

FT639 ‘Ferret’

Servo Controller Chip

© 2002 FerretTronics, Inc. Page: 1

General Description:
The FT639 is an RC servo controller chip. The
FT639 will control five radio-controlled servos
through one 2400 baud serial line. It has a
footprint of only eight pins. The only external
components required are two resistors and a
diode for a normal RS232 line such as the one
found on a personal computer. No components
are needed for a 0-5 volt serial line such as those
found on the Parallax Basic Stamp . Just
connect the servo control lines directly to the
chip and connect the serial in line from a 2400
baud, No parity, 1 stop bit serial source, and five
RC servos can be controlled (see circuit setup).

Applications:
Radio control servo motors are used in remote
control model airplanes, cars, and boats. They
are widely available and can be used in robotics,
automation, animation, and many other tasks.
The problem with using RC servo motors in the
past was the ability to control them. With the
FT639 this is no longer a problem. It is possible
now to control five RC servo motors with just
one 2400 baud serial line. Each of the five RC
servos is independently controlled.

Operation:
FT639 has two operating modes: Setup mode
and Active mode. The chip starts in Setup mode.
Setup mode is used to set the pulse length,
header length and starting values for the 5
servos. Active mode sends the control pulses to
the servos and controls the servos through the
2400 baud serial line.

Commands are sent to the FT639 through an
RS232 serial line. The commands are all one
byte. Each command is one character sent over
the 2400 baud serial line.

Each RC servo has 256 positions. To send the
position of a servo to the FT639 requires two
commands. The first command contains the
servo number and the lower nibble (lower 4 bits)
of the positional number. The second command
contains the servo number and the upper nibble
(upper 4 bits) of the positional number.

The FT639 can set a typical servo in 256
different positions from 0 to 90 degrees with the
short pulse length, or can control a typical servo
in 256 different positions from 0 to 180 degrees
with the long pulse length. The starting position
of the servo can also be adjusted by using a
different header length. The header length can be
adjusted in the setup mode.

Setup Mode:
The servo controller starts in Setup mode. The
default settings are the header is approximately
1ms with a short pulse length. This will control a
typical servo in 256 steps from 0 to 90 degrees.

In setup mode the following settings can be
adjusted:

1. Header length--this will allow
adjustment of the starting position of
the servo. The default setting is 12.

2. Servo pulse length--this allows
positioning control of the servo between
0 to 90 degrees with the shorter pulse
length or positioning control of the
servo between 0 to 180 degrees with the
longer pulse length. The default setting
is short pulse length.

3. Initial setup of the servo positions--the
FT639 will not send positioning pulses
to the servo in Setup mode. However,
positioning commands can be sent to
the FT639 while in setup mode to allow
the servos to energize in a known
position. The default setting is position
0.

Figure 1: FT639 pin out

FT639 ‘Ferret’

Page: 2 © 2002 FerretTronics, Inc.

The following commands can be sent in Setup
mode:

Table 1: Setup Commands

Command
Binary
Value

Decimal
Value

Active Mode 01110101 117
Short Pulse 01010101 85
Long Pulse 01011010 90

The header length command is 0110xxxx, where
xxxx is the setting for the header length. The
actual length of the header will be different for
the different pulse length as shown below:

Active Mode:
In Active mode the servo control pulses are sent
to the servos. The servos will be energized in this
mode. There are only two commands that are
allowed in this mode: positional commands and
the setup command. The setup command puts the
FT639 back into Setup mode. The position of a
servo can be changed by sending a positional
command. The positional commands are sent in
Active mode exactly the same as they were in
Setup mode (see instructions above). Sending a
positional command will make the servo move to
the new position as soon as the upper byte
command is sent.

The following commands are available in the
active mode:

 Table 3: Active Mode Commands

Command
Binary
Value

Decimal
Value

Setup Mode 01111010 122

Positional Commands:
To send a positional command to the individual
servos, two bytes must be sent. The first byte
sent contains the lower nibble of the position
byte and the second byte sent contains the upper
nibble of the position byte. The lower byte
command must be sent before the upper byte
command. The formats for the bytes are:

Lower Byte = 0sssxxxx
Upper Byte = 1sssyyyy

sss = Servo number:

000 = servo 1

001 = servo 2

010 = servo 3

011 = servo 4

100 = servo 5

xxxx = the lower nibble of the position
byte
yyyy = the upper nibble of the position
byte

A table is shown below with the Lower and
Upper Byte for various positional commands:

Table 2: Header Length Commands

Header
Value

Short
Pulse
Length

Long
Pulse
Length

Control
Byte

0 .147 ms .237 ms 01100000

1 .219 ms .357 ms 01100001

2 .291 ms .477 ms 01100010

3 .363 ms .597 ms 01100011

4 .435 ms .717 ms 01100100

5 .507 ms .837 ms 01100101

6 .579 ms .957 ms 01100110

7 .651 ms 1.077 ms 01100111

8 .723 ms 1.197 ms 01101000

9 .795 ms 1.317 ms 01101001

10 .867 ms 1.437 ms 01101010

11 .939 ms 1.557 ms 01101011

12 1.011 ms 1.677 ms 01101100

13 1.083 ms 1.797 ms 01101101

14 1.155 ms 1.917 ms 01101110

15 1.227 ms 2.037 ms 01101111

FT639 ‘Ferret’

© 2002 FerretTronics, Inc. Page: 3

Description of Input:
The FT639 requires the input of an RS232 serial
pulse stream at 2400 baud, 8 bits, no parity and 1
stop bit. This chip does not require an external
chip like the MAX232, or similar. All signal
inversion is handled inside of the chip.

The only caveat is that the input signal must
switch between 0 and V++. For most handheld
and programmable microcontrollers, a direct
connection is possible. For connection to a
typical computer, a circuit similar to that in
Figure 2 is required

.

Description of Output:
The servo control signal output is consistent with
that used by typical RC servos. A pulse of
variable length is sent to the each servo at regular
intervals. The length of the pulse determines the
position of the servo.

For more information on servo control pulses,
and servo hacking follow the link:
Hacking a Servo by Kevin Ross at
http://www.ferrettronics.com/links.html.

Table 4: Example Positional Commands
 Binary Value

 Position Value Decimal Value

Servo Decimal
Value

Binary
Value

Lower Byte
(0sssxxxx)

Upper Byte
(1sssyyyy)

Lower
Byte

Upper
Byte

1 0 00000000 00000000 10000000 0 128

1 49 00110001 00000001 10000011 1 131

1 185 10111001 00001001 10001011 9 139

1 255 11111111 00001111 10001111 15 143

2 0 00000000 00010000 10010000 16 144

2 49 00110001 00010001 10010011 17 147

2 185 10111001 00011001 10011011 25 155

2 255 11111111 00011111 10011111 31 159

3 0 00000000 00100000 10100000 32 160

3 49 00110001 00100001 10100011 33 163

3 185 10111001 00101001 10101011 41 171

3 255 11111111 00101111 10101111 47 175

4 0 00000000 00110000 10110000 48 176

4 49 00110001 00110001 10110011 49 179

4 185 10111001 00111001 10111011 57 187

4 255 11111111 00111111 10111111 63 191

5 0 00000000 01000000 11000000 64 192

5 49 00110001 01000001 11000011 65 195

5 185 10111001 01001001 11001011 73 203

5 255 11111111 01001111 11001111 79 207

FT639 ‘Ferret’

Page: 4

Sample Circuit:

Sample Co
Other programm
http://www.ferre

Figure 2: Example PC Connection
de:
ing examples may be found at:
ttronics.com/software.html
'###
'# This is a QBASIC programming example
'# For controlling the FT639
'###

DECLARE SUB servoMove (servoNum!, value!)
DECLARE SUB servo1 (value AS INTEGER)
DECLARE SUB servo2 (value AS INTEGER)
DECLARE SUB servo3 (value AS INTEGER)
DECLARE SUB servo4 (value AS INTEGER)
DECLARE SUB servo5 (value AS INTEGER)

CONST ACTIVE = 117
CONST LONGPULSE = 90
CONST SHORTPULSE = 85
CONST HEADER = 96
CONST SETUP = 122

' Opens COM Port 1 for sending out serial commands
OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0,RS,TB2048,RB2048" FOR RANDOM AS #1
' This command will put the FT639 in the setup mode
PRINT #1, CHR$(SETUP);
' This command will put the FT639 in the long pulse mode
PRINT #1, CHR$(LONGPULSE);
' This command will put the FT639 in the Short pulse mode
'PRINT #1, CHR$(SHORTPULSE);
 © 2002 FerretTronics, Inc.

http://www.ferrettronics.com/software.html

FT639 ‘Ferret’

© 2002 FerretTronics, Inc. Page: 5

' This command will set the header at 3
PRINT #1, CHR$(HEADER + 3);
' This command will put the FT639 in the active mode
PRINT #1, CHR$(ACTIVE);

'------------------------------------
' Loop to cycle through all positions
'------------------------------------
FOR i = 0 TO 255

' Cause a delay
FOR J = 1 TO 100000
NEXT J

' Moves the servos through all positions
servo1 (I)
servo2 (I)
servo3 (I)
servo4 (I)
servo5 (I)
NEXT i

'------------------
' Positions servo 1
'------------------
SUB servo1 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 2
'------------------
SUB servo2 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 16
lV = lV + 16
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 3
'------------------
SUB servo3 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER

FT639 ‘Ferret’

uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 32
lV = lV + 32
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 4
'------------------
SUB servo4 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 48
lV = lV + 48
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 5
'------------------
SUB servo5 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 64
lV = lV + 64
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'--
' Positions any servo given servo number and positional value
'--
SUB servoMove (servoNum, value)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + (servoNum - 1) * 16
lV = lV + (servoNum - 1) * 16
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

Page: 6 © 2002 FerretTronics, Inc.

	General Description:
	Applications:
	Operation:
	Setup Mode:
	Active Mode:
	Positional Commands:

	Description of Input:
	Description of Output:
	
	Hacking a Servo by Kevin Ross at

	Sample Circuit:
	Sample Code:

