsubishi i-MiEV (Fig. 2.2).

Again, there is no information concerning the implemented solutions, however, in a
demonstration video [14], it is possible to see that the braking system is controlled by
an external mechanical actuator on the brake pedal, as can be seen in the Figure 2.3.
The solution obtained for the steering wheel remote control is not clear, but, in the same
video, it is possible to see the steering wheel moving without the help of a mechanical
external actuator.

Diogo Figueiredo Master Degree

2.State of the Art 9

Figure 2.2: Mitsubishi i-MiEV used in the AUTO C-ITS project in Madrid [14].

Figure 2.3: Remote control solution for the braking system in the AUTO C-ITS project
in Madrid.

Diogo Figueiredo Master Degree

10 2.State of the Art

Finally, there is the ISEAUTO project [15]. This is a cooperation project between
the Tallinn University of Technology (TalTech) and Silberauto Estonia that focuses on
the development of an autonomous minibus (Fig. 2.4) to operate mainly on the campus
of TalTech. In this project the Mitsubishi i-MiEV was used as a test platform and the
minibus was built on the i-MiEV trolley, so the final solution uses the propulsion system,
shift mechanism and steering architecture of the Mitsubishi i-MiEV [16].

Figure 2.4: ISEAUTO autonomous minibus [16].

2.2.2 Other Vehicles

There are countless projects that aim to develop AD applications. Some of these are
being developed by major companies, such as the Waymo from Google [17] and the Au-
topilot from Tesla [18]. However, understandably, these big companies have no available
information regarding the implemented solutions for the autonomous mobility of their
vehicles. So, in this section, the work of two security researchers that developed remote
control applications on two different cars and published all their tools, data, research
notes and papers on [19] will be highlighted.

Charlie Miller and Chris Valsek were able to control the main actuators of a Toyota
Prius and Ford Escape by reverse engineering the vehicles’ internal communication and
ECU firmware. This was the initial approach of this dissertation - remotely control the
ATLASCAR2 actuators by sending the correct CAN frames into the CAN bus, however,
as will be later explained, the Mitsubishi i-MiEV ECUs are not ready to control all its
actuators based on CAN communication. Also, this method is associated with some
complications that Charlie Miller and Chris Valsek describe in their work. First of
all, the CAN messages used by the ECUs to perform actions in the vehicle are kept
confidential by the manufacturer, due to safety reasons. Additionally, the critical actions
are protected by a password, also unknown. Finally, there is a conflict problem, since
the target ECU will not only receive the injected messages but also those of the original
ECU [20].

In their publications, Charlie Miller and Chris Valsek discussed techniques to deal
with this issues that will not be described in this section, although it is important to
notice this method as a possible solution to solve the problem of autonomous mobility

Diogo Figueiredo Master Degree

2.State of the Art 11

in modern vehicles.

2.3 Related Work in Other Contexts

The utilization of several control units in today’s vehicles has improved efficiency and
safety in automotive industry, but has also introduced new potential risks. The possibil-
ity of remotely act on the actuators of a car can compromise the security of the vehicle
occupants when used with malicious objectives.

In 2011, researchers from the University of Washington and the University of Cali-
fornia San Diego [21] showed that malicious code can be injected in the vehicle’s bus by
an attacker directly or indirectly (wireless) to control critical systems [22]. In fact, all
the ways the vehicle communicates with the exterior represents a vulnerability that an
attacker can take advantage of to control the vehicle (Fig. 2.5).

Figure 2.5: Attack surfaces existing in a modern vehicle [22].

In their research, the investigators were able to take full control of all the ECUs
connected to the vehicle’s CAN bus using different types of attack surfaces, divided by
the authors in the following way:

• Direct physical access: plug the attack hardware directly in the OBD-II port of
the car;

• Indirect physical access: this vulnerability is mainly composed by entertainment
systems, such as CD player, USB port and iPod port;

• Short range wireless access: in this case, the Bluetooth channel was used. This
category also includes Remote Keyless Entry, RFIDs, Tire Pressure Monitoring
Systems, WiFi, and Dedicated Short-Range Communications.

• Long range wireless access: include broadcast receivers for long-range signals, such
as the Global Positioning System (GPS).

Diogo Figueiredo Master Degree

12 2.State of the Art

Unfortunately, the tools and techniques used in the work are not available and not
even the model of the vehicle used as platform is revealed, due to safety concerns. The
main goal of the research was only to show the existence of the referenced threats in
modern vehicles.

In the case of this dissertation, the main objective is to take control of the vehicle
actuators to perform an AD solution, however, it is important to note that similar
techniques can be used to jeopardize the safety of the vehicle and its occupants.

2.4 Current Implementations on Automobile Industry

Last level AD vehicles are still not a reality in today’s mobility implementations. So, in
this section, some vehicle functionalities that use the control units and communication
between ECUs will be presented.

Indeed, most of recent innovations in automobile industry were implemented using
software alone. The creation of these functionalities would not be feasible by applying
the traditional mechanical and electrical solutions of the automobile industry.

The systems presented below act on the vehicles external actuators without human
intervention, so, reverse engineering them can, likely, allow to remotely control the main
actuators, under certain conditions.

Cruise Control

The majority of today’s cars have Cruise Control. This system allows the speed to be
controlled automatically by an ECU without actions being performed by the driver on
the pedals.

Automatic Parking System

The Automatic Parking System is achieved by controlling, coordinately, the steering
angle and speed of the vehicle, taking into consideration the available space to park. A
vehicle with this feature is able to steer the steering wheel, in a precise way, without
human intervention (at least at low speed driving).

Advanced Emergency Braking System

This system automatically detects a potential collision and activates the braking system
to decelerate/stop the vehicle. In this case, the vehicle is able to use the brakes with no
pressure being applied in the brake pedal.

The topics above include systems capable of control, without human intervention,
the three main components of cars: accelerator pedal, brakes and steering wheel. These
systems alone are proof that modern cars are prepared to be transformed in self-driving
vehicles. In addiction, there are well-known functionalities that are only possible by
using control units and the CAN bus:

Diogo Figueiredo Master Degree

2.State of the Art 13

• Auto Start/Stop: in order to improve emissions and fuel consumption, the Auto
Start/Stop system uses various sensor inputs that run in the CAN bus to determine
if is possible to shut down the vehicle;

• Parking Assist systems: when the reverse gear is engaged a signal is send via
the CAN bus and is used to activate various systems, such as the parking sensor
system;

• Collision Avoidance System: the vehicle speed, the speed of the vehicle in front of
it and the distance between the vehicles is monitored in the CAN bus, to provide
a warning to the driver in case of imminent collision;

2.5 Summary

Several works and projects focused on the remote actuation of vehicles were presented
in this chapter, including the Mitsubishi i-MiEV, which is the ATLASCAR2 platform.
Moreover, emphasis was also given to a different approach based on the control of vehicle
actuators by penetrating the CAN bus and replicating the CAN messages that the control
units use to perform the specific actions.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 3

Experimental Infrastructure

This chapter presents the hardware (Section 3.1) and software (Section 3.2) used in this
dissertation to solve the proposed problems.

3.1 Hardware

3.1.1 CANalyze

The ability to receive and send CAN packets to the CAN bus of the vehicle in a fast
and reliable way is crucial for this dissertation and the ATLASCAR2 project in general.
For that, CANalyze (Fig. 3.1) is used. This device is an open source, native CAN
interface for Linux (Operating System in which the project is based on). This hardware
enables the monitoring and transmission of CAN frames using SocketCAN (Section
3.2.2), facilitating the communication process.

In a simple way, the CANalyze device performs on-board processing of the CAN
packets to make them readable to the user, allowing the computer to become a node of
the vehicle CAN bus.

Figure 3.1: CANalyze - open source hardware to receive and transmit CAN messages
[23].

To connect CANalyze to the OBD-II port of the vehicle, a OBD-II to DB9 serial cable
is required. Also, after processing the CAN packets, CANalyze sends them through a
USB-B port. In order to transfer the data to the computer, a USB-B to USB-A cable is
required.

15

16 3.Experimental Infrastructure

3.1.2 ATLASCAR2

As mentioned in the first chapter, the ATLASCAR2 is a Mitsubishi i-MiEV vehicle in
which the work will be carried out. In the context of this dissertation, the components
of the vehicle used are the ones related to the driving solutions, particularly the ECUs
that control the vehicle’s steering (Fig. 3.2) and propulsion (Fig. 3.3) operations.

Figure 3.2: Control unit responsible for the steering operation in the ATLASCAR2.

Figure 3.3: Control unit responsible for the propulsion operation in the ATLASCAR2.

The operation system of the Mitsubishi i-MiEV is based on ECUs processing electrical
signals from sensors and outputting a value to an actuator, according to a previously
programmed software. Figure 3.4 is a schematic representation of this operation logic.

Sensor ECU Actuator
Electrical Signals Analog Output

Figure 3.4: General operation logic of Mitsubishi i-MiEV.

This dissertation will be focused on the ATLASCAR2 sensors, ECUs and actuators
regarding the steering and propulsion systems.

Diogo Figueiredo Master Degree

3.Experimental Infrastructure 17

Steering System

In the Mitsubishi i-MiEV, the Electric Power System-ECU (EPS-ECU) is responsible to
manage the steering operation. In a simple explanation, this controller uses the speed
of the vehicle and signals from the torque sensor, according to the steering force, and
controls the electric motor that acts on the steering column. The Mitsubishi i-MiEV
steering system consists of the components shown in Figure 3.5.

Figure 3.5: Mitsubishi i-MiEV steering components. [24]

Propulsion System

When compared to the steering system, the propulsion system of the Mitsubishi i-MiEV
is more complex, due to safety, energy consumption and comfort reasons.

As represented in Figure 3.6, the software of the Electric Vehicle-ECU (EV-ECU)
is programmed to output the torque command, in the form of a CAN message, to the
Electric Motor Control Unit (EMCU), based on driver, vehicle and battery information.
Among the EV-ECU inputs, the Accelerator Pedal Position (APS) sensor and the Brake
Pedal Stroke (BPS) sensor represent, respectively, the accelerator pedal opening and the
amount of brake pedal stroke.

The torque command signal calculated by the EV-ECU is then processed by the
EMCU, which determines the final torque and supplies the electric motor with the
corresponding current. The EMCU also controls the inverter circuit, which allows the
electric motor to perform regenerative braking and decelerate the vehicle.

In Chapter 5, the steering and propulsion systems will be explained in detail in order
to understand how these systems were used to remotely control the vehicle direction and
speed.

Diogo Figueiredo Master Degree

18 3.Experimental Infrastructure

EV-ECU

APS, BPS

EMCU Electric Motor
Torque Command Motor Current

Figure 3.6: General operation of the Mitsubishi i-MiEV propulsion system.

3.2 Software

3.2.1 ROS - Robot Operating System

An AD project must have a well-planned communication support among the independent
algorithms. In the case of the ATLASCAR2, the Robotic Operating System (ROS)
architecture is used for that purpose. This framework operates on top of Linux and has
an organised and efficient communication method that is able to handle large volumes
of data, which makes it ideal to deal with a project of this complexity.

A ROS project is based on four main components: master, nodes, topics and services.
The nodes are executables that communicate with each other using topics or services.
In the context of this work, the topics are used in order to perform the communication
between nodes in a publisher-subscriber logic. These topics contains messages that
can either be standard ROS messages, or personalized messages. The control of the
communication process is done by the master, which makes possible for nodes to find
each other and exchange data [25] (Fig 3.7).

Figure 3.7: Basic operation architecture of ROS. [25]

This dissertation is inserted in the ROS architecture of the ATLASCAR2 project
in a two-way communication with the other independent algorithms: it is part of this
work to publish the vehicle status to the global system (these parameters are published
in a topic named NominalData), also, the messages received from the car CAN bus
are published in their raw form in the RawFrames topic, which contains ROS standard
messages created to support CAN communication (can msgs); on the other hand, the
decision making algorithms define and publish the desired state of the car on the global

Diogo Figueiredo Master Degree

3.Experimental Infrastructure 19

system. In order to obtain this information and pass it to the controllers, the respective
nodes should subscribe the topic that contains this information.

3.2.2 SocketCAN

Exchanging messages with the vehicle CAN bus using CANalyze requires a software
application capable of it. Linux supports CAN communication since 2008, when the
subsystem SocketCAN was created. SocketCAN is a set of open source CAN drivers
and a networking stack (Fig. 3.8) developed by Volkswagen AG with the main goal of
develop a similar interactions with the CAN bus as with other networks (e.g. TCP/IP)
in order to facilitate the development of a program to communicate with CAN devices.

Figure 3.8: SocketCAN communication layers [11].

Indeed, in Linux, connecting to a CAN socket is the same as connecting to any other
socket. The following C code is enough to set up the CAN communication and bind to
the socket, allowing the exchange of CAN messages with the network.

1 i n t s ;
s t r u c t sockaddr can addr ;

3 s t r u c t i f r e q i f r ;

5 s = socket (PF CAN, SOCKRAW, CANRAW) ;

7 s t r cpy (i f r . i f r name , ”can0”) ;
i o c t l (s , SIOCGIFINDEX, &i f r) ;

9

addr . can fami ly = AF CAN;
11 addr . c an i f i n d ex = i f r . i f r i f i n d e x ;

13 bind (s , (s t r u c t sockaddr ∗)&addr , s i z e o f (addr)) ;

The bytes being exchanged in the CAN network can be read to a CAN frame structure
in the following way:

Diogo Figueiredo Master Degree

20 3.Experimental Infrastructure

s t r u c t can frame frame ;
2 nbytes = read (s , &frame , s i z e o f (s t r u c t can frame)) ;

Writing CAN frames to the network can be done in a similar way:

1 nbytes = wr i t e (s , &frame , s i z e o f (s t r u c t can frame)) ;

The basic CAN frame structure is defined in include/linux/can.h as:

s t r u c t can frame {
2 can id t can id ; /∗ 32 b i t CAN ID + EFF/RTR/ERR ∗/

u8 can d l c ; /∗ frame payload length in byte ∗/
4 u8 pad ; /∗ padding ∗/

u8 r e s 0 ; /∗ r e s e rved / padding ∗/
6 u8 r e s 1 ; /∗ r e s e rved / padding ∗/

u8 data [8] a t t r i b u t e ((a l i gned (8))) ;
8 } ;

The C code presented above is enough to start to perform specific actions and interact
with a CAN bus in a Linux OS. In addiction to the CAN device drivers, SocketCAN
provides several user-space utilities and applications to interact with the CAN network
devices: can-utils.

Can-utils

Can-utils is a SocketCAN package with several tools that makes it easy to send, receive
and analyse CAN messages. This package can be installed with the following command:

$ sudo apt-get install can-utils

In the context of this work, the following tools of the can-utils package were used
[26]:

• candump: dumps all the received CAN packets to the console (Listing 3.1). As
there are countless messages being exchanged between ECUs, the output of this
tool is very unorganised and it is hard to discover any patterns to identify a partic-
ularly message. Luckily, the candump output can be filtered using, for instance, the
tool grep, that allows to print only the CAN messages of one particularly identifier
(Listing 3.2).

Diogo Figueiredo Master Degree

3.Experimental Infrastructure 21

$ candump can0
6D5 [8] 00 00 00 44 40 40 40 15
101 [1] 04
38D [8] 02 00 00 00 00 00 00 00
325 [2] 01 00
346 [8] 27 10 22 00 20 00 00 1F
236 [8] 10 01 10 00 90 00 00 C3
308 [8] 00 00 00 00 10 00 00 00
285 [8] 07 D0 02 00 75 00 08 10
385 [8] 43 00 00 00 00 00 00 00
373 [8] B1 B1 7F B8 0D 49 80 06
200 [8] 00 20 60 04 C0 00 C0 00
215 [8] 00 00 00 00 00 00 00 00
288 [8] 07 D0 27 10 00 09 11 10
696 [8] 03 E4 01 F2 41 00 27 10
29A [8] 01 34 57 46 55 30 30 30
6FA [8] 02 34 37 31 00 00 00 00

Listing 3.1: Dumpimp all the received
CAN packets.

$ candump can0 | grep ”236”
236 [8] 10 01 10 00 10 00 00 03
236 [8] 10 01 10 00 20 00 00 2B
236 [8] 10 01 10 00 30 00 00 33
236 [8] 10 01 10 00 40 00 00 7B
236 [8] 10 01 10 00 50 00 00 63
236 [8] 10 01 10 00 60 00 00 4B
236 [8] 10 01 10 00 70 00 00 53
236 [8] 10 01 10 00 80 00 00 DB
236 [8] 10 01 10 00 90 00 00 C3
236 [8] 10 01 10 00 A0 00 00 EB
236 [8] 10 01 10 00 B0 00 00 F3
236 [8] 10 01 10 00 C0 00 00 BB
236 [8] 10 01 10 00 D0 00 00 A3
236 [8] 10 01 10 00 E0 00 00 8B
236 [8] 10 01 10 00 F0 00 00 93
236 [8] 10 01 10 00 00 00 00 1B

Listing 3.2: Printing the messages with
identifier 0x236.

• cansniffer: organises the received CAN packets, by only showing the CAN mes-
sages that are changing. This is very useful when trying to identify what CAN
packets correspond to particular actions. For example, in the Listing 3.3, there are
no actions being performed in the Mitsubishi i-MiEV and in the Listing 3.4 the
pedal brake is being pressed. With this method the messages with the identifiers
0x231, 0x285 and 0x377 can be associated with parameters related with the brake
pedal.

ID data . . .
119 00 00 00 00 00 01 01 5B
149 EA 7F 00 FF 14 80 01 B7
156 00 00 00 00 12 21 11 F8
208 00 20 60 03 C0 00 C0 00
210 00 00 00 00 80 00 00
212 00 00 00 00 A7 D0 00 00
236 10 01 10 00 20 00 00 2B
288 07 D0 27 10 00 09 11 10
29A 01 34 57 46 55 30 30 30
300 00 1B 1F FF 87 D0 FF FF
373 B1 B1 7F B7 0D 49 80 06
384 00 00 00 25 00 64 63 00
3A4 07 10 90 9E 8B 61 00 75
695 04 00 01 00 FB 09 85 00
696 03 E4 01 F2 41 00 27 10
6FA 02 34 37 31 00 00 00 00

Listing 3.3: Cansniffer output with no
external actions on the vehicle.

ID data . . .
119 00 00 00 00 00 01 07 15
149 E1 7F 00 FF 14 80 07 C6
156 00 00 00 00 12 21 17 B6
208 00 20 60 04 C0 00 C0 00
210 00 00 00 00 00 00 00
212 00 00 00 00 27 D0 00 00
231 00 00 00 00 02 00 00 00
236 10 01 10 00 E0 00 00 8B
285 07 D0 02 00 74 00 08 10
288 07 D0 27 10 00 0A 11 10
29A 01 34 57 46 55 30 30 30
300 00 1B 1F FF 07 D0 FF FF
373 B1 B1 7F B8 0D 49 80 06
377 04 9A FF FF 41 3A 04 00
384 00 00 00 25 00 63 63 00
695 04 02 01 03 EF 0B 15 00
696 03 E4 01 F2 41 00 27 10
6FA 02 34 37 31 00 00 00 00

Listing 3.4: Cansniffer output when the
pedal brake is pressed.

Diogo Figueiredo Master Degree

22 3.Experimental Infrastructure

• cansend: sends a single CAN frame to the network. This tool is very helpful to
evaluate the result on sending specific messages to the CAN bus:

$ cansend can0 123#445566778899AABB

The command above sends a message with the identifier 0x123 and the data 0x44,
0x55, 0x66, 0x77, 0x88, 0x99, 0xAA and 0xBB to the network. This can also be
used to send the same message at a specific rate, doing the follow command:

$ while true;

do cansend can0 123#445566778899AABB;

sleep 0.002;

done;

• canplayer: replays CAN packets previously saved.

• cangen: generates random CAN frames and sends them to the network.

The last two presented tools (canplayer and cangen) are particularly interesting
when working in a virtual CAN bus, as described below.

Virtual CAN

It is possible, using the can-utils tools, to create a virtual CAN bus, which is very
useful when trying to simulate activity of a real CAN bus and for testing CAN software
without having to be directly connected with the vehicle network [27]. The simulated
bus can be created with the following commands:

$ sudo ip link add dev vcan0 type vcan

$ sudo ip link set up vcan0

The virtual CAN bus can be used in two main ways: generate random CAN packets
(using the cangen utility) or play a recorded data file with CAN messages. This allows
the use of previously saved messages from the car in motion, facilitating the test of
programs.

3.3 Summary

The hardware components and software tools described in this chapter constitute the
basis of this project. The ATLASCAR2 parts related to the steering and propulsion
systems and the device utilized to communicate with the vehicle CAN bus through the
OBD-II port were used as hardware. Regarding the software, it can be divided in two
categories:

• ATLASCAR2 software: in order to insert this work in the global system, it was
developed in the same Operating System (Linux OS) and framework (ROS) of the
remaining project;

Diogo Figueiredo Master Degree

3.Experimental Infrastructure 23

• specific software of this work: tools used to develop and test the solutions of this
dissertation, which are the Linux support for CAN communication - SocketCAN
and can-utils.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 4

Car Status Monitoring

One of the objectives of this dissertation is to develop a solution to update the vehicle
status in the global system in real-time. As explained in later chapters, the ECUs of
the car communicate with each other using the CAN protocol. The exchanged CAN
messages contain information regarding the critical parameters of the vehicle, such as
its velocity and direction, and non-critical parameters, such as information of the lights,
doors and other less critical components.

This chapter explains how to access the CAN bus and relate the messages in this
network to the state of the car in order to publish them in the global system.

4.1 Understanding CAN Protocol

Since the identification of the car status is performed using the vehicle network, it is
important to have a deeper understanding of the CAN protocol and CAN messages.

In Chapter 2, CAN was introduced as the network used in vehicles to perform com-
munication between ECUs. There are four main reasons that make this network so
popular in the automobile industry [28]:

1. transmission rates are must faster in CAN communication - 500 kb/s - than in con-
ventional communication (p.e. Local Interconnect Network (LIN), which provides
speed up to 20 kb/s), allowing much more data to be sent [24];

2. ECUs communicating via the CAN interface extremely reduces the cost and com-
plexity of the wiring structure of the vehicle than through analog signals;

3. the CAN bus allows a central diagnosis system available through the OBD-II port;

4. CAN communication is robust to failure of subsystems and electromagnetic inter-
ference, which makes it ideal for vehicles;

Indeed, the main purpose of CAN is to allow any ECU to communicate with the entire
system without complex dedicated wiring: using the CAN bus, an ECU can broadcast
information through only two wires - CAN high (CANH) and CAN low (CANL). Using
these wires, CAN uses differential signalling, that is, to transmit a logic 1 the two lines
can have the same level of 2.5V (Recessive State) and to send a logic 0 the voltage of the
CANH line raises to 3.5V and in the CANL line drops to 1.5V, creating a differential
voltage of 2.5V. Figure 4.1 explains the voltage levels of the CAN bus and their relation
with the data transmitted.

25

26 4.Car Status Monitoring

Figure 4.1: Voltage levels of the CAN bus to data transmission [24]

CAN Frames

The CAN communication is done via CAN frames. To understand the messages exchange
between ECUs, it is important to know the structure of a CAN frame (Fig. 4.2):

1

SOF

11

ID

1

RTR

6

Control

0-64

Data

16

CRC

2

ACK

7

EOF

Figure 4.2: Standard CAN frame structure, with the number of bits of each field [28].

• SOF (Start of Frame): logic 0 to indicate the other nodes (ECUs) the beginning
of a CAN frame;

• ID (Identifier): identifies the data content;

• RTR (Remote Transmission Request): indicates whether the frames sends data or
requests data from another node;

• Control: specifies the frame type and data length;

• Data: contains up to 8 bytes of data;

• CRC (Cyclic Redundancy Check): check for data errors. The nodes that send and
receive the frame apply prescribed operations to the data field and the receiver
node compares the values to detect errors in the transmission;

Diogo Figueiredo Master Degree

4.Car Status Monitoring 27

• ACK (Acknowledge): field used to indicate if the node has received the data cor-
rectly;

• EOF (End of Frame): indicates the end of the CAN frame.

Note that, in the applications used in this dissertation, the CAN ID and Data fields
are the ones that require greater attention. The identifier of a message is used by the
ECU to process or ignore the received frame, since it represents its priority - lower
ID values have higher priority. In a vehicle, this is used to prioritize information, for
example, a frame that contains information about the vehicle speed should have a lower
ID than a message related with the radio system.

4.2 Identification of the Mitsubishi i-MiEV CAN Frames

4.2.1 Mitsubishi i-MiEV CAN Bus

As the standard CAN buses, the Mitsubishi i-MiEV CAN bus consists of the two lines,
CAN high and CAN low, and two terminal resistors connected by the main bus line.
The bus also has a sub-line that connects each ECU to the main bus (Fig. 4.3) [24].

EPS-ECU
Steering

wheel sensor
G and yaw
rate sensor

On board
charges/

DC-DC converter
EMCU

ETACS-ECU EV-ECU

ASC-ECU
Combination

meter
BMU

Compressor/
heater controller

Diagnosis
connector

M.U.T.-III

Terminal

resistor

(120 Ω)

Terminal

resistor

(120 Ω)
CAN H

CAN L

Figure 4.3: Mitsubishi i-MiEV CAN Bus [24].

As can be seen in the Figure 4.3, the components connected in the CAN bus are:

• ETACS-ECU: monitors doors, lights and other non-critical components;

• ASC-ECU: the Activate Stability Control system is responsible to reduce the ve-
hicle speed when it detects that the vehicle is in a dangerous condition;

• EPS-ECU: controls the power steering system;

• Combination Meter: instrumental panel. All the warning lights and information
in the panel are transmitted through the CAN bus;

• Steering Wheel Sensor: measures the steering force;

• BMU: Battery Management Unit;

Diogo Figueiredo Master Degree

28 4.Car Status Monitoring

• G and yaw rate sensor: detects the yaw rate and lateral acceleration of the vehicle;

• Compressor/heater controller: controls the temperature management of the inte-
rior of the vehicle;

• On board charger/DC-DC converter;

• Diagnosis connector: OBD-II port;

• EMCU: electric motor control unit;

• EV-ECU: vehicle main controller. Integrates information from the driver actions,
vehicle and battery.

4.2.2 Locating and Reading the CAN Bus

Since the CAN bus packets are broadcast, all ECUs in the network see every packet, so,
if a device is connected to the bus, all the communication will be available. The easier
and more efficient way to connect to the CAN bus is using the diagnosis connector. The
OBD-II port can usually be found under the vehicle dashboard and must be accessible
without the need for tools.

In Figure 4.4 and Table 4.1,the pins of the OBD-II port and the respective assign-
ments are shown.

Figure 4.4: OBD-II port pinout [29].

Table 4.1: OBD-II port pinout.

Pin Description Pin Descripton

1 Manufacture Option 9 Manufacture Option
2 J1850 Bus (+) 10 J1850 Bus (-)
3 Manufacture Option 11 Manufacture Option
4 Chassis Ground 12 Manufacture Option
5 Signal Ground 13 Manufacture Option
6 CAN (J-2234) High 14 CAN (J-2234) Low
7 K-Line (ISO 9141-2) 15 L-Line (ISO 9141-2)
8 Manufacture Option 16 12V Battery Power

The pins of the OBD-II port dedicated to the CAN bus are the pins 6 and 14,
respectively, the CAN high and CAN low lines. So, these pins alone enable the connection
to the CAN bus, however, pins 4 and 5 (ground pins) and pin 16 (provides a constant
supply of 12-volt power from the vehicle’s battery) are also important. Indeed, the pin
16 will be crucial in the proposed solutions of this work, since it is used to provide power

Diogo Figueiredo Master Degree

4.Car Status Monitoring 29

to devices plugged into the OBD-II port without the need of an external power supplier.
In the context of this dissertation, the manufacture dedicated pins, pins 2 and 10 (J1850
bus) and pins 7 and 15 (ISO 9141-2 bus) are not used.

To connect and communicate to the vehicle’s CAN bus CANalyze is used with the
techniques described in Chapter 3.

4.2.3 Perform Message Identification

The CAN packets received by the device connected to the OBD-II port have no in-
formation concerning which ECU sends them and the manufacturer does not provide
information regarding the function of each message. So, the messages received using the
tools described above are, at first sight, completely unknown. Thus, in order to relate
the CAN frames with specific information, a reverse engineering of the CAN bus data
must be done, that is, to evaluate the received CAN messages using the sniffer tool of
can-utils while changing the car parameters.

The reverse engineer process can take quiet some time. Luckily, there is already a
considerable amount of information available online about the meaning of CAN messages
exchanged in the Mitsubishi i-MiEV. The meaning of some CAN messages fields and their
relation with the car status can be obtained in [30], [31] and [29].

The conventional way to refer to the CAN data field is by corresponding each byte
with the letter B and the number of the byte in the respective message: B0, B1, B2, B3,
B4, B5, B6 and B7, since a CAN message has up to 8 bytes of data.

To obtain an AD solution, the most important parameters of the car are the ones
related with its direction and velocity, because this information is crucial for the naviga-
tion and perception algorithms. Next, the identifier and fields of the CAN bus messages
that have information related with the velocity and direction of the vehicle are presented.

Vehicle Speed

The value of the vehicle speed is directly obtain in the byte B1 of the message with the
identifier 0x412. This message also contains information regarding the total kilometeres
of the vehicle in bytes B2, B3 and B4, and is given by:

Total km = (B2× 65536) + (B3× 256) +B4 [km] (4.1)

Also, the revolution per minute of the electric motor can be obtain in the CAN bus,
using the message with ID 0x298 and byte B6:

Electric Motor Revolutions = B6× 256− 1000 [rpm] (4.2)

Steering Angle

The angle of the steering wheel is transmitted in the ID 0x236 in the B0 and B1 bytes:

Steering Angle =
(B0× 256 +B1)− 4096

2
[°] (4.3)

Diogo Figueiredo Master Degree

30 4.Car Status Monitoring

Position of the Accelerator Pedal

The message with ID 0x210, in byte B2, contains information about the current position
of the accelerator pedal in percentage, being 0% the pedal released and 100% fully
pressed:

Accelerator Pedal Position =
B2

250
× 100 (4.4)

Position of the Brake Pedal

Similarly to the accelerator pedal, the position of the brake pedal circulates in the CAN
bus, in the message with ID 0x208 and bytes B2 and B3:

Brake Pedal Position =
(B2× 256 +B3− 24576)

640
× 100 (4.5)

There is also the information if the pedal brake is pressed or not, in the ID 0x231

and byte B4, being 0x00 the pedal released and 0x02 pressed.

There are also other information elements of the vehicle that, not being as important
as the parameters presented above, can be used in the continuation of this work, to
control non-critical actuators of the vehicle, such as lights, door locks and blinkers.

The following list contains other car parameters and its decoding in the Mitsubishi
i-MiEV CAN messages:

• Shift Position: message with identifier 0x418 and byte B0 (Table 4.2).

Table 4.2: Relation between the shift position and the value of the first byte of the
message 0x418.

B0 Shift Position

0x44 Parking (P)
0x4E Reverse (R)
0x50 Neutral (N)
0x44 Drive (D)

• Autonomy of the vehicle: message with identifier 0x424 and byte B1:

Autonomy =
B1− 10

10
[%] (4.6)

• Lights, Blinkers, Door Lock and Seat Belt: All the information available in
the instrumental panel is transmitted in the message 0x424. The relation between
this variable and the message data is presented in Table 4.3.

Diogo Figueiredo Master Degree

4.Car Status Monitoring 31

Table 4.3: Relation of message 0x424 with some of the instrument panel variables.

Byte Bit Variable

B0 b0 Seat Belt

B1

b6 Brake Lights
b5 Main Beam
b2 Dipped Beam
b1 Left Blinker
b0 Right Blinker

B2 b0 Door Lock

4.3 Summary

The monitoring of the vehicle status to the global system is performed by accessing the
CAN bus of the vehicle, in which messages that contain information about its parameters
are exchanged. By interpreting and processing these messages, a ROS topic with the
following information is published in the global system:

• Speed of the vehicle;

• Steering wheel angle;

• Accelerator pedal position;

• State of the brake pedal;

• Brake pedal position;

• Shift position;

• State of the blinkers;

• State of the lights;

• State of the driver seat belt.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 5

Remote Control Solutions

As previously mentioned, the Mitsubishi i-MiEV uses digital units to control the steering
and propulsion systems of the car. In this chapter, these systems are described, as well
as the proposed solutions to remotely control the direction and speed of the vehicle.

In order to understand the logic behind the Mitsubishi i-MiEV operation, the vehi-
cle’s Workshop Manual and Technical Information Manual [24] were consulted.

5.1 Steering Wheel Remote Control

5.1.1 Mitsubishi i-MiEV Power Steering Logic

Today’s cars have a power steering system that helps the driver steering the vehicle by
reducing the effort required to move the steering wheel. In the Mitsubishi i-MiEV, an
electric motor to add energy to the steering mechanism is used.

The electric motor is used in the steering system to control the EPS-ECU, which
outputs current to the motor according to the vehicle speed and steering force. Indeed,
it is crucial for this system to be sensitive to the speed of the vehicle, in order to
allow a light steering force during stationary or low speed driving and a higher steering
force during high speed driving. To pass the vehicle speed to the EPS-ECU, CAN
communication is used, since, as mentioned in the previously chapter, this parameter
runs on the CAN bus in the message with the identifier 0x418. On the other hand,
the steering force is measured using a torque sensor, which outputs two voltage signals
(main and sub) to the EPS-ECU (Fig. 5.1).

In Figure 5.1, all the signals and information received by the EPS-ECU are repre-
sented; however, the steering operation can be simplified with the diagram of Figure 5.2
that is described in the following sequence:

1. torque sensor measures the steering force and outputs two voltage signals to the
EPS-ECU according to that value;

2. based on the electric signals from the torque sensor and the vehicle speed, the
EPS-ECU outputs the voltage for the electric motor;

3. the electric motor assists the steering operation in proportion to the voltage ap-
plied.

33

34 5.Remote Control Solutions

EV-ECU

ASC-ECU

Combination
meter

ETACS-ECU

Diagnosis
connector

EPS-ECU

Output current value

READY signal

Vehicle speed

Electric power steer-
ing warning lamp

Odometer (distance information)

Free-run counter
(Time information for diag-
nosis function)

Diagnosis code output

EPS-ECU Power supply

Electric motor switch

Earth

Motor current (+)

Motor current (-)

Torque sensor signal (main)

Torque sensor signal (sub)

CAN Communication

Analog Signals

Figure 5.1: Electric Power Steering-ECU System Construction Diagram.

Torque Sensor

CAN Communication

Analog Signals

EPS-ECU

Vehicle Speed

Electric MotorMAIN Signal

SUB Signal Motor Current (+)

Motor Current (-)

Figure 5.2: Operation of the Mitsubishi i-MiEV power system.

Diogo Figueiredo Master Degree

5.Remote Control Solutions 35

5.1.2 Proposed Solution

According to the operating logic of the Mitsubishi i-MiEV power steering system, there
are two possible ways to remotely control the steering wheel: change the electric signals
input of the torque sensor in the EPS-ECU and, therefore, change the current that
the control unit outputs to the electric motor; or, directly input current to the electric
motor. Due to greater accessibility to EPS-ECU than to the electric motor and simpler
emulation of small voltage signals than power the current to an electric motor, the
proposed solution is based on the first option.

In order to obtain the desired response of the steering wheel by replicating the signals
from the torque sensor, it is important to understand the relationship between those
signals and the steering angle.

Signal Analysis

The EPS-ECU has three dedicated connectors (Fig. 5.3):

• B-114: responsible to transmit the state of the electric motor unit (ON or OFF);

• B-114-1: outputs the current to the electric motor that assists the steering torque;

• B-114-2: connects the EPS-ECU to the torque sensor.

Figure 5.3: EPS-ECU connectors [24].

The proposed solution to control the steering wheel uses the signals from the B-114-2
connector. The Workshop Manual of the Mitsubishi i-MiEV has information about the
function of each terminal of this connector, available in Table 5.1.

Table 5.1: Signals of the B-114-2 connector terminals [24].

Terminal No. Check Item Normal Conditions

1 Torque sensor main signal 0.5 to 4.5 V
2 Torque sensor sub signal 0.5 to 4.5 V
3 Torque sensor GND 0 V
4 Torque sensor power supply 4.5 to 5.5 V
5 Torque sensor shield GND 0 V

Diogo Figueiredo Master Degree

36 5.Remote Control Solutions

In Table 5.1, it can be seen that the first two terminals are the ones responsible
for transmitting the signals from the torque sensor and the voltages values of these
signals vary between 0.5 and 4.5 V. To understand how to use these signals to change
the position of the steering wheel, the voltage values of terminals number 1 and 2 were
analyzed while the steering wheel was manually turned.

The graphs of Figures 5.4, 5.5, 5.6 and 5.7 have the voltage measured in both signals
of the torque sensor and the corresponding angle of the steering wheel. The angles were
stipulated as positive when the steering wheel is turned to the left and negative when
the steering wheel is turned to the right from a reference central position.

Figure 5.4: Voltage values generated by the torque sensor while turning the steering
wheel completely to the left with the vehicle stationary.

In the graphs of Figures 5.4 and 5.5, the steering wheel is completely turned to
the left and right at approximately constant rotational speed, as can be seen by the
slope of the steering wheel angle line, with the vehicle in stationary state. Through the
analysis of these graphical representations several conclusions can be drawn about the
characteristics of the signals:

• the main and sub signals have, approximately, symmetrical voltages values relative
to 2.5 V;

• when turning the steering wheel to the left, the main signal increases to the maxi-
mum of 3.2 V and the sub signal decreases to the minimum of 1.8 V. The opposite
occurs when the steering wheel is turned to the right;

• the variation of the voltage values in both signals is approximately linear as the
steering wheel is turned.

Diogo Figueiredo Master Degree

5.Remote Control Solutions 37

Figure 5.5: Voltage values generated by the torque sensor while turning the steering
wheel completely to the right with the vehicle stationary.

In the graphs of Figures 5.6 and 5.7, the analyses represented in the graphs of Figures
5.4 and 5.5 were repeated with the car in a slow motion of 6 km/h. Comparing the two
pair of graphs can be seen that with the vehicle in motion the voltage values are lower,
ranging between 2 V and 3 V.

Though the presented graphs, it can be concluded that the torque sensor sends
electrical signals between 1.5 V and 3.5 V based on the force applied by the driver in the
steering wheel. This analysis is an indication on how to use these signals to remotely
control the steering wheel, however, it is important to be aware that the power steering
in the Mitsubishi i-MiEV is used to support the effort done by the driver and not to
define the direction by itself, so the replication of these signals does not guarantee a
similar positioning of the steering wheel.

Sending Signals to the EPS-ECU

The proposed solution emulates the main and sub signals from the torque sensor in the
EPS-ECU and keeps the remaining terminals of the B-114-2 connector connected. In
order to send the desire voltage to the B-114-2 connector of the EPS-ECU an Arduino
UNO is used (Fig. 5.8). The specifications of the microcontroller can be found in Table
5.2.

Notice that, in the Arduino Uno, PWM (Pulse With Modulation) waves are used to
create an output analog voltage. Briefly, PWM is a technique that uses digital control
switching between on and off to generate a square wave, which can create voltages
between 5 V and 0 V by changing the portion of time that the signal is on or off.

Diogo Figueiredo Master Degree

38 5.Remote Control Solutions

Figure 5.6: Voltage values generated by the torque sensor while turning the wheel com-
pletely to the left with the vehicle at the speed of 6 km/h.

Figure 5.7: Voltage values generated by the torque sensor while turning the wheel to
completely the right with the vehicle at the speed of 6 km/h.

Diogo Figueiredo Master Degree

5.Remote Control Solutions 39

Figure 5.8: Arduino UNO [32].

Table 5.2: Arduino UNO specifications [32].

Specifications Details

Operating Voltage 5 V
Input Power Voltage 7-12 V

Digital I/O Pins 14
PWM Digital I/O Pins 6

PWM Pins 3, 5, 6, 9, 10, 11
PWM Frequency 490 Hz (pins 5 and 6: 980 Hz)

Diogo Figueiredo Master Degree

40 5.Remote Control Solutions

An application that controls the direction of a vehicle requires an accurate voltage, so,
a steady voltage signal is needed. The PWM signal can be transformed into a smooth
voltage by using a Low Pass Filter, which can be implemented with a resistor and a
capacitor, as represented in Figure 5.9.

Figure 5.9: Low-pass filter [33].

The Resistor and Capacitor should be selected according to the desired cut-off fre-
quency (fc) of the filter, defined by Equation 5.1:

fc =
1

2πRC
[Hz] (5.1)

The cut-off frequency determines the upper limit frequency where the input signal
is allowed to pass through the filter. So, this value must be such that the filter is able
to stabilize the PWM wave and, at the same time, does not cause a drop of the voltage.
These considerations led to the use of a 220 Ω resistor and a 100 µF capacitor, resulting
in a cut-off frequency of 7.2 Hz.

In Chapter 7 the tests performed using the method described in this section to control
the steering wheel are presented.

5.2 Vehicle Speed Remote Control

In an electric vehicle, like the Mitsubishi i-MiEV, there are two actuators that are directly
responsible for the speed of the vehicle: the electric motor and brakes. These actuators
can be controlled by the driver using the accelerator and brake pedals. In the next
sections, the logic behind the propulsion and braking systems of the Mitsubishi i-MiEV
are explained.

5.2.1 Mitsubishi i-MiEV Propulsion Logic

As an electric vehicle, the Mitsubishi i-MiEV’s propulsion is provided by an electric
motor, which is controlled by the Electric Motor Control Unit (EMCU). This system
is crucial for the proper operation of the vehicle, since it has direct impact in safety,
performance, energy saving and comfort.

Although the EMCU is who directly controls the electric motor, the EV-ECU is the
control unit that sends the torque command of the motor to the EMCU, using CAN

Diogo Figueiredo Master Degree

5.Remote Control Solutions 41

communication. The EMCU processes the torque command and determines the final
torque. Based on this value, the EMCU outputs current to the electric motor unit (Fig
5.10).

Figure 5.10: Electric motor control unit [24].

The EV-ECU calculates the torque command based on several instructions that are
received via electric signals and CAN communication, as can be seen in Figure 5.11. In
this work, the focus is on the variables that the driver controls to change the speed of
the vehicle: the accelerator pedal opening (measured by the Accelerator Pedal Sensor -
APS), the amount of pressure in the brake pedal (measured by the Brake Pedal Sensor
- BPS) and the shift position switch. This dissertation does not include the shift control
so, the focus will be on the two remaining variables.

The APS and the BPS use electric signals to transmit the position of respective
pedals to the EV-ECU. In the case of the APS, the method is similar to the one used by
the torque sensor, since it has a main and sub line, which sends electric signals to the
EV-ECU.

In Figure 5.11, all the signals used by the EV-ECU to calculate the motor torque
command to the EMCU can be seen. This pre-programmed software of the control unit
has four main controls to determine the torque command [24]:

• Basic control: the torque command is calculated based on the vehicle speed and
the accelerator opening, as in Figure 5.12;

• Power save control: when the main battery capacity becomes low, the power save
control limits the motor (electric motor unit) output, turns off the A/C and heater,
and illuminates the power down warning lamp on the combination meter.

• Shift position control: when the shift positions B or C of the vehicle are engaged.
B (regenerative brake) represents the mode in which a stronger deceleration effect
can be obtained without using the brake pedal, that is, by increasing regenerative
brake effort. C (comfort) is a driving mode where the regenerative brake effort is
decreased.

Diogo Figueiredo Master Degree

42 5.Remote Control Solutions

Figure 5.11: EV-ECU operation logic [24].

Figure 5.12: Torque command logic of the EV-ECU using basic control [24].

Diogo Figueiredo Master Degree

5.Remote Control Solutions 43

• Smooth startup control: suppresses the vibration generated in acceleration, ensur-
ing a smooth driving.

5.2.2 Mitsubishi i-MiEV Braking Logic

The Mitsubishi i-MiEV braking system is a powered assisted conventional hydraulic
system, thereby allowing an increased braking force with less brake pedal effort. As
energy source of the brake booster, a brake electric vacuum pump is used (Fig. 5.13). In
addition, the brake assist mechanism determines whether an emergency exists, based on
the pedal depression speed and force, and provides the maximum brake force if needed.

Figure 5.13: Electric motor used in the brake electric vacuum pump [24].

The brake vacuum pressure system, represented in Figure 5.14, uses the brake booster
vacuum sensor to measure the vacuum pressure and sends an electric signal to the EV-
ECU, which, based in this signal, controls the brake electric vacuum pump main relay
and control relays, in order to activate/deactivate the brake electric vacuum pump.

Regenerative Braking

As most electric cars, besides the standard braking system, Mitsubishi i-MiEV also uses
regenerative brake to reduce the speed of the vehicle. As represented in Figure 5.15,
in regenerative brake, the motor revolution is converted to electric power to charge the
main batteries of the car. Thus, when the accelerator pedal is free, the car slows down
and the motor starts charging the batteries. As the car slows down the regenerative
braking decreases until the car reaches its cruising speed of 6 km/h on a horizontal and
flat road.

5.2.3 Proposed Solution

In order to properly control the speed of the ATLASCAR2, the propulsion and braking
systems of the vehicle should be controlled.

According to the electric motor unit logic of the vehicle, there are two ways to
remotely control the propulsion system: change the analog signals of the accelerator

Diogo Figueiredo Master Degree

44 5.Remote Control Solutions

Figure 5.14: Mitsubishi i-MiEV braking system [24].

Figure 5.15: Regenerative braking system [34].

Diogo Figueiredo Master Degree

5.Remote Control Solutions 45

pedal that enters the EV-ECU, or change the digital CAN messages that the EV-ECU
outputs to the EMCU with the electric motor torque command.

Concerning the braking system, since the hydraulic unit is directly actuated by the
brake pedal stroke, the remote control possibility is based on a external mechanical
actuator applying pressure on the brake pedal, similarly to one of the solutions presented
in Section 2.2.1. Another possibility is to activate the brake vacuum generation system
that assists the brake operation by changing the signals of the EV-ECU which controls
the brake electric vacuum pump relays.

At the time of writing, the vehicle speed is controlled through acceleration and re-
generative braking by changing the electric signals inputs of the APS in the EV-ECU.
Obviously, a self-driving vehicle must have the possibility of acting on the brakes, how-
ever, with a proper use of the regenerative brake system, most of the brake actions can be
done without using the brake pedal, especially if having the shift position corresponding
to the regenerative braking (B) engaged.

Signal Analysis

As previously mentioned, the APS uses two electrical signals (main and sub) to transmit
the information of the accelerator pedal opening to the EV-ECU.

The EV-ECU has four dedicated connectors with about twenty terminals each: C-
106, C-108, C-110 and C-111. The C-106 and C-108 connectors are the ones responsible
for transmitting information regarding the accelerator pedal position. Table 5.3 has
information about the input signals of the EV-ECU related to the APS.

Table 5.3: EV-ECU terminals regarding accelerator pedal position [24].

Connector Terminal No. Check Item Normal Condictions

C-106 8
Accelerator pedal

position sensor (sub)
power supply voltage

4.9 to 5.1 V

C-106 23
Accelerator pedal

position sensor (sub)
power supply earth

1 V or less

C-106 35
Accelerator pedal

position sensor
(sub) signal

0.3 to 2.5 V

C-108 42
Accelerator pedal

position sensor (main)
power supply

4.9 to 5.1 V

C-108 48
Accelerator pedal

position sensor (main)
power supply earth

1 V or less

C-108 59
Accelerator pedal

position sensor
(main) signal

0.8 to 4.8 V

According to Table 5.3, in order to emulate the signals of the APS, terminals 35
and 59 of the connectors C-106 and C-108, respectively, should be used. The vehicle’s

Diogo Figueiredo Master Degree

46 5.Remote Control Solutions

Technical Information Manual provides information regarding the relationship between
the voltage of both lines of the APS and the amount of accelerator pedal opening. Figure
5.16 shows that both signals increase proportionally with the position of the accelerator
pedal and the main signal shows 1 V for the released pedal and 4 V in the full throttle
point. The sub signal has always half the voltage of the main one.

In order to confirm the voltage values from the APS in the ATLASCAR2, measure-
ments of these values were made pressing the accelerator pedal completely, which is
represented in the graph of Figure 5.17. As can be seen, this graph points out a small
difference from the information presented in the vehicle’s Technical Information Manual,
which is that the voltage value corresponding to the full throttle point is 4.5 V in the
main line and not 4 V, as indicated in Figure 5.16.

Figure 5.16: Relation between the voltage of the accelerator pedal position sensor main
and sub line and the opening of the accelerator pedal [24].

Sending Signals to the EV-ECU

The method used to send electric signals to the EV-ECU is identical to the process
described to send voltage to the EPS-ECU in the steering wheel control - an Arduino
UNO associated with a Low Pass Filter.

In Chapter 7, the tests made to demonstrate the solution proposed in this section
are presented.

5.3 Summary

In this chapter, the process used to obtain a solution to control the vehicle’s steering
and propulsion systems was explained and can be summarized as following:

1. understand the operating logic of the Mitsubishi i-MiEV;

2. recognize how to take advantage of the vehicle’s operating logic to remotely control
the respective systems;

Diogo Figueiredo Master Degree

5.Remote Control Solutions 47

Figure 5.17: Voltage values of the accelerator pedal position sensor main and sub lines
when the accelerator pedal is pressed completely.

3. analyze the existing signals when the systems are being operated manually;

4. realize how to replicate these signals to get similar results on the actuators.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 6

Actuators Control Management

In Chapter 5, the controllers used to define the speed and direction of the vehicle were
described. This chapter explains how the desired values of the variables are passed to
the controller. In addition, a solution is presented to make compatible the manual and
remote/autonomous actuation of the vehicle’s steering wheel and accelerator pedal.

6.1 Remote Control Using the CAN Bus

In a self-driving car, the values of the speed and direction of the vehicle, calculated by the
navigation, perception and decision making algorithms, must be passed to the actuators’
controllers in a reliable and efficient way. For that, it is possible to take advantage of
the vehicle CAN bus and use the CANalyze device and the implementation presented
in Chapter 4 to send CAN messages containing the values of the variables to control.
These CAN messages will then be available to all the devices connected to the network
so, the desired values can be passed to the controller by connecting it to the CAN bus
network and enabling it to read and process CAN frames.

The implementation of the controller interpreting CAN messages and outputting
voltage signals to perform specific actions is called External ECU.

6.1.1 External ECU

In order to create an External ECU, the Arduino UNO, responsible to calculate and send
the voltage signals, also needs to be able to receive and process the CAN messages. For
that, a CAN-BUS Shield (Fig. 6.1a) is used incorporated with the Arduino UNO (Fig.
6.1b), enabling it to communicate with the CAN bus. The Listing A.1 on Appendix A
is the Arduino IDE code used to receive CAN messages in the Arduino UNO.

This work uses two external ECUs, one for each controller. So, there are three devices
that need to be connected to the vehicle’s CAN bus through the OBD-II port of the car,
so an OBD-II splitter is used, as shown in Figure 6.2.

The devices used to control the vehicle’s direction and speed are summarized in the
following topics:

• CANalyze: sends the instructions to the controllers via CAN bus;

• External ECU 1: reads and responds to the commands regarding the steering
operation and generates the respective signals;

49

50 6.Actuators Control Management

(a) CAN-BUS Shield [35]. (b) CAN-BUS Shield working with Ar-
duino UNO [36].

Figure 6.1: External ECU.

Figure 6.2: Using an OBD-II port splitter in the ATLASCAR2 to connect all the devices
to the vehicle’s network.

Diogo Figueiredo Master Degree

6.Actuators Control Management 51

• External ECU 2: reads and responds to the instructions concerning the speed
of the vehicle and generates the respective signals;

6.1.2 Creating CAN Messages

In order to use the CAN bus to transmit the information to the controllers, specific CAN
messages with their own identifiers were created. These identifiers must be different from
the ones being exchanged in the vehicle to avoid the collision of messages. The created
messages are described in Table 6.1.

Table 6.1: Description of the CAN messages created to send commands to the controllers.

Variable ID B0 B1 B2 B3 B4 B5 B6 B7

Steering
Wheel Angle

0x500
Angle in
Degrees

Left/Right
Indication

- - - - - -

Speed of the
Vehicle

0x501
Speed

in km/h
Emergency

Level
- - - - - -

In the message regarding the steering wheel control, the value of the angle is directly
passed in the byte B0. Also, the byte B1 refers to the direction of the angle, being 0x00

left and 0x01 right.

The message used to command the speed of the vehicle has the value of the speed
on byte B0 and, in byte B1, it contains information regarding emergency level of the
specific actuation. This field is adopted to adjust the controller response speed to the
urgency of the situation. An obvious example of the applicability of this field is when
the vehicle must be immediately stopped due to an unpredictable event. The emergency
levels are divided in three categories:

• 0x00: normal conditions. The actuation is done considering a smooth driving
operation;

• 0x01: medium level. In this case the controller compromises the smoothness of
the driving operation in order to reach the desired state faster;

• 0x02: maximum emergency. The controller response must be as quick as possi-
ble, meaning that the brakes or accelerator are fully applied, depending on the
situation.

6.2 Driving Modes Compatibility

Besides the possibility to remotely control the vehicle’s actuators, a self-driving vehicle
should be able to respond to direct actions on the steering wheel and accelerator pedal
performed by the driver, as it would if the remote control systems were not installed on
the car. Thus, the vehicle has two driving modes, autonomous and manual, that can be
selected by the driver for the steering wheel and propulsion control systems.

As described in Chapter 5, the steering wheel and propulsion systems have a similar
operation logic, that consists of a sensor sending two different electrical signals to the
respective ECU. So, in both systems, the method used consists of receiving the electrical

Diogo Figueiredo Master Degree

52 6.Actuators Control Management

signals from the vehicle sensor and the electrical signals from the controller (Arduino
UNO) and select which signals to transmit to the respective ECU, depending on the
desired driving mode.

The definition of the driving mode is performed by the driver using an on-off switch
associated with the logic inputs of an analog multiplexer, which allows to change the out-
put signals. Figure 6.3 shows the circuit used on the steering wheel. For the propulsion
system the same electrical circuit is used, exchanging the terminals from the connector
B114-2 and the terminals in the EPS-ECU to the connectors C-106 and C-108 and the
respective terminals in the EV-ECU.

Figure 6.3: Circuit used in the transition between driving modes of the steering system.

In some situations, mainly due to safety reasons, the driver may need to change the
direction and/or speed of the vehicle suddenly, not having the time needed to act on
the switch to change to the manual driving mode. Thus, if the autonomous mode is
on, and there is human intervention in the vehicle, the systems must give priority to
the actions performed by the human operator. For that reason, it was implemented
a feature in both systems that switches from autonomous to manual driving when the
driver executes an action. In the steering wheel control system, this transition occurs
when the driver turns the steering wheel, which is detected by the electrical signals
from the torque sensor. For the propulsion system control, the driver can cancel the
autonomous actuation by pressing the brake or accelerator pedal. The information
about the state of the accelerator pedal is obtained by analyzing the electrical signals
from the APS; in the case of the brake pedal, it is used the message with ID 0x231 to
determine if the driver presses the pedal.

When the driver does one of the actions described above, a 5 second margin is then
given to correct the vehicle status and decide whether the driver wants to continue in
autonomous driving mode or change to manual driving mode permanently by using the
switch. The diagram in Figure 6.4 summarizes the methods used to integrate the manual
and autonomous driving modes.

Diogo Figueiredo Master Degree

6.Actuators Control Management 53

Manual
mode

Autonomous
mode

Temporary
Manual

ON

User action on pedals
or steering wheel

OFF

OFF

5 sec.
delay

Figure 6.4: Transition between autonomous and manual driving modes.

In order to facilitate the assembly of the electrical circuit, a Printed Circuit Board
(PCB) was developed to be integrated with the Arduino UNO and the CAN Bus Shield.
This PCB is shown in Figure 6.5 and represents the circuit on Figure 6.3.

Diogo Figueiredo Master Degree

54 6.Actuators Control Management

Figure 6.5: Circuit used in the transition between driving modes of the steering system.

Diogo Figueiredo Master Degree

Chapter 7

Tests and Results

In order to demonstrate the proposed solutions for the problems of this dissertation,
tests were performed where the direction and speed of the vehicle are controlled without
using the vehicle’s steering wheel and pedals. In this chapter, those tests are described
and the results are presented.

7.1 Direction Remote Control

As presented in Chapter 5, the approach used to control the steering wheel is to emulate
the voltage sent by the torque sensor to the EPS-ECU. The analysis of the torque sensor
signals done in that chapter revealed the main characteristics of these signals. Thus, in
order to change the steering wheel position, similar types of signals were created using
the Arduino UNO.

The graph in Figure 7.1 represents an experiment with the car at stationary state,
where the torque sensor signals observed when turning the steering wheel to the left
are replicated: the main signal increases linearly from 2.5 V to 3.2 V and sub signal
decreases linearly from 2.5 V to 1.8 V. The graph demonstrates that the steering wheel
rotates to the left, as expected. It can be seen that the steering wheel angle slope is
not constant during the experiment – it increases rapidly when the main and sub signals
reach 3 V and 2 V, respectively.

Also, can be noticed that the evolution of the steering wheel angle is not smooth,
that is, it has an interrupted movement as the voltage values vary. The amplified rep-
resentation of this experiment between the range of 0° and 70° of the steering angle in
Figure 7.2 highlights this fact. The same experiment was performed rotating the steering
wheel to the right and is represented in the graphs of Figures 7.3 and 7.4.

In order to understand the impact of different surface types in the response of the
system, the same experiments were made using a higher and lower friction surface than
the one used in the tests mentioned above, which was cement characteristic of a garage
floor. The surfaces chosen to evaluate the effect of friction on the steering wheel position
control model were the common tar on a normal road (higher friction) and sand (lower
friction). The results of the experiments are presented in the graphs of Figures 7.5 and
7.6 for the rotation of the steering wheel to the left and, in for the rotation for the right,
are presented in the graphs of Figures B.1 and B.2 in Appendix B. The results obtained
show that the use of different surfaces with the same voltage values changes the results

55

56 7.Tests and Results

Figure 7.1: Steering wheel position of the car in stationary state with the corresponding
voltage values sent to the EPS-ECU.

Figure 7.2: Detail view of the steering wheel position of the car in stationary state with
the corresponding voltage values sent to the EPS-ECU.

Diogo Figueiredo Master Degree

7.Tests and Results 57

Figure 7.3: Steering wheel position of the car in stationary state with the corresponding
voltage values sent to the EPS-ECU.

Figure 7.4: Detail view of the steering wheel position of the car in stationary state with
the corresponding voltage values sent to the EPS-ECU.

Diogo Figueiredo Master Degree

58 7.Tests and Results

obtained for the steering wheel position. For instance, the graphs of Figures 7.5 and B.1
indicate that using a higher friction surface, the maximum steering wheel angle obtain
is 350°, which represents a decrease of more than 100° compared to the value obtained
in previous experiments. On the other hand, the graph of Figure 7.6 and B.2 shows that
in the lower friction case the maximum steering wheel angle reaches 550°, which is the
maximum value obtained.

Figure 7.5: Steering wheel position of the car in stationary state over a surface of road
tar with the corresponding voltage values sent to the EPS-ECU .

As previously mentioned, the EPS-ECU commands the electric motor based on the
signals from the torque sensor and other variables, including the vehicle speed. Thus,
in order to understand the impact of the speed of the vehicle in the response of the
system, the same tests were made with the vehicle moving at cruise speed. The results
are represented in the graphs of Figures 7.7 and 7.9, which represent the rotation of the
steering wheel to the left and the right, respectively. Also, the results of these tests are
represented in a smaller range of values of the steering wheel angle in Figures 7.8 and
7.10, in order to highlight the response of the system in the most common values of the
steering wheel angle.

Comparing the results obtain in the experiments with the vehicle in stationary state
with those where the vehicle is in motion, some differences in the response of the electric
motor responsible to assist the steer can be noted. The following topics point out the
distinctions observed in the graphs regarding the rotation of the steering wheel to the
left (identical conclusions could be drawn in the case where the steering wheel is turned
to the right):

• the graphs of Figures 7.1 and 7.7 show that the slope of the steering wheel angle
line is approximately constant in the test with the vehicle in motion, whereas,

Diogo Figueiredo Master Degree

7.Tests and Results 59

Figure 7.6: Steering wheel position of the car in stationary state over a surface of sand
with the corresponding voltage values sent to the EPS-ECU.

Figure 7.7: Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU.

Diogo Figueiredo Master Degree

60 7.Tests and Results

Figure 7.8: Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU.

Figure 7.9: Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU.

Diogo Figueiredo Master Degree

7.Tests and Results 61

Figure 7.10: Steering wheel position of the car moving at cruise speed with the corre-
sponding voltage values sent to the EPS-ECU.

when the vehicle is stationary, the steering wheel angle varies at different speeds
in the range of 0° to 550°;

• in the graphs, where the range of angles from 0° to 70° (Figures 7.2 and 7.8) are
highlighted, it can be seen that in the case of the experiment made in motion, the
steering wheel rotation is smoother, which allows to control the direction of the
vehicle with greater precision;

• with the vehicle in motion, the steering wheel controller is more sensitive to the
variation of the electrical signals. Table 7.1 shows values taken from the same tests,
which indicates that the EPS-ECU is programmed to act on the electric motor for
lower voltage values when the vehicle is in motion.

Table 7.1: Analysis of the signals sent to the EPS-ECU and the respective steering wheel
state with the vehicle stationary and in motion.

Steering Wheel
State

Electrical Signals
at 0 km/h

Electrical Signals
at 6 km/h

Starts to rotate
Main Signal (V) 2.68 2.70
Sub signal (V) 2.24 2.27

Reaches 60º Main Signal (V) 2.96 2.76
Sub Signal (V) 1.96 2.21

Reaches 400º Main Signal (V) 3.12 2.84
Sub Signal (V) 1.85 2.11

Diogo Figueiredo Master Degree

62 7.Tests and Results

Table 7.1 also highlights a characteristic of the control system of the car in motion
that is demonstrated in Figure 7.8. The variation of the electrical signals voltage between
the point where the steering wheel starts to rotate and when it reaches 60° is minimal.
For instance, as presented in the table, when the steering wheel starts to move the main
and sub signals are, respectively, 2.70 V and 2.27 V and when the steering wheel angle
is equal to 60° the voltage values are 2.76 V and 2.21 V, which represents a variation
of 0.6 V. The fact that a wide steering wheel angle range corresponds to such a small
variation of voltage values is a challenge in this solution, since it is difficult to reach such
a high degree of accuracy in the voltages.

Through the observations made above, it can be concluded that the EPS-ECU
changes the output to the electric motor taking into consideration the speed of the vehi-
cle. In order to better understand this effect, an experiment was made where constant
electrical signals are sent to the terminals of the EPS-ECU with the car in stationary
state. The voltage values were selected to cause a slight rotation of the steering wheel to
the left. Then, the speed of the vehicle is gradually increased, which causes an increase
in the rotation angle of the steering wheel as soon as the speed becomes different from
zero. The speed of the vehicle continued to be increased up to 13 km/h, however the
state of the steering wheel did not change, which shows that the system reacts differently
in situations of stationary state and with speed and does not take into consideration the
speed value itself, at least at the speeds where the test was performed. Since the speed
range from 0 to 15 km/h will be the most common in autonomous driving tests in the
ATLASCAR2, for the time being, it is a valid conclusion to consider the steering wheel
response the same at all speeds different from 0 km/h. This experiment is represented in
the graph of Figure 7.11 and in a video available on: https://youtu.be/J_h_DQJPj8w.

Figure 7.11: Differences observed in the steering wheel with the vehicle in stationary
state and at different speeds.

Diogo Figueiredo Master Degree

https://youtu.be/J_h_DQJPj8w

7.Tests and Results 63

Despite the conclusions already made, the tests presented above still do not clarify the
full logic that the EPS-ECU uses to control the electric motor based on the main and sub
signals. In order to clarify the control method used, an experiment was made in which
constant voltage values are sent to the EPS-ECU and the steering wheel is manually
positioned at different angles to observe the response of the steering wheel. A similar
experiment is demonstrated in the video available on https://youtu.be/sdePY5XrwRM.
Table 7.2 shows that, the EPS-ECU uses the electrical signals to define a displacement
in the steering wheel angle. However, as expected in a controller of this nature, the
displacement varies in an, apparently, non-logic way. For instance, the maximum and
minimum displacements caused by the main signal 2.75 V and sub signal 2.25 V are,
respectively, 57° and 25°. In the case of main signal equal to 2.76 V and sub signal
2.24 V the maximum and minimum displacements are 102° and 41°, respectively. This
inconsistency of the displacement indicate that control of the steering wheel should be
based on an increment/decrement logic, rather than directly position the steering wheel
in the desired angle.

Table 7.2: Response of the steering system to the same electrical signals at different
positions.

Main Signal
[V]

Sub Signal
[V]

Initial Steering
Wheel Angle (°)

Final Steering
Wheel Angle (°)

Steering Wheel
Displacement (°)

2.75 2.25

0 31 31
-16 37 53
-33 2 35
-71 -14 57
-85 -36 49
-176 -139 37
-240 -199 41

3 28 25
18 48 30
31 78 47
63 110 47
117 167 50
209 249 40

2.76 2.24

0 73 73
-21 51 72
-60 19 79
-132 -51 101
-179 -92 87
-281 -186 95
-312 -210 102
12 66 54
23 90 67
59 100 41
101 155 54
148 221 73
214 284 70

Diogo Figueiredo Master Degree

https://youtu.be/sdePY5XrwRM

64 7.Tests and Results

Direction Control using a Potentiometer

After understanding the response of the steering system to certain voltage values of the
electrical signals sent to the EPS-ECU terminals, it is possible to use a potentiometer to
control the steering wheel of the vehicle. Since the control system requires two different
voltage levels, the output from the potentiometer is processed, using the Arduino Uno,
in two signals, according to the characteristics of the main and sub signals mentioned
above. Thus, an Arduino IDE code was developed that uses the potentiometer signal to
create two analog outputs that, after being interpreted by the EPS-ECU, produce the
desired effect on the steering wheel of the vehicle. This code is in the Listing A.2 in
Appendix A.

As seen above, the steering wheel angle range of 0° to 70° corresponds to an very
low increase/decrease of the signals voltage values, so, it is difficult to have a proper
control in that range using the potentiometer, because the lower maximum input on
the potentiometer is 3V, in order to be able to rotate the steering wheel completely.
However, as demonstrated in the video available on https://www.youtube.com/watch?

v=qr3qgnYNbDY, this method can control the direction of the vehicle to perform approx-
imate trajectories.

Direction Control through CAN

As presented on Chapter 6, the method implemented to send the instructions to the
steering wheel controller uses the CAN bus of the vehicle. Thus, in this section, an
experiment is described where the desired steering wheel angle is sent to the bus and
then interpreted by the Arduino UNO, which is pre-programmed to compare the current
and desired steering wheel angles and, based on this, change the analog output of the
main and sub signals.

Since this experiment is for demonstration, a simple incremental controller is used,
that is, after evaluating the desired steering wheel rotation, the analog signals are incre-
mented/decremented, such as in the experiments of Figures 7.7 and 7.9, to rotate the
steering wheel. When the desired steering wheel angle is reached (a margin of error of
5°is considered), the electrical signals are kept at 2.5 V in order to maintain the position.
The Arduino IDE code used in this test is in Listing A.3 of the Appendix A.

The graph of Figure 7.12 is a representation of this experiment for the angle of 40° to
the left. As can be seen, the position of the steering wheel established at 42°, which
indicates that, in the future, this method can be used to effectively control the steering
wheel.

7.2 Speed Remote Control

Similar to the control of the vehicle direction presented in last section, the control of the
speed of the vehicle is done by emulating the sensor signals to the ECU that controls
the system, as described in Chapter 5. At the time of writing, the solution available to
change the speed of the vehicle just includes the possibility of accelerating the vehicle
and uses regenerative braking to slow it down.

The tests performed replicate the previously analyzed APS signals, that is, a main
signal between 1 V and 4.5 V and a sub signal with half the voltage of the main one.

Diogo Figueiredo Master Degree

https://www.youtube.com/watch?v=qr3qgnYNbDY
https://www.youtube.com/watch?v=qr3qgnYNbDY

7.Tests and Results 65

Figure 7.12: Controlling the steering wheel angle with CAN communication.

The graph of Figure 7.13 shows an experiment where the vehicle is moving at the cruise
speed of 6 km/h and the main and sub signals are increased to 2 V and 1 V, respectively.
As expected, that causes an increase in the speed of the vehicle. After the vehicle has
reached a speed of 15 km/h, the voltage values were dropped to the normal conditions of
1 V and 0.5 V and, consequently, the vehicle starts to slow down. A similar experiment
can be done with lower voltage values, which represents less acceleration and, obviously,
a slower increase of the speed, as can be seen in the graph of Figure 7.14.

Also, it is possible to control the accelerator pedal in a similar way to the one
used by the human operator when accelerating a vehicle, that is, gradually increase the
acceleration. In the graph of Figure 7.15 can be seen that this method produces an
exponential increase of the speed of the vehicle.

Diogo Figueiredo Master Degree

66 7.Tests and Results

Figure 7.13: Speed of the vehicle with the respective voltage values sent to the EV-ECU.

Figure 7.14: Speed of the vehicle with the respective voltage values sent to the EV-ECU.

Diogo Figueiredo Master Degree

7.Tests and Results 67

Figure 7.15: Speed of the vehicle with the respective voltage values sent to the EV-ECU.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

With the objective of enabling the ATLASCAR2 to be used as a platform in AD tests
and applications, the work presented in this document aimed to develop solutions for the
remote control of the Mitsubishi i-MiEV steering and propulsion systems and monitor
the entire vehicle.

Regarding the monitoring part, this work presents a solution that publishes the
vehicle status in the global system in a robust and effective way, since it uses the vehicle
CAN bus, which is practically error free. The current status of the vehicle and the state
of its main parameters is not only crucial for the perception and navigation algorithms,
but also for the remote control solutions. In fact, the approach that directly connects the
controllers to all CAN messages flowing on the vehicle bus provides varied possibilities
in the ATLASCAR2 autonomous and control motion. An example of that is the solution
created to send instructions to the controllers, that uses the CAN bus to send dedicated
frames that can be processed and interpreted by the controllers.

In what concerns to the remote control of the direction of the vehicle, based on the
tests and results presented in last chapter, it can be concluded that the steering system
can be effectively controlled by sending signals to the EPS-ECU. The results indicate
that the approach taken in this work can be used to develop an effective controller for
the steering wheel, despite the non-linearity between the electrical signals received by
the EPS-ECU and the position of the steering wheel.

In addition, this research aimed to identify a solution to act on the brake system
of the car. Based on the explanation regarding the braking logic of the Mitsubishi i-
MiEV, presented in Chapter 5, it can be concluded that this system is not prepared to
be remotely controlled without having pressure being applied in the brake pedal. Thus,
this dissertation proposes a solution that effectively increases the speed of the vehicle
replicating the signals from the accelerator pedal sensor and uses regenerative braking
to slow the vehicle, which, in some situations, can produce enough deceleration. While
the inability of directly control the brakes limits the ability to effectively control the
speed of the vehicle at the time being, this research clarifies the operation logic of the
braking system, which provides a new insight into potential solutions - some suggestions
are made in the next section.

69

70 8.Conclusions and Future Work

8.2 Future Work

Being the first work on the ATLASCAR2 autonomous mobility, this dissertation intended
to discover and demonstrate the existing possibilities to perform the remote control of
the direction and speed of the vehicle. The findings documented in this thesis and the
infrastructure created in this work facilitates the development and implementation of
new techniques in future works. Appendix C describes the procedure to be performed
to test some of the implemented solutions.

Based on the conclusions regarding the steering wheel control, future work can pro-
ceed with the development of a controller for the steering wheel. Nevertheless, future
studies could address the possibility of controlling the steering wheel by acting directly
on the electric motor that supports the steering operation, which offers a simpler way
to control the direction of the vehicle.

Concerning the speed control, studies have shown that this control requires an ex-
ternal actuator applying pressure on the brake pedal, which is not the type of solution
the ATLASCAR2 project is looking for, so, it should be considered to adapt the braking
system of the vehicle to one that enables the creation of similar solution to the ones
presented in this thesis. For instance, a possibility is to adapt the EV-ECU to open the
vacuum valve that acts on the brake system when braking operations are required.

Also, in order to reduce the need to act on the braking system of the vehicle, future
studies could consider change the vehicle’s speed by manipulating the CAN message
that the EV-ECU sends to the EMCU with the torque command, since, as mentioned
in Chapter 5, the EV-ECU uses CAN communication to send the torque command to
the EMCU. This method has other complications, such as CAN message confidentiality
issues and conflict problems between messages, since the target ECU will receive the
messages injected by the controller and the messages from the original ECU.

Diogo Figueiredo Master Degree

Appendix A

Arduino IDE Code

/*

Receives and processes CAN messages to obtain the desired and current

steering wheel angle from the global system.

*/

#include <SPI.h>

#include "mcp_can.h"

/*SAMD core*/

#ifdef ARDUINO_SAMD_VARIANT_COMPLIANCE

#define SERIAL SerialUSB

#else

#define SERIAL Serial

#endif

// CAN Communication

const int SPI_CS_PIN = 9;

MCP_CAN CAN(SPI_CS_PIN);

int dirD; // desired angle

void setup() {

SERIAL.begin (115200);

while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus :

baudrate = 500k

SERIAL.println("CAN BUS Shield init fail");

SERIAL.println(" Init CAN BUS Shield again");

delay (100);

}

SERIAL.println("CAN BUS Shield init ok!");

}

void loop() {

unsigned char len = 0;

unsigned char buf [8];

if (CAN_MSGAVAIL == CAN.checkReceive ()) { // check if data

coming

CAN.readMsgBuf (&len , buf); // read data , len: data length , buf:

data buf

71

72 A.Arduino IDE Code

unsigned long canId = CAN.getCanId ();

// message regarding the steering operation

if (canId == 0x500)

{

//print the message

SERIAL.println("-----------------------------");

SERIAL.print("Get data from ID: 0x");

SERIAL.println(canId , HEX);

for (int i = 0; i < len; i++) { // print the data

SERIAL.print(buf[i], HEX);

SERIAL.print("\t");

}

// obtain the desired steering wheel angle

dirD = buf [0];

if (buf [1] == 0x01)

{dirD = -dirD;}

}

}

}

Listing A.1: Arduino code used to receive the desired and current steering wheel angle
through CAN communication.

Diogo Figueiredo Master Degree

A.Arduino IDE Code 73

/*

Receives a signals from the potenciometer and , based on that value ,

creates two analog outputs that the produce the desired effect on the

vehicle steering wheel

*/

int outPin =5;

int outPin2 =6;

float pot1 = 255/2;

float pot2 = 255/2;

void setup() {

pinMode(A0 ,INPUT);

pinMode(outPin ,OUTPUT);

pinMode(outPin2 ,OUTPUT);

}

void loop() {

poten1 = analogRead(A4)/14+102;

poten2 = 255/2+(255/2 - poten1);

analogWrite(outPin ,pot1);

analogWrite(outPin2 ,pot2);

delay (250);

}

Listing A.2: Arduino code used to control the steering wheel with a potenciometer.

Diogo Figueiredo Master Degree

74 A.Arduino IDE Code

/*

Receives and processes CAN messages to obtain the desired and current

steering wheel angle and , based on those values , change the analog

output.

*/

#include <SPI.h>

#include "mcp_can.h"

/*SAMD core*/

#ifdef ARDUINO_SAMD_VARIANT_COMPLIANCE

#define SERIAL SerialUSB

#else

#define SERIAL Serial

#endif

// CAN Communication

const int SPI_CS_PIN = 9;

MCP_CAN CAN(SPI_CS_PIN);

int dirD; // desired angle

int dirA; // current angle

int delta;

int outPin =5;

int outPin2 =6;

float pot1 =255/2;

float pot2 =255/2;

void setup() {

pinMode(outPin ,OUTPUT);

pinMode(outPin2 ,OUTPUT);

SERIAL.begin (115200);

while (CAN_OK != CAN.begin(CAN_500KBPS)) { // init can bus :

baudrate = 500k

SERIAL.println("CAN BUS Shield init fail");

SERIAL.println(" Init CAN BUS Shield again");

delay (100);

}

SERIAL.println("CAN BUS Shield init ok!");

}

void loop() {

unsigned char len = 0;

unsigned char buf [8];

if (CAN_MSGAVAIL == CAN.checkReceive ()) { // check if data

coming

CAN.readMsgBuf (&len , buf); // read data , len: data length , buf:

data buf

unsigned long canId = CAN.getCanId ();

// desired steering wheel angle

if (canId == 0x500)

Diogo Figueiredo Master Degree

A.Arduino IDE Code 75

{

dirD = buf [0];

if (buf [1] == 0x01)

{dirD = -dirD;}

}

// current steering wheel angle

if (canId == 0x236)

{

dirA = (buf [0]*256+ buf [1] -4096) /2;

}

delta = dirD -dirA;

}

// change output signals based on the angle values

if (delta > 0) // rotate to the left

{pot1=pot1 +0.5;

pot2=pot2 -0.5;}

elseif (delta < 0) // rotate to the right

{pot1=pot1 -0.5;

pot2=pot2 +0.5;}

if (| delta| < 5)

{pot1 =255/2; // maintain position

pot2 =255/2;}

analogWrite(outPin ,pot1); //main signal

analogWrite(outPin2 ,pot2); //sub signal

delay (250);

}

Listing A.3: Arduino code used to control the steering wheel position using CAN
communication.

Diogo Figueiredo Master Degree

.

Intentionally blank page.

Appendix B

Steering wheel response to
different types of surfaces

Figure B.1: Steering wheel position of the car in stationary state over a surface of road
tar with the corresponding voltage values sent to the EPS-ECU.

77

78 B.Steering wheel response to different types of surfaces

Figure B.2: Steering wheel position of the car in stationary state over a surface of sand
with the corresponding voltage values sent to the EPS-ECU.

Diogo Figueiredo Master Degree

Appendix C

Instruction Manual

C.1 Monitor the vehicle status

1. Plug CANalyze to the OBD-II port of the vehicle;

2. Install the SocketCAN utilities:

$ sudo apt-get install can-utils

3. Plug CAN to the PC and set up the device doing:

$ sudo ip link set can0 up type can bitrate 500000

4. Run the ROS node responsible to the monitoring of the system:

$ rosrun atlascar2 canReceiveAndUpdateStatus

5. Subscribe to the topic that contains the information about the vehicle: /NominalData.

C.2 Control the Steering Wheel and Accelerator Pedal

1. Plug the Arduino UNO with the CAN Bus Shield and the CANlyze to the OBD-II
port of the vehicle;

2. Use the circuit presented in Chapter 6 to connect the Arduino UNO, torque sensor
and EPS-ECU;

3. Upload the Arduino IDE code with receiveCANsendV available on https://github.

com/lardemua/ATLASCAR2RemoteControl in the Arduino UNO;

79

https://github.com/lardemua/ATLASCAR2RemoteControl
https://github.com/lardemua/ATLASCAR2RemoteControl

.

Intentionally blank page.

References

[1] Karl Koscher et al. Experimental Security Analysis of a Modern Automobile. Uni-
versity of Washington, University of California San Diego, 2010. url: http://
www.autosec.org/pubs/cars-oakland2010.pdf.

[2] ATLAS project. url: http://atlas.web.ua.pt/ (visited on 05/07/2020).

[3] José Pereira. Quadro Elétrico ATLASCAR-2. Projeto Engenharia de Automação
Industrial. Universidade de Aveiro, 2017. url: http://lars.mec.ua.pt/public/
LAR%5C%20Projects/SystemDevelopment/2017_JosePereira/PEA_Relatorio_

QE_71985.pdf.

[4] SAE International Releases Updated Visual Chart for Its “Levels of Driving Au-
tomation” Standard for Self-Driving Vehicles. url: https://www.sae.org/news/
press-room/2018/12/sae-international-releases-updated-visual-chart-

for-its-%5C%E2%5C%80%5C%9Clevels-of-driving-automation%5C%E2%5C%80%

5C%9D-standard-for-self-driving-vehicles (visited on 05/07/2020).

[5] The 6 Levels of Vehicle Autonomy Explained — Synopsys Automotive. url: https:
//www.synopsys.com/automotive/autonomous-driving-levels.html (visited
on 05/07/2020).

[6] ANSR. url: http://www.ansr.pt/Estatisticas/RelatoriosDeSinistralidade/
Pages/default.aspx (visited on 05/07/2020).

[7] Think You’re In Your Car More? You’re Right. Americans Spend 70 Billion Hours
Behind the Wheel. AAA NewsRoom. Feb. 27, 2019. url: https://newsroom.aaa.
com/2019/02/think-youre-in-your-car-more-youre-right-americans-

spend-70-billion-hours-behind-the-wheel/ (visited on 05/07/2020).

[8] The Automobile and the Environment in American History by Martin V. Melosi.
url: http://www.autolife.umd.umich.edu/Environment/E_Overview/E_
Overview.htm (visited on 06/01/2020).

[9] Posted 01 Feb 2009 05:00 GMT. This Car Runs on Code - IEEE Spectrum. IEEE
Spectrum: Technology, Engineering, and Science News. url: https://spectrum.
ieee.org/transportation/systems/this- car- runs- on- code (visited on
06/01/2020).

[10] How to hack a car — a quick crash-course. freeCodeCamp.org. June 21, 2017. url:
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-

how-to-hack-a-car-5eafcfbbb7ec/ (visited on 02/26/2020).

[11] Craig Smith. The Car hacker’s handbook : a guide for the penetration tester. San
Francisco: No Starch Press, Inc., 2016.

81

http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://atlas.web.ua.pt/
http://lars.mec.ua.pt/public/LAR%5C%20Projects/SystemDevelopment/2017_JosePereira/PEA_Relatorio_QE_71985.pdf
http://lars.mec.ua.pt/public/LAR%5C%20Projects/SystemDevelopment/2017_JosePereira/PEA_Relatorio_QE_71985.pdf
http://lars.mec.ua.pt/public/LAR%5C%20Projects/SystemDevelopment/2017_JosePereira/PEA_Relatorio_QE_71985.pdf
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%5C%E2%5C%80%5C%9Clevels-of-driving-automation%5C%E2%5C%80%5C%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%5C%E2%5C%80%5C%9Clevels-of-driving-automation%5C%E2%5C%80%5C%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%5C%E2%5C%80%5C%9Clevels-of-driving-automation%5C%E2%5C%80%5C%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%5C%E2%5C%80%5C%9Clevels-of-driving-automation%5C%E2%5C%80%5C%9D-standard-for-self-driving-vehicles
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
http://www.ansr.pt/Estatisticas/RelatoriosDeSinistralidade/Pages/default.aspx
http://www.ansr.pt/Estatisticas/RelatoriosDeSinistralidade/Pages/default.aspx
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
https://newsroom.aaa.com/2019/02/think-youre-in-your-car-more-youre-right-americans-spend-70-billion-hours-behind-the-wheel/
http://www.autolife.umd.umich.edu/Environment/E_Overview/E_Overview.htm
http://www.autolife.umd.umich.edu/Environment/E_Overview/E_Overview.htm
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec/
https://www.freecodecamp.org/news/hacking-cars-a-guide-tutorial-on-how-to-hack-a-car-5eafcfbbb7ec/

82 REFERENCES

[12] Aptiv — Autonomous Mobility. Aptiv. url: https://www.aptiv.com/solutions/
autonomous-mobility (visited on 05/12/2020).

[13] Deutsche Welle (www.dw.com). Singapore public to test self-driving taxis — DW
— 23.09.2016. DW.COM. url: https://www.dw.com/en/singapore-public-
to-test-self-driving-taxis/a-19569721 (visited on 06/01/2020).

[14] AUTO C-ITS. url: https://www.autocits.eu/ (visited on 05/12/2020).

[15] Iseauto. url: https://iseauto.taltech.ee/ (visited on 05/13/2020).

[16] Raivo Sell et al. “Autonomous Last Mile Shuttle ISEAUTO for Education and
Research”. In: 10 (Feb. 2020), p. 13. doi: 10.4018/IJAIML.2020010102.

[17] Home. Waymo. url: https://waymo.com/ (visited on 05/13/2020).

[18] Autopilot. url: https://www.tesla.com/autopilot (visited on 05/13/2020).

[19] Car Hacking: The definitive source. url: http://illmatics.com/carhacking.
html (visited on 06/02/2020).

[20] Charlie Miller and Chris Valasek. Adventures in Automotive Networks and Control
Units. 2014. url: http://illmatics.com/carhacking.html.

[21] CAESS - Publications. url: http://www.autosec.org/publications.html

(visited on 06/01/2020).

[22] Karl Koscher et al. Comprehensive Experimental Analyses of Automotive Attack
Surfaces. University of Washington, University of California San Diego, 2011. url:
http://www.autosec.org/pubs/cars-usenixsec2011.pdf.

[23] CANalyze. url: https://kkuchera.github.io/canalyze/ (visited on 05/19/2020).

[24] Mitsubishi i-MiEV Service Manual, Technical Information Manual & Body Repair
Manual. 2013.

[25] Parth Chhabra. Getting Started With ROS(Robot Operation System). Medium.
Mar. 6, 2019. url: https://medium.com/@parthc21/getting-started-with-
ros-robot-operation-system-96a6590ea683 (visited on 05/19/2020).

[26] linux-can/can-utils. original-date: 2015-03-04T18:34:07Z. May 19, 2020. url: https:
//github.com/linux-can/can-utils (visited on 05/19/2020).

[27] CAN communication tutorial, using simulated CAN bus — sgframework 0.2.3
documentation. url: https : / / sgframework . readthedocs . io / en / latest /

cantutorial.html (visited on 05/19/2020).

[28] C. S. S. Electronics. CAN Bus Explained - A Simple Intro (2020). CSS Electronics.
url: https://www.csselectronics.com/screen/page/simple-intro-to-can-
bus/language/en (visited on 06/01/2020).

[29] Lúıs Cristóvão. Interface OBD para o AtlasCar2 e Monitoriza c ao doseu Estado.
Projeto Engenharia de Automação Industrial. Universidade de Aveiro, 2018. url:
http://lars.mec.ua.pt/public/LAR%5C%20Projects/HardwareInterfaces/

2018_LuisCristovao/Relatorio_Apresentacao/PEA_80886.pdf.

[30] Priit Laes. plaes/i-miev-obd2. Feb. 17, 2020. url: https://github.com/plaes/i-
miev-obd2 (visited on 02/26/2020).

Diogo Figueiredo Master Degree

https://www.aptiv.com/solutions/autonomous-mobility
https://www.aptiv.com/solutions/autonomous-mobility
https://www.dw.com/en/singapore-public-to-test-self-driving-taxis/a-19569721
https://www.dw.com/en/singapore-public-to-test-self-driving-taxis/a-19569721
https://www.autocits.eu/
https://iseauto.taltech.ee/
https://doi.org/10.4018/IJAIML.2020010102
https://waymo.com/
https://www.tesla.com/autopilot
http://illmatics.com/carhacking.html
http://illmatics.com/carhacking.html
http://illmatics.com/carhacking.html
http://www.autosec.org/publications.html
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
https://kkuchera.github.io/canalyze/
https://medium.com/@parthc21/getting-started-with-ros-robot-operation-system-96a6590ea683
https://medium.com/@parthc21/getting-started-with-ros-robot-operation-system-96a6590ea683
https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
https://sgframework.readthedocs.io/en/latest/cantutorial.html
https://sgframework.readthedocs.io/en/latest/cantutorial.html
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
http://lars.mec.ua.pt/public/LAR%5C%20Projects/HardwareInterfaces/2018_LuisCristovao/Relatorio_Apresentacao/PEA_80886.pdf
http://lars.mec.ua.pt/public/LAR%5C%20Projects/HardwareInterfaces/2018_LuisCristovao/Relatorio_Apresentacao/PEA_80886.pdf
https://github.com/plaes/i-miev-obd2
https://github.com/plaes/i-miev-obd2

REFERENCES 83

[31] Decyphering iMiEV and iON CAR-CAN message data - Mitsubishi I-Miev Forum.
url: http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=send+
messages+to+can/ (visited on 05/31/2020).

[32] Arduino Uno Rev3 — Arduino Official Store. url: https://store.arduino.cc/
arduino-uno-rev3 (visited on 06/08/2020).

[33] Low Pass Filter - Passive RC Filter Tutorial. Basic Electronics Tutorials. Aug. 14,
2013. url: https://www.electronics-tutorials.ws/filter/filter_2.html
(visited on 06/05/2020).

[34] Gianfranco Pistoia. Industrial Applications of Batteries: From Cars to Aerospace
and Energy Storage. Elsevier Science, 2007. 792 pp. isbn: 978-0-444-52160-6.

[35] CAN-BUS Shield V2. url: https://www.antratek.com/can-bus-shield-v2
(visited on 06/09/2020).

[36] CAN Bus Or SAE J1939 Development Kit With Arduino Uno. Copperhill. url:
https://copperhilltech.com/can-bus-or-sae-j1939-development-kit-

with-arduino-uno/ (visited on 06/09/2020).

Diogo Figueiredo Master Degree

http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=send+messages+to+can/
http://myimiev.com/forum/viewtopic.php?f=25&t=763&hilit=send+messages+to+can/
https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.electronics-tutorials.ws/filter/filter_2.html
https://www.antratek.com/can-bus-shield-v2
https://copperhilltech.com/can-bus-or-sae-j1939-development-kit-with-arduino-uno/
https://copperhilltech.com/can-bus-or-sae-j1939-development-kit-with-arduino-uno/

	Introduction
	Project Context and Motivation
	The ATLAS Project
	Self Driving Vehicles and Technology

	Problem Description and Objectives
	Document Structure

	State of the Art
	Background - Automotive Electric Systems
	Related Work
	Mitsubishi i-MiEV
	Other Vehicles

	Related Work in Other Contexts
	Current Implementations on Automobile Industry
	Summary

	Experimental Infrastructure
	Hardware
	CANalyze
	ATLASCAR2

	Software
	ROS - Robot Operating System
	SocketCAN

	Summary

	Car Status Monitoring
	Understanding CAN Protocol
	Identification of the Mitsubishi i-MiEV CAN Frames
	Mitsubishi i-MiEV CAN Bus
	Locating and Reading the CAN Bus
	Perform Message Identification

	Summary

	Remote Control Solutions
	Steering Wheel Remote Control
	Mitsubishi i-MiEV Power Steering Logic
	Proposed Solution

	Vehicle Speed Remote Control
	Mitsubishi i-MiEV Propulsion Logic
	Mitsubishi i-MiEV Braking Logic
	Proposed Solution

	Summary

	Actuators Control Management
	Remote Control Using the CAN Bus
	External ECU
	Creating CAN Messages

	Driving Modes Compatibility

	Tests and Results
	Direction Remote Control
	Speed Remote Control

	Conclusions and Future Work
	Conclusions
	Future Work

	Arduino IDE Code
	Steering wheel response to different types of surfaces
	Instruction Manual
	Monitor the vehicle status
	Control the Steering Wheel and Accelerator Pedal

