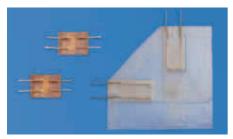


HBIM

HBIM

HBM

Strain Gages and Accessories



HBM

Strain Gages - forever young...

Since the invention of strain gages more than 60 years ago, the technology for manufacturing such strain gages has been continuously perfected. Starting with a simple wire strain gage, a wide range of types for a wide range of very different applications has been designed and developed in this period. The range of applications has fast expanded

Modern foil structure and wire strain gages

from the initial material testing applications to innumerable areas in experimental measurement technology, as well as strain gages for the design and construction of transducers.

There is no other physical process in the area of experimental mechanics which supplies such manifold and reliable measurement information at such small financial cost.

Single source enterprise

Hottinger Baldwin Messtechnik (HBM) at Darmstadt has been manufacturing strain gages since the 1960s.

Continuous improvements in technology and quality has made HBM market leader in Germany and beyond.

In addition to a wide range of strain gage types, and the associated application acces-

HBM production site at Darmstadt

Mobile HBM data acquisition system Spider-Mobil

sories, HBM also offers complementary equipment of hard- and software. The development and production of customer-specific strain gages can be implemented in the shortest possible time. Complete measurement chains by HBM for a wide range of very different tasks, in combination with the HBM software package **catman**[®], meet the growing customer requirement for a **"one stop shop"**, that is, a single source for all their needs.

A comprehensive range of training and seminar courses, special starter sets, specialist literature, as well as application distinctions complement the program for strain gage users with different knowledge levels.

Computer aided construction of a strain gage

Guaranteed quality

Numerous quality controls, a proven team with many years of experience, as well as a quality assurance system certified according to ISO/DIN 9001 guarantee strain gages with excellent technical measurement characteristics and a consistently high quality. Strain gages are designed and dimensioned

Continuous etching machine

by means of modern CAD systems. Photo-lithographic processes and etching processes always take place in clean room conditions.

The high HBM quality standards require optical checks of the strain gage after two specific process stages within the overall process of strain gage manufacturing . Resistance balancing, a 100% resistance check, as well as further electrical tests complete these comprehensive quality assurance measures.

Visual inspection

_ Introduction	Wide range of applications How to find the right strain gage	4	
	Technical data: explanations	6 8	
	Type designation	° 12	
	Type designation	12	
	SERIES Y – Foil Strain Gage		
	Technical Data	15	
	With 1 measuring grid	16	Y
Standard	With 2 measuring grids With 3 measuring grids	19	<u> </u>
strain gages New		21	
	With 4 measuring grids	24	
New type	Chain strain gages	25	
Ne	SERIES C - Foil Strain Gage		
	Technical Data	27	C
	With 1 measuring grid/2 measuring grids/3 measuring grids	28	
	SEDIES G Eail Strain Gaga		
	SERIES G – Foil Strain Gage Technical Data	30	G
	With 1 measuring grid / 2 measuring grids	30 31	
	SERIES K – Foil Strain Gage		
	Technical Data	32	
	With 1 measuring grid	33	
	With 2 measuring grids	34	V
	With 4 measuring grids	36	K
		07	
	Balancing and compensation elements	37	
Special Strain	Balancing and compensation elements SERIES V – Foil Strain Gage	37 39	V
Special Strain Gages	SERIES V – Foil Strain Gage	39	V
-	SERIES V – Foil Strain Gage Encapsulated strain gage	39 40	V
-	SERIES V – Foil Strain Gage Encapsulated strain gage Weldable strain gage	39 40 42	V
Gages	SERIES V – Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain	39 40 42 42	V
Gages Residual stress	SERIES V – Foil Strain Gage Encapsulated strain gage Weldable strain gage	39 40 42	V
Gages	SERIES V – Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain	39 40 42 42	V
Gages Residual stress	SERIES V – Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages	39 40 42 42 43	
Gages Residual stress analysis	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses	39 40 42 42 43 44	
Gages Residual stress analysis Special Strain	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses	39 40 42 42 43 44 47 48	
Gages Residual stress analysis Special Strain	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials	39 40 42 42 43 44 47 48 50	
Gages Residual stress analysis Special Strain	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings	39 40 42 42 43 44 47 48	
Gages Residual stress analysis Special Strain Gages	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding	39 40 42 42 43 44 47 48 50 52	
Gages Residual stress analysis Special Strain Gages Strain Gage	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering	39 40 42 42 43 44 47 48 50 52 54	
Gages Residual stress analysis Special Strain Gages	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs	39 40 42 42 43 44 47 48 50 52 54 55	
Gages Residual stress analysis Special Strain Gages Strain Gage	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs Cables and stranded wire	39 40 42 42 43 44 47 48 50 52 54 55 56	
Gages Residual stress analysis Special Strain Gages Strain Gage	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs Cables and stranded wire Bridge supplement, resistance measurement device	39 40 42 42 43 44 47 48 50 52 54 55 56 57	
Gages Residual stress analysis Special Strain Gages Strain Gage Accessories	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs Cables and stranded wire Bridge supplement, resistance measurement device Application suitcase	39 40 42 42 43 44 47 48 50 52 54 55 56 57 58	
Gages Residual stress analysis Special Strain Gages Strain Gage Strain Gage	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs Cables and stranded wire Bridge supplement, resistance measurement device	39 40 42 42 43 44 47 48 50 52 54 55 56 57	
Gages Residual stress analysis Special Strain Gages Strain Gage Accessories	SERIES V - Foil Strain Gage Encapsulated strain gage Weldable strain gage Strain gage for high strain Crack propagation gages Strain gages for determining residual stresses Devices and accessories for determining residual stresses Bonding materials Protective coatings Cleaning agent and accessories for bonding and soldering Soldering tabs Cables and stranded wire Bridge supplement, resistance measurement device Application suitcase	39 40 42 42 43 44 47 48 50 52 54 55 56 57 58	

Strain Gages in: Civil Engineering - Sports - Medicine -

Stress investigation on a building material sample, using strain gages

Strain gages for building tests and monitoring

Reconstruction of the "Frauenkirche" in Dresden

Strength testing of new type materials for high quality sports bicycle

Strain gages in sports

take the stress out of the stress analysis

Transducer Construction – Experimental Stress Analysis

Strain gages for experimental stress analysis

helicopter


Strain gages in transducer construction

Modern HBM transducer U3 complete with strain gage installation (cross-sectional view)

Strain gages in medical engineering models

Model experiments for determining force and load curves in dental and oral medicine

Geometry of the strain gage

The selection of strain gage geometry depends on the measurement task to be solved.

Linear gages feature a measuring grid and measure the strain in measuring grid direction.

T-Rosettes with two measuring grids (e.g. XY11) feature two measuring grids arranged such that they are offset by 90 degrees relative to each other. These strain gages are used above all, if there is a biaxial stress state whose principal direction is known.

In the case of a single axis stress state, which occurs in tie rods and struts only, there is a biaxial strain state due to the lateral contraction of the material. The maximum points of both strains are located such that they are offset by 90 degrees relative to each other. T-Rosettes provide for the strain in force direction and the lateral contraction to be detected simultaneously. If both measuring grids are connected such that a half bridge is formed, an excellent temperature variation compensation will be achieved, and additionally a greater output signal. These effects result from the technical circuit characteristics of the Wheatstone bridge circuit used in strain gage technology.

Rosettes with three measuring grids are used to determine a biaxial stress condition where the principal stress directions are unknown. Here, three strain signals must be detected from which it will then be possible to

calculate the amounts of the first and second principle stress, as well as the principal stress direction.

V-shaped strain gages (e.g. XY21) are ideally suited for measurements on shafts subject to torsion strains. Here, a dual axis stress condition exists whose principal standard stress are distributed at an angle of ± 45 degrees relative to the shaft direction. If these strain gages are installed such that they are in parallel with the shaft axis, the measuring grids will be oriented in the direction of the principle standard strains. In addition, these strain gages can be used to determine shear stresses such as occur in shear rods within the neutral fibre area.

Poisson Full bridge strain gages (e.g. VY11) are suited, amongst other things, for determining shear stresses.

Diaphragm rosettes (e.g. MY11) are ideally suited for diaphragm pressure transducers.

Chain strain gages (e.g. KY11) comprise several strain gages fitted at a constant distance relative to each other on a common carrier. This allows strain distributions to be determined. HBM also supplies chain strain gages complete with several rosettes and alternating measuring grid directions so that it is even possible to determine the distribution of biaxial stress states with unknown direction.

Strain gage measuring grid length

The result of a measurement, using a strain gage, will be the mean value of the strains underneath the measuring grid. Therefore, the measuring grid length to be used is dependent on the measurement target. In most application cases, measuring grid lengths of 3 or 6 mm represent a good solution. Long measuring grids are recommended where there is an inhomogeneous material such as e.g. concrete or wood. In concrete, short strain

gages would detect the partial strains of pebbles or cement stones. A long strain gage will bridge the inhomogeneities of the workpiece and, as a measurement result, will supply the mean strain underneath the measuring grid. In contrast, short measuring grids are suitable for detecting a local strain condition. Therefore, they are to be recommended for determining strain distributions (see chain strain gages), as well as for detecting the maximum point of notch strains (and similar strains).

Temperature range

The temperatures detailed in the technical specification should not be exceeded, neither should the actual temperature fall below the values stated. Note in this connection the explanations provided in "Technical Specification: Explanations".

Strain gage series

The HBM standard product range comprises 5 different type series for the following typical applications,

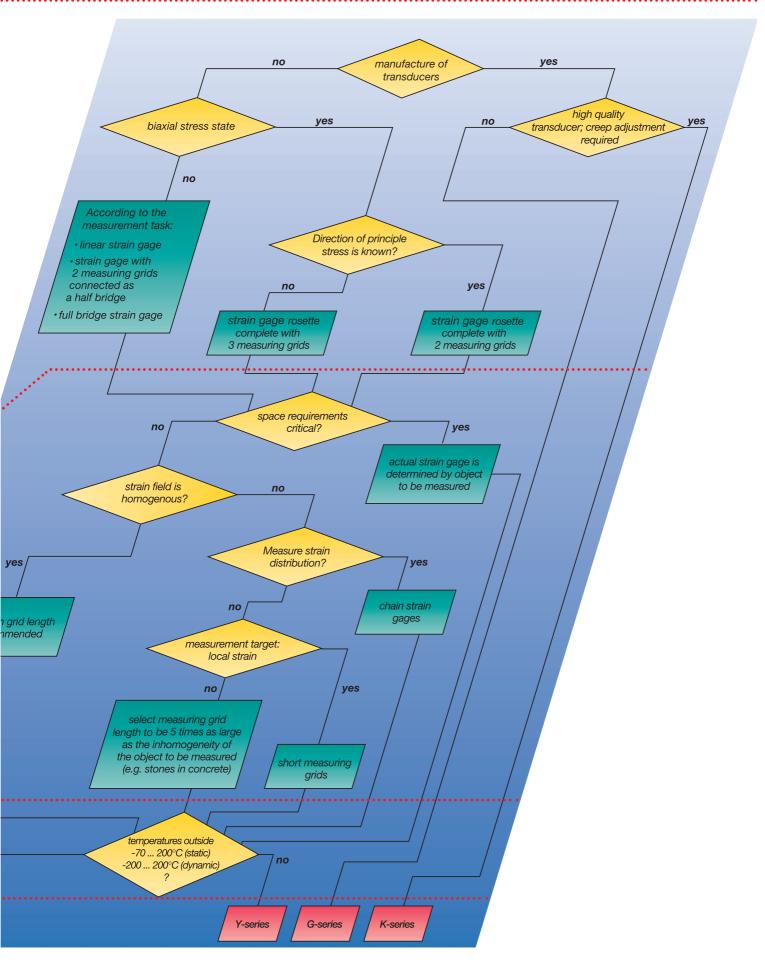
Y strain gages: universal strain gage for stress analysis and simple transducers; easy to handle, flexible, many geometries available, excellent price/performance ratio.

C strain gages: Ni-Cr strain gages for measurements at extreme temperatures; temperature variation, on steel or aluminum, adjusted to the range -200... +250°C, usable from -269... to +250°C.

Strain gage resistance

HBM strain gages are offered in 120, 350, 700, and 1000 ohms. It depends on the constraints of the measurement task which resistance is optimal.

The advantage of 120 ohms strain gages is their insensitivity with regard to variations in insulation resistance, e.g. such as may be caused by the effects of humidity. The selfheating of strain gages with a higher resistance is low due to the **G strain gages:** for transducer manufacturing, very high quality gages; carrier: phenolic resin, glass fiber reinforced.


K strain gages: especially for transducers, ultra high quality gages, three different creep adjustments available, also as a "stick on" version complete with dry-handling adhesive coating for optimum measurement results, carrier: phenolic resin, glass fiber reinforced.

V strain gages: encapsulated strain gages featuring an encapsulation made of special synthetic material and 3 m able.

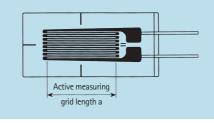
lower measurement current. They are thus less sensitive with regard to ohmic resistances in the lines to the measurement amplifier. But they are better antennae for detecting fault impulses. 3 or 6mr recor

C-series

Technical Specification: Explanations

The HBM strain gage product range comprises the strain gage series Y, C, G, K, V, as well as the special strain gages; among these various gage types there are characteristic differences in construction and technical specification. These strain gage series are further subdivided into different type lines. For each strain gage series, the technical specifications relative to all type lines are stated together.

The technical data have been determined according to the conditions and procedures established in OIML directive IR62.


The tolerances have been stated according to OIML complete with double standard deviation, in contrast to the single standard deviation according to VDI/VDE. Therefore, the details also comply with VDI/VDE directive 2635, if the stated tolerance values of the gage factor, transverse sensitivity, temperature coefficient, gage factor and temperature variation is halved.

Below you will find further explanations regarding the terms used in the technical specification tables.

Strain gage dimensions

In strain gages, the specified active measuring grid length "a" is the net length of the grid without the transverse bridges (end loops).

The strain gage carriers have been designed for the optimum function of the strain gages. Nevertheless it is possible to cut the carrier foil. But you should be aware that shortening the carrier foil perpendicular to the direction of the grid will influence the way the strain is introduced into the measuring grid. Thereby also changing the sensitivity and creep characteristics of the strain gage. Therefore we recommend to leave a minimum of 1mm between cutting edge and measuring grid.

Schematic depiction of a strain gage

When cutting parallel to the measuring direction, strain gage characteristics will be affected to a minor degree only.

Strain gage resistance

The electric resistance between the two metal leads for connecting the measuring cable, or between the integrated solder tabs, is defined as the resistance of a strain gage.

The HBM product range comprises strain gages with nominal resistances of 120 Ω , 350 Ω , 700 Ω , and 1000 Ω .

The nominal resistance is stated on each strain gage package including a tolerance limit. At HBM, the resistance of each single strain gage will be measured.

Gage factor (strain sensitivity)

The strain sensitivity k of a strain gage is the proportionality factor between the relative change in resistance (Δ R/R_o and the strain to be measured:

$\Delta R/R_0 = k \cdot \epsilon$

The strain sensitivity yields a number without dimension and is designated as gage factor.

This gage factor is determined for each production batch by measuring and specified on each strain gage package as a nominal value complete with tolerance. The gage factors vary between the production batches by just a few thousandth.

Temperature coefficient of the gage factor

The gage factor, which is printed on strain gage packages, applies at room temperature. This factor changes as the temperature changes; however, this correlation is linear to an excellent approximation. In the case of Constantan measuring grid (series V, G, K, Y) the gage factor will increase as the temperature increases; in the case of chromium/ nickel measuring grid (series C) the gage factor will reduce as the temperature increases. The temperature coefficient of the gage factor is stated on each strain gage package.

Maximum permissible bridge supply voltage

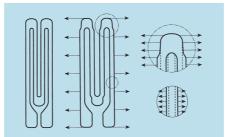
The maximum values specified are permissible only for application on materials featuring excellent heat conduction characteristics (e.g. steel of sufficient thickness). Otherwise temperature increases in the measuring grid area may lead to measuring faults. Special measurements on plastic materials, and similar materials with poor heat conduction characteristics, require a reduction of the supply voltage or switch-on period (impulse operation).

Even for very low temperatures, the reducing heat capacity of the materials make a small supply voltage necessary.

Reference temperature

The reference temperature is the ambient temperature, which the technical data of the strain gage refer to, inasmuch as specific temperature ranges have not been specified.

The technical data specified for the strain gage are based on the reference temperature of 23°C.


Transverse sensitivity

The transverse sensitivity is the ratio of the relative change in the resistance of a strain gage, applied perpendicular to a single axis deformation field (transverse strain), to the relative change in the resistance of an equal strain gage which is applied in parallel to the same deformation field (longitudinal strain).

The transverse sensitivity is stated on each strain gage package.

Operation temperature range

The operation temperature range is that ambient temperature range within which the strain gages can be applied without any permanent changes in measuring characteristics occurring. Depending on whether static (with zero point reference) or dynamic (without zero point reference) measurements are to be carried out, there are different operation temperature ranges.

Transverse sensitivity of a measuring grid (schematic)

Temperature variation in a 1/4-bridge

If there is a temperature change at a measuring point, there will also be a change in the resistance of the measuring grid. Which is caused by the change of the specific resistance and the thermal expansion of the strain gage itself as well as by the thermal expansion of the test object. This signal is designated as the thermal output strain or as temperature variation of the measuring point and it arises without any mechanical load on the workpiece. However, it is possible to adjust the temperature behaviour of a strain gage such that the temperature effects of the measuring point are largely compensated. Each HBM strain gage, with the exception of type LD20, will be adjusted to a specified thermal expansion coefficient. HBM offers strain gages for ferritic steel, aluminum, plastic, austenitic steel, titanium/grey cast iron, molybdenum, and quartz. All series Y strain gages can be supplied for all the above-mentioned thermal expansion coefficients (with only a few exceptions).

Therefore please mind the explanations regarding type designation on page 12.

Technical Specification: Explanations

Thus, for example, the temperature variations of the strain gages with the type designations LY 11, XY 21, RY 31, and KY 11 have been adjusted to ferritic steel with $\alpha = 10.8 \cdot 10^{-6}$ /K (last digit: 1).

1	for ferritic steel	with α =	10.8	· 10 ⁻⁶ /K
3	for aluminum	with α =	23	· 10 ⁻⁶ /K
5	for austenitic steel	with α =	16	· 10 ⁻⁶ /K
6	for quartz	with α =	0.5	· 10 ⁻⁶ /K
7	for titanium/gray cast iron	with α =	9	· 10 ⁻⁶ /K
8	for plastic material	with α =	65	· 10 ⁻⁶ /K
9	for molybdenum	with α =	5.4	· 10 ⁻⁶ /K

The thermal expansion coefficient of the material, which the respective strain gage has been adjusted to, is specified on the package and can be read off from the part code number key. This adjustment significantly reduces the temperature output. The remaining temperature variation is defined by a diagram on the package and a polynome so that the arising measurement fault can be corrected mathematically. If strain gages featuring leads are used, then the temperature effect of the leads can be corrected in line with their length. Apparent strains can also be reduced by circuit measures (e.g. circuit complete with compensation strain gage, half-bridge circuit ...). The temperature variation is subject to a tolerance and only applies within the temperature range of the temperature variation

adjustment. This temperature range is specified within the technical data of the various individual series in this catalogue.

Creep adjustment

Elastic materials react with a spontaneous positive or negative strain when subjected to a sudden load. In the event of a constant load being applied, the material will continue to strain slowly in load direction, i.e. the material will creep. As transducers are loaded within the strictly elastic range only, the process described here is reversible. It is designated as an elastic afterworking. The elastic afterworking thus causes a time-dependent fault with a positive sign (in the direction of the deformation by the measuring quantity). If a strain gage is subjected to a static load, it will show a slow change in resistance over time - in spite of the component strain being constant. This change in the measuring signal of a strained (or compressed) strain gage is effected in relief direction. This creep can be explained as follows: the strained measuring grid acts similar to a tensioned spring which generates shear stresses between measuring grid and carrier (mainly within the range of the measuring grid end loops). Due to the influence of these stresses, the plastic materials of the strain gage and the adhesive relax. It is possible to influence such strain gage creep directly by modifying the end loops.

De facto therefore, the elastic afterworking of the body material will lead to a positive fault whilst the strain gage creep generates a negative fault. In an ideal case, both faults will compensate each other. In order to approximate this ideal case as closely as possible, it is necessary to determine the most suitable strain gage by experiment. It is for this reason, that the K strain gage series provides three different creep adjustments for each strain gage type.

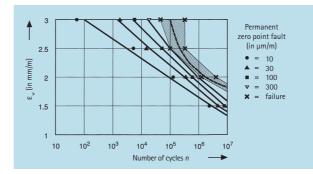
Mechanical hysteresis

The mechanical hysteresis of a strain gage is defined as the difference of the measured value displayed between an increasing and a decreasing strain load for the same workpiece strain values. Hysteresis distribution is not only dependent on the strain gage but to a major extent it is also dependent on application parameters such as type and layer thickness of the adhesive etc. For this reason, it will not be possible to specify mechanical hysteresis data for all variant options.

Maximum elongation

The maximum elongation of a strain gage is defined as the strain at which the gage characteristic (change in resistance/strain characteristic) deviates by more than 5% from the mean characteristic for the type.

Minimum radius of curvature


The flexibility of a strain gage is characterized by the minimum radius of curvature which it will withstand, without any auxiliary measures, in each direction respectively. The polyimide carrier of series Y and C strain gages are flexible to an extent that they can be bonded around edges. Although the carrier materials of the other strain gage series are more brittle, they can also be easily prepared for application to smaller radii by "pre-forming" (e.g. hot tip stretching).

Fatigue life

If a strain gage is subjected to an alternating strain which can be superimposed over a static mean strain, an increase in the stress cycle figure may create changes with regard to zero position and the center strain of the strain gage, as well as with regard to the resistance strain characteristic. In general the gage factor remains constant. These effects are summarized as "fatigue life" of strain gages; they do depend on the numbers of alternating strain gage amplitudes and mean strains but they are largely independent of actual frequencies.

Alternative bonding methods

For each strain gage type, the relevant bonding methods are specified. With regard to application technology, the HBM accessory product range distinguishes among cold- and hot curing adhesives as well as spot weld procedures. One of the most important selection criteria is the operation temperature range of the various different bonding devices.

Fatigue life of strain gages (exemplary)

Type designation

Type designation

1- <u>L</u> Y <u>1</u> 1- <u>3</u> /	<u>120</u>	<u>A</u>						
				cation aid vire connec vire connec				
			Measuring grid resis	tance in Ol	hms			
				(4X, RY7X:			ircle which encloses the meas ng grid centres relative to eac	
			Material which the str rature-adjusted to: for gages, you will find pla this position; replace t the identification num rature variation you ha	r standard s aceholders " this placeho nber of the t	train 3 ,x" in 5 Ider by 6 empe- 7	5	for ferritic steel for aluminum for austenitic steel for quartz for titanium/gray cast iron for plastic material for molybdenum	with $\alpha = 10.8 \cdot 10^{-6}/K$ with $\alpha = 23 \cdot 10^{-6}/K$ with $\alpha = 16 \cdot 10^{-6}/K$ with $\alpha = 0.5 \cdot 10^{-6}/K$ with $\alpha = 9 \cdot 10^{-6}/K$ with $\alpha = 65 \cdot 10^{-6}/K$ with $\alpha = 5.4 \cdot 10^{-6}/K$
			Layout of grids, type	and positi	on of conne	ect	tions	
			Strain gage series:	Series Y	= chromiur = carrier an	m nd	d cover polyimide / measuring /nickel alloy cover polyimide / measuring grid	d foil Constantan
				Series G			l cover glass-fibre reinforced grid foil Constantan	ohenolic resin /
				Series K	= carrier ar = measurin	nc ng	d cover glass-fibre reinforced grid foil Constantan; additiona stments are available ex stoc	ally, three different
				Series V	= carrier: p	po I v	lyimide/measuring grid foil Co vith special plastic material, 3	onstantan,
			Number of measurin	ng grids and L D X	= one meas = two meas = two meas	ารม สรเ สรเ	e position to each other uring grid, linear strain gage uring grids, measuring grid din uring grids, measuring grid din	
				Х			uring grids, measuring grid dii aped, offset by 90°	rection,

- R = three measuring grids, rosettes
 - = 4 measuring grids, full bridge strain gages
 - = full bridge strain gages as diaphragm rosettes
- K = strain gage chains for determining strain gradients
- Special strain gages for a wide variety of different measuring tasks
- Strain gage rosettes for determining residual stresses according to the borehole and ring core methods.

¹⁾ available for preferred strain gages only

• Strain gages for extremely high strains (\pm 100.000 µm/m $\triangleq \pm$ 10%)

V

Μ

- Encapsulated strain gages for use in extreme ambient conditions, with absolutely easy handling and operation.
- Weldable strain gages for strain measurements on weldable components.
- Crack propagation gages for measuring the growth of cracks on any type of surface

An even greater range of types - Easy to order

This catalogue offers a wide choice of strain gages. In addition to our wide range of preferential strain gages, we have a comprehensive selection of standard strain gages.

This is how easily you can order our strain gages

In the price list, preferential strain gages are shown as shaded areas (pattern shading); such gages are always available ex stock. In this catalogue, preferential strain gages are listed in the column "Preference types". Standard strain gages are not shown against a shaded area; and they are not always available ex stock. We will be pleased to provide information on current availability if requested. Standard strain gages are listed in a separate column within this catalogue. The minimum order quantity for these strain gages is 3 packages.

What does the "x" in the type designation of the strain gages in column "Variable Order Designation" stand for?

of pre	esignation ference rpes	Variable order designation	Nominal resis- tance	Dimensio [1 inch = 2]	Max. perm. effective bridge supply vortage	Solder terminals
					suring rid	Measuri Carr			
Steel	Aluminum	Other	Ω	а	Ь	c	d	V	
1-LY11-0,6/120	1-LY13-0,6/120		120	0.6	1	5	3.2	1.5	LS 7
1-LY11-1,5/120	1-LY13-1,5/120	1-LY1x-1.5/120	120	1.5	1.2	6.5	47	2.5	LS 7
1-LY11-3/120	1-LY13-3/120	1-LY1x-3/120	120	3	1.4	8.5	4.5	4	LS 7
1-LY11-3/120A		1-LY1x-3/120A	120	3	1.4	8.5	4.5	4	LS 7
1-LY11-6/120	1-LY13-6/120	1-LY1x-6/120	120	6	2.8	13	6	8	LS 5
1-LY11-6/120A		1-LY1x-6/120A	120	6	2.8	13	6	8	LS 5
1-LY11-10/120	1-LY13-10/120	1-LY1x-10/120	120	10	4.9	18.5	9.5	13	LS 5
1-LY11-10/120A		1-LY1x-10/120A	120	10	4.9	18.5	9.5	13	LS 5
1-LY11-1,5/350	1-LY13-1,5/350		350	1.5	1.2	5.7	4.7	4.5	LS 212
1-LY11-3/350	1-LY13-3/350	1-LY1x-3/350	350	3	1.5	8.5	4.5	7	LS 7
		1-LY1x-3/350A	350	3	1.5	8.5	4.5	7	LS 7
1-LY11-6/350	1-LY13-6/350	1-LY1x-6/350	350	6	2.9	13	6	14	LS 5
1-LY11-6/350A		1-LY1x-6/350A	350	6	2.9	13	6	14	LS 5
1-LY11-10/350		1-LY1x-10/350	350	10	5	18.5	9.5	23	LS 5
1-LY11-10/350A		1-LY1x-10/350A	350	10	5	18.5	9.5	23	LS 5

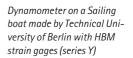
Instead of the "x" in the type designation of the strain gages in column "Other", enter the numeric code for the relevant temperature variation compensation.

Example:

You wish to adjust the type 1-LY1x-10/120 for plastic material. Then enter an "8" instead of the placeholder "x" when ordering; the exact order designation will then be 1-LY18-10/120.

The preferential strain gages are adjusted as standard for steel or aluminum. Please note the exceptions in the case of types marked by #.

To ease your order procedure please use also our **CD-ROM "DMSdirekt"**. Order your CD-ROM free of charge right now.


Series Y

- The universal strain gage featuring an optimum price/performance ratio
- Flexible, therefore easy to handle
- Wide range of geometries available as standard
- Excellent measuring characteristics
- Wide range of geometries available with different nominal resistance values (120, 350, 700, 1000 Ω)

Series C

- The specialist for extreme temperatures (4 K ... 500 K)
- Flexible, therefore easy to handle
- Temperature variation adjusted across the entire operation temperature range

Series K

- The optimum strain gage for manufacturing transducers
- Carrier material: glass fibre reinforced phenolic resin measuring grid material: Constantan
- Each strain gage is available ex stock, complete with three creep adjustments
- Specially adjusted compensation elements for zero point, TC_o, and TC-Span balancing
- On request, each K strain gage without leads can be supplied as a stick-on strain gage (complete with dry-to-the-touch adhesive coating, hot curing) - for maximum precision in transducer manufacturing

Series G

- Optimum strain gage for the manufacture of transducers
- Nominal resistances 120 ohms and 350 ohms available
- Carrier material: glass fibre reinforced phenolic resin measuring grid material: Constantan
- Leads: fitted as standard

HBM-torque transducer T10F with K-series strain gages inside (non visible)

Series V

- Strain gage complete with 3m of stranded wire
- No soldering on the strain gage is required
- Encapsulation is provided as standard

Series Y Strain Gages

echnical Data		
strain gage construction		foil strain gage complete with embedded measuring grid
measuring grid		s s s s s s s s s s s s s s s s s s s
material		Constantan foil
thickness	μm	3.8 or 5, depending on strain gage type
carrier material		polyimide
base thickness	μm	45 ± 10
cover thickness	μm	25 ± 5
connections		nickel plated Cu leads, approx. 30mm in length.
for strain gages without leads		integrated solder tabs, approx. 1.5mm in length, approx. 1.6 2.2mm wide
nominal resistance	Ω	120, 350, 700, or 1000, depending on strain gage type
resistance tolerance	%	\pm 0.3 without; \pm 0.35 with leads ²⁾
except for KY types, per chain	0/0	± 0.5
gage factor nominal factor of gage factors		approx. 2 specified on each package
gage factor tolerance for 0.6mm and 1.5mm measuring grid length	%	+ 1.5
for ≥ 3 mm measuring grid length	10	$\frac{1}{2}$ 1.5 $\frac{1}{2}$
temperature coefficient of the gage factor	1/K	ca. (115 ± 10) · 10 ⁻⁶
nominal value of temperature coefficient of gage factor		specified on each package
reference temperature	٥C	23
operation temperature range	·C	25
for static, i.e. zero point related measurements	°C	- 70+200
for dynamic, i.e. not zero point related measurements	°C	-200 + 200
transverse sensitivity		
within reference temperature range using adhesive Z 70	%	- 0.1
on strain gage type LY 11-6/120		
temperature variation		specified on each package
temperature variation temperature variation, adjusted to thermal expansion coefficient $lpha$		specified on each package
α for ferritic steel	1/K	10.8 · 10 ⁻⁶
α for aluminium	1/K	23 · 10 ⁻⁶
lpha for plastic material	1/K	65 · 10 ⁻⁶
α for austenitic steel	1/K	16 · 10 ⁻⁶
lpha for titanium/ grey steel $lpha$ for molybdenum	1/K 1/K	9 $\cdot 10^{-6}$ 5.4 $\cdot 10^{-6}$
α for quartz	1/K	0.5 · 10 ⁻⁶
temperature variation tolerance	1/K	± 0.3 · 10-6
adjustment of temperature variation within range	°C	-10 + 120
mechanical hysteresis]		
mechanical hysteresis ¹⁾ at reference temperature and strain $\varepsilon = \pm 1000 \ \mu$ m/m		
strain gage type LY 11-6/120		
at 1st load cycle and adhesive Z 70	μm/m	1
at 3rd load cycle and adhesive Z 70 at 1st load cycle and adhesive X 60	μm/m μm/m	0.5 2.5
at 3rd load cycle and adhesive X 60	μm/m	1
at 1st load cycle and adhesive EP 250	μm/m	1
at 3rd load cycle and adhesive EP 250	μm/m	1
maximum elongation ¹⁾		
at reference temperature using adhesive Z 70 on		
strain gage type LY 11-6/120	,	
strain limit ε for positive direction	μm/m	$50\ 000\ (\ \begin{aligned}{llllllllllllllllllllllllllllllllllll$
strain limit ε for negative direction	μm/m	50 000 (≙5 %)
fatigue life ¹⁾		
at reference temperature using adhesive X 60 on		
strain gage type LY 11-6/120 stress cycle value L_at		
alternating strain $\varepsilon_{\mu} = \pm 1000 \ \mu\text{m/m}$ and zero point drift $\varepsilon_{\mu} \Delta \leq 300 \ \mu\text{m/m}$		>> 10 ⁷ (test was interrupted at 10 ⁷)
$\varepsilon_m^m \Delta \leq 30 \mu\text{m/m}$		> 10 ⁷ (test was interrupted at 10 ⁷)
minimum radius of curvature, longitudinal and transverse, at reference temperature		
for strain gages c/w leads	mm	0.3
for strain gages c/w integrated leads		
within the measuring grid area within the area of the solder tabs	mm mm	0.3
usable bonding materials		-
cold curing adhesives		Z 70; X 60; X 280

²) With measuring grid lengths of 0.6 mm, the nominal resistance may deviate by \pm 1%. For the types LY 51/... the deviation is \pm 0,75%.

with 1 Measuring grid

of pro	esignation eference ypes	Variable order designation	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm]				Max. perm. effective bridge supply voltage	Solder terminals	LY11LY13Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	Measuri Cari				LY1x
Steel	Aluminum	Other	Ω	а	b	с	d	V		Temperature variation adjusted acc. to customer specification see page 12
1-LY11-0,6/120	1-LY13-0,6/120	1-LY1x-0,6/120#	120	0.6	1	5	3.2	1.5	LS 7	Illustrations show actual size
1-LY11-1,5/120	1-LY13-1,5/120	1-LY1x-1,5/120	120	1.5	1.2	6.5	4.7	2.5	LS 7	(Dimensions: Grid length in mm)
1-LY11-3/120	1-LY13-3/120	1-LY1x-3/120	120	3	1.4	8.5	4.5	4	LS 7	
1-LY11-3/120A		1-LY1x-3/120A	120	3	1.4	8.5	4.5	4	LS 7	+-0-+ НВ М
1-LY11-6/120	1-LY13-6/120	1-LY1x-6/120	120	6	2.8	13	6	8	LS 5	
1-LY11-6/120A		1-LY1x-6/120A	120	6	2.8	13	6	8	LS 5	ным
1-LY11-10/120	1-LY13-10/120	1-LY1x-10/120	120	10	4.9	18.5	9.5	13	LS 5	
1-LY11-10/120A		1-LY1x-10/120A	120	10	4.9	18.5	9.5	13	LS 5	
1-LY11-1,5/350	1-LY13-1,5/350		350	1.5	1.2	5.7	4.7	4.5	LS 212	
1-LY11-3/350	1-LY13-3/350	1-LY1x-3/350	350	3	1.5	8.5	4.5	7	LS 7	0.6 1.5 3 6 10
		1-LY1x-3/350A	350	3	1.5	8.5	4.5	7	LS 7	
1-LY11-6/350	1-LY13-6/350	1-LY1x-6/350	350	6	2.9	13	6	14	LS 5	Contents per package: 10 pcs.
1-LY11-6/350A		1-LY1x-6/350A	350	6	2.9	13	6	14	LS 5	
1-LY11-10/350		1-LY1x-10/350	350	10	5	18.5	9.5	23	LS 5	
1-LY11-10/350A		1-LY1x-10/350A	350	10	5	18.5	9.5	23	LS 5	

HBM

of pret	signation ference pes	Variable order designation	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid grid Carrier			Max. perm. effective bridge supply voltage	Solder terminals	LY21LY2xTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted acc. to customer specification see page 12	
Steel	Aluminum	Other	Ω	а	b	с	d	v		
 -0,6/120 -1,5/120 -3/120		1-LY2x-0,6/120# 1-LY2x-1,5/120 1-LY2x-3/120 1-LY2x-6/120	120 120 120 120	0.6 1.5 3 6	0.6 1.4 2.8 5.7	3.5 4.7 7.5 11	6.4 8.3 10 16	1 2 6 12	LS 7 LS 5 LS 5 LS 4	Illustrations show actual size (Dimensions: Grid length in mm)
										Helm Helm 3 6 Contents per package: 10 pcs.

Types marked by # are available adapted to aluminum, ferritic steel or austenitic steel only

with 1 Measuring grid

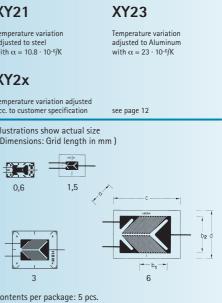
of pre	esignation eference /pes	Variable order designation	Nominal resis- tance		Dimensions (mm) [1 inch = 25.4 mm]				Solder terminals	LY41LY43Strain gage complete with integrated solder tabs Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Strain gage complete with integrated solder tabs Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$		
Steel	Aluminum	Other	Ω		suring rid b	Measuri Carr c		V		LY4x Temperature variation adjusted acc. to customer specification see page 12		
1-LY41-0,6/120		1-LY4x-0,6/120#	120	0.6	1.2	6	4	1.5	LS 5	Illustrations show actual size (Dimensions: Grid length in mm)		
1-LY41-1,5/120		1-LY4x-1,5/120	120	1.5	1.2	7	5	2.5	LS 5			
1-LY41-3/120	1-LY43-3/120	1-LY4x-3/120	120	3	1.1	8	5	3.5	LS 5			
		1-LY4x-3/120A	120	3	1.1	8	5	3.5	LS 5			
1-LY41-6/120	1-LY43-6/120	1-LY4x-6/120	120	6	2.3	13.9	5.9	8	LS 5			
1-LY41-6/120A		1-LY4x-6/120A	120	6	2.3	13.9	5.9	8	LS 5			
1-LY41-10/120		1-LY4x-10/120	120	10	5	18	8	14	LS 5	0.6 1.5 3 6		
		1-LY4x-10/120A	120	10	5	18	8	14	LS 5			
1-LY41-20/120		1-LY4x-20/120	120	20	0.7	31.8	8.2	6.5	LS 5			
1-LY41-50/120		1-LY4x-50/120	120	50	0.9	63.6	8.2	12	LS 5			
1-LY41-100/120		1-LY4x-100/120	120	100	1	114.8	8.2	19	LS 5			
1-LY41-150/120		1-LY4x-150/120	120	150	1.3	165.6	8.2	25	LS 5			
1-LY41-1,5/350		1-LY4x-1,5/350#	350	1.5	2.3	9.2	5.9	6.5	LS 5			
1-LY41-3/350	1-LY43-3/350	1-LY4x-3/350	350	3	2.5	10.9	5.9	9	LS 5			
1-LY41-3/350A		1-LY4x-3/350A	350	3	2.5	10.9	5.9	9	LS 5			
1-LY41-6/350	1-LY43-6/350	1-LY4x-6/350	350	6	2.7	13.9	5.9	15	LS 5	HBM		
1-LY41-6/350A		1-LY4x-6/350A	350	6	2.7	13.9	5.9	15	LS 5			
1-LY41-10/350		1-LY4x-10/350	350	10	5	18	8	24	LS 5			
		1-LY4x-10/350A	350	10	5	18	8	24	LS 5			
1-LY41-3/700	1-LY43-3/700	1-LY4x-3/700	700	3	2.7	10.9	5.9	13	LS 5			
1-LY41-6/700		1-LY4x-6/700	700	6	4.1	13.9	5.9	23	LS 5			
1-LY41-10/700		1-LY4x-10/700	700	10	5	18	8	33	LS 5			
		1-LY4x-3/1000#	1000	3	2.7	10.9	5.9	16	LS 5			
1-LY41-6/1000		1-LY4x-6/1000#	1000	6	4.3	13.9	5.9	27	LS 5			
		1-LY4x-10/1000#	1000	10	5	18	8	40	LS 5			
										ным Т		
	available adapted to al lder terminals is not ma	uminum, ferritic steel o andatory	r austenitic	steel only	/							

HB M

with 1 Measuring grid

٦	١.		/	7
	١.	Y	7	

of pre	signation ference pes	Variable order designation	Nominal resis- tance		Dimensions (mm) [1 inch = 25.4 mm]		Max. perm. effective bridge supply voltage	Solder terminals	LY51LY5xTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted acc. to customer specification see page 12	
					suring rid	Measuri Carr				
Steel	Aluminum	Other	Ω	а	b	с	d	V		
										Illustrations show actual size (Dimensions: Grid length in mm)
1-LY51-3/120		1-LY5x-3/120	120	3	0.3	9	4.7	2	LS 7	
		1-LY5x-6/120	120	6	0.4	13	4.7	3	LS 7	C
										+-a-+
										Contents per package: 10 pcs.


of pre	esignation :ference /pes	Variable order designation	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm]				Max. perm. effective bridge supply voltage	Solder terminals	LY61LY63Strain gage complete with integrated solder tabs and integrated strain relief Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Strain gage complete with integrated solder tabs and integrated strain relief Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
Steel	Aluminum	Other	Ω		suring rid b	Measuri Cari c		V		LY6x Temperature variation adjusted acc. to customer specification see page 12
										Illustrations show actual size (Dimensions: Grid length in mm)
1-LY61-1,5/120		1-LY6x-1,5/120	120	1.5	1.0	7.8	4.7	2.5	-	
1-LY61-3/120		1-LY6x-3/120	120	3	1.4	9.8	4.7	4	-	
		1-LY6x-3/120A	120	3	1.4	9.8	4.7	4	-	
1-LY61-6/120	1-LY63-6/120	1-LY6x-6/120	120	6	2.5	16	6.3	8	-	HBIM
		1-LY6x-6/120A	120	6	2.5	16	6.3	8	-	
1-LY61-10/120		1-LY6x-10/120	120	10	4.3	23.5	9.3	13	-	нвм
1-LY61-3/350		1-LY6x-3/350	350	3	1.7	9.8	4.7	7	-	
		1-LY6x-3/350A	350	3	1.7	9.8	4.7	7	-	
1-LY61-6/350	1-LY63-6/350	1-LY6x-6/350	350	6	2.6	16	6.3	13	-	
1-LY61-6/350A		1-LY6x-6/350A	350	6	2.6	16	6.3	13	-	
1-LY61-10/350		1-LY6x-10/350	350	10	4.3	23.5	9.3	9.3	-	1.5 3 6 10
										Contents per package: 10 pcs.

with 2 Measuring grids

Order des of pref typ	erence	Variable order designation	Nominal resis- tance			ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals	DY11DY13Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	Measur Car				DY1x
Steel	Aluminum	Other	Ω	а	b	с	d	V		Temperature variation adjusted acc. to customer specification see page 12
										Illustrations show actual size (Dimensions: Grid length in mm)
1-DY11-3/350	1-DY13-3/350	1-DY1x-3/350	350	3	2.7	9	8	9	LS 7	нвм
1-DY11-6/350	1-DY13-6/350	1-DY1x-6/350	350	6	3.2	12.5	9.4	14	LS 7	
										3 6
										Contents per package: 5 pcs.

Order des of prefe typ	erence	Variable order designation	Nominal resis- tance			ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals	XY11 Temperature variati adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}$		XY13 Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	Measur Car				XY1x		
Steel	Aluminum	Other	Ω	а	b	с	d	v		Temperature variati acc. to customer sp		see page 12
										Illustrations show (Dimensions: Gri		m)
1-XY11-0,6/120		1-XY1x-0,6/120#	120	0.6	1	6	4	1.5	LS 7		5	b
1-XY11-1,5/120	1-XY13-1,5/120	1-XY1x-1,5/120	120	1.5	1.5	9	5	3	LS 5	<u>F7</u>		HBM
1-XY11-3/120	1-XY13-3/120	1-XY1x-3/120	120	3	3	14.5	7.5	6	LS 4	0.6		
1-XY11-6/120		1-XY1x-6/120	120	6	6	23.5	11	12	LS 5	0.6	нам	
1-XY11-1,5/350	1-XY13-1,5/350	1-XY1x-1,5/350#	350	1.5	1.5	9	5	5	LS 5	нем		
1-XY11-3/350	1-XY13-3/350	1-XY1x-3/350	350	3	3	14.4	7.3	10	LS 4			
1-XY11-6/350	1-XY13-6/350	1-XY1x-6/350	350	6	6	23.3	10.5	20	LS 4			
										1,5	3	6
										Contents per pac	ckage: 5 pcs.	

0	order des of prefi typ			Variable order designation	Nominal resis- tance				ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals	XY21 Temperature adjusted to with $\alpha = 10$
						Mea g	surir Irid	ng	Measur Car				XY2x
Steel		Aluminu	m	Other	Ω	а	b ₁	b ₂	с	d	V		Temperatur acc. to cust
													Illustratio (Dimensi
1-XY21-0,6/1	120			1-XY2x-0,6/120#	120	0.6	2	1.1	7.5	4	2.5	LS 7	
1-XY21-1,5/1	120			1-XY2x-1,5/120	120	1.5	1.7	2.5	6.8	4.5	4.5	LS 7	
1-XY21-3/12	.0			1-XY2x-3/120	120	3	4.3	5.3	11.2	9.5	6	LS 5	0,6
1-XY21-6/12	.0			1-XY2x-6/120	120	6	8.0	10	17.5	12.7	11	LS 4	
1-XY21-1,5/3	350			1-XY2x-1,5/350#	350	1.5	2.1	2.5	7.4	4.5	5	LS 7	
1-XY21-3/35	0	1-XY23-3/3	50	1-XY2x-3/350	350	3	4.0	5.3	11.2	9.5	10	LS 4	
1-XY21-6/35	0	1-XY23-6/3	50	1-XY2x-6/350	350	6	7.8	10	17.5	12.7	19	LS 4	E
1-XY21-3/70	0			1-XY2x-3/700#	700	3	4.0	5.3	11.2	9.5	14	LS 5	2
				1-XY2x-6/700	700	6	7.8	10	17.5	12.7	27	LS 4	
													Contents

Types marked by # are available adapted to aluminum, ferritic steel or austenitic steel only

a

HB

with 2 Measuring grids

	S
1-XY31 1-XY31	-

Order des of prefi typ	erence	Variable order designation	Nominal resis- tance			ons (mm) = 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals	XY31 T-rosette strain ga with integrated so Temperature variati adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}$	i lder tabs ion	XY33 T-rosette strain gage with integrated solder t Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	Measuri Carı	55			XY3x		
Steel	Aluminum	Other	Ω	а	b	с	d	v		Temperature variati acc. to customer sp		see page 12
										Illustrations show (Dimensions: Gr		n)
1-XY31-0,6/120		1-XY3x-0,6/120#	120	0.6	1	7	6	1.5	LS7			
1-XY31-1,5/120	1-XY33-1,5/120	1-XY3x-1,5/120	120	1.5	1.5	8	6.3	3	LS7	lin		⊫—a —+i ⊨—b− Γ н∎м ⊿
1-XY31-3/120		1-XY3x-3/120	120	3	3	10.5	8	5.5	LS7	0.6		
1-XY31-6/120		1-XY3x-6/120	120	6	6	17.5	12	11	LS4			
1-XY31-3/350	1-XY33-3/350	1-XY3x-3/350	350	3	3	10.9	7.6	10	LS5			► · · · · · · · · · · · · · · · · · · ·
1-XY31-6/350	1-XY33-6/350	1-XY3x-6/350	350	6	6	18	12	20	LS4	1.5	3	6
										Contents per pao	ckage: 5 pcs.	

HBN

tabs

Order des of prefi typ	erence	Variable order designation	Nominal resis- tance				ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals	XY41XY43Strain gageStrain gagewith integrated solder tabsStrain gageTemperature variationadjusted to steelwith $\alpha = 10.8 \cdot 10^{-6}/K$ with $\alpha = 23 \cdot 10^{-6}/K$
				Mea q	surin rid	g	Measuri Cari				XY4x
Steel	Aluminum	Other	Ω	а	b ₁	ხ ₂	с	d	V		Temperature variation adjusted acc. to customer specification see page 12
											Illustrations show actual size (Dimensions: Grid length in mm)
1-XY41-0,6/120		1-XY4x-0,6/120#	120	0.6	2.1	1.6	6.5	4.6	1.5	LS 7	×
1-XY41-1,5/120	1-XY43-1,5/120	1-XY4x-1,5/120	120	1.5	1.7	3.1	7.5	4.6	2.5	LS 7	
1-XY41-3/120		1-XY4x-3/120	120	3	3	5.4	11	8	5	LS 7	
1-XY41-6/120		1-XY4x-6/120	120	6	6	10.2	16	12.2	9.5	LS 4	
1-XY41-3/350	1-XY43-3/350	1-XY4x-3/350	350	3	4.1	5.6	11	8	9.5	LS 7	
1-XY41-6/350		1-XY4x-6/350	350	6	6	10	16	12.2	16	LS 4	
1-XY41-3/700		1-XY4x-3/700#	700	3	4.1	5.6	11	8	13.5	LS 7	
		1-XY4x-6/700	700	6	6	10	16	12.2	23	LS 4	1,5 3 6
											Contents per package: 5 pcs.

Order desi of prefe type	rence	Variable order designation	Nominal resis- tance				ns (mm) 25.4 mm]	Max. perm. effective bridge supply voltage	Solder terminals	XY91XY93Stacked T-RosetteStacked T-RosetteTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	I	Measuri Carr	55			ХҮ9х
Steel	Aluminum	Other	Ω	а	b ₁	b ₂	с	d	v		Temperature variation adjusted acc. to customer specification see page 12
											Illustrations show actual size (Dimensions: Grid length in mm)
1-XY91-1,5/120	1-XY93-1,5/120	1-XY9x-1,5/120	120	1.5	1.2	1.2	4.7	5.2	2	LS 5	d
1-XY91-3/120	1-XY93-3/120	1-XY9x-3/120	120	3	1.4	1.3	6.2	7.9	3.5	LS 7	
1-XY91-6/120	1-XY93-6/120	1-XY9x-6/120	120	6	1.9	2.2	10	9.6	5.5	LS 4	
1-XY91-10/120		1-XY9x-10/120	120	10	3.2	3.8	15.2	14.0	9	LS 5	
											3 6 10
											Contents per package: 5 pcs.
Types marked by # are a	vailable adapted to al	uminum, ferritic steel o	r austenitic	steel onl	y						(1) Requirement for solder terminals is not mandatory

with 3 Measuring grids

	of pref	signation ference pes	Variable order designation	Nominal resis- tance			[1 inch =	ons (mm) 25.4 mm Measuri Cari	n] ing grid	Max. perm. effective bridge supply voltage	Solder terminals	RY11RY13 $0^{*}/45^{*}/90^{\circ}$ - rosetteTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ RY1x
Ste	el	Aluminum	Other	Ω	a ₁	a ₂	b	с	d	V		Temperature variation adjusted acc. to customer specification see page 12
1-RY11-3 1-RY11-6 1-RY11-1	6/120	1-RY13-3/120 1-RY13-6/120	1-RY1x-3/120# 1-RY1x-6/120 1-RY-1x-10/120 	120 120 120		3 6 10	0.8 1.3 2.6	7 11 15.4	7 11 15.4		LS 7 LS 5 LS 4	Illustrations show actual size (Dimensions: a_2 in mm)
												Contents per package: 5 pcs.

	of pre	signation ference pes	Variable order designation	Nominal resis- tance				ons (mm) - 25.4 mm]	Max. perm. effective bridge supply voltage	Solder terminals	RY31 o'/45'/90' - rosette Strain gage complete with integra- ted solder tabs Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$	RY33 0'/45'/90' - rosette Strain gage complete with integrated solder tabs Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
							suring rid	Measuring grid Carrier			RY3x	
	Steel	Aluminum	Other	Ω	a ₁	a ₂	b	c d	V		Temperature variation adjusted acc. to customer specification	see page 12
1-RY3	1-3/120		1-RY3x-3/120#	120	0.8	3	0.8	7	1.5	LS 7	Illustrations show actual size (Dimensions: a ₂ in mm)	
1-RY3	1-6/120	1-RY33-6/120	1-RY3x-6/120	120	2	6	1.3	11	3	LS 5		
	1-10/120		1-RY3x-10/120	120	2.9	10	2.6	15.4	5		3	6
											Contents per package: 5 pcs.	
Types ma	rked by # are	available adapted to al	uminum, ferritic steel o	or austenitio	c stee	l only	/				(1) Requirement for	solder terminals is not mandatory

with 3 Measuring grids

	Steel	
	1-RY41-3/120	

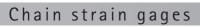
of pret ty	rsignation ference pes	Variable order designation	Nominal resis- tance		Meas gi	[1 inch = suring rid	ons (mm) 25.4 mm Measuri Carr] ing grid rier	Max. perm. effective bridge supply voltage	Solder terminals	RY41RY4x $0^{\prime}/00^{\prime}/120^{\circ}$ - rosetteTemperature variation adjustedTemperature variationacc. to customer specificationadjusted to steelsee page 12
Steel	Aluminum	Other	Ω	а ₁	a ₂	Ь	с	d	V		
											Illustrations show actual size (Dimensions: a_2 in mm)
1-RY41-3/120		1-RY4x-3/120#	120	0.8	3	0.8	7	7	1.5	LS 7	
1-RY41-6/120		1-RY4x-6/120	120	2	6	1.3	11	11	3	LS 5	
1-RY41-10/120		1-RY4x-10/120	120	2.9	10	2.6	15.4	15.4	5	LS 4	
											3 6
											10
											Contents per package: 5 pcs.

LC HBM

	rder designation of preference types	Variable order designation	Nominal resis- tance			[1 inch =	ions (mm) = 25.4 mm]	Max. perm. effective bridge supply voltage	Solder terminals (1)	RY71RY73 $0^{1}/45^{1}/90^{\circ} - rosette$ Strain gage complete with integrated solder tabsTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
						suring rid	Measuring grid Carrier			RY7x
Steel	Aluminum	Other	Ω	a ₁	a ₂	b	c d	v		Temperature variation adjusted acc. to customer specification see page 12
		1-RY7x-3/120#	120	0.8	3	0.8	7	1.5	LS 7	Illustrations show actual size (Dimensions: a ₂ in mm)
		1-RY7x-6/120	120	2	6	1.3	11	3	LS 5	
		1-RY7x-10/120	120	2.9	10	2.6	15.4	5	LS 4	
										HEM LE
				-						3 6
				-						
				⊢						
										gr gr
										HBM T
										10
										10
										Contents per package: 5 pcs.

with 3 Measuring grids

of pre	esignation ference rpes	Variable order designation	Nominal resis- tance			ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals (1)	RY81RY83 $0^*/45^*/90^\circ$ - rosetteStrain gage complete with integrated solder tabs Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
					suring rid	Measur Car				RY8x
Steel	Aluminum	Other	Ω	а	b	с	d	V		Temperature variation adjusted acc. to customer specification see page 12
		1-RY8x-0,6/120#	120	0.6	1.2	4.8	8.7	1.6	LS 7	Illustrations show actual size (Dimensions: Grid length in mm)
1-RY81-1,5/120		1-RY8x-1,5/120	120	1.5	1.2	8.2	14.6	2.5	LS 7	HBM
1-RY81-3/120	1-RY83-3/120	1-RY8x-3/120	120	3	0.9	9.7	14.6	3	LS 7	
1-RY81-6/120		1-RY8x-6/120	120	6	2.6	13.2	22.9	7.5	LS 7	1.5
		1-RY8x-1,5/350#	350	1.5	1.6	8.2	14.6	5	LS 7	
		1-RY8x-3/350	350	3	0.9	9.7	14.6	5.5	LS 7	НВМ
1-RY81-6/350		1-RY8x-6/350	350	6	2.6	13.1	22.9	13	LS 5	в нвм в с с с
										3 6
										Contents per package: 5 pcs.


of pre	esignation ference /pes	Variable order designation	Nominal resis- tance		Dimensio [1 inch =			Max. perm. effective bridge supply voltage	Solder terminals (1)	RY91RY93 $0^{\circ}/45^{\circ}/90^{\circ}$ - rosette Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ $0^{\circ}/45^{\circ}/90^{\circ}$ - rosette Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
					suring rid	Measur Car				RY9x
Steel	Aluminum	Other	Ω	а	b	c	d	V		Temperature variation adjusted acc. to customer specification
										Illustrations show actual size (Dimensions: Grid length in mm)
1-RY91-1,5/120		1-RY9x-1,5/120	120	1.5	1.25	9	8	1.5	LS 7	
1-RY91-3/120	1-RY93-3/120	1-RY9x-3/120	120	3	1.25	9	9	2	LS 7	нвм с Б
1-RY91-6/120	1-RY93-6/120	1-RY9x-6/120	120	6	2.5	12.5	11	4.5	LS 7	
1-RY91-10/120		1-RY9x-10/120	120	10	4	18.5	16	7	LS 7	
										3
										HBM automo
										6 10
										0
										Contents per package: 5 pcs.
Types marked by # are	available adapted to al	uminum, ferritic steel o	or austenitic	steel only	/					(1) Requirement for solder terminals is not mandatory

with 4 Measuring grids

	of pre ty	esignation ference pes	Variable order designation	Nominal resis- tance	Mea	[1 inch = suring rid	ons (mm) 25.4 mm Measur Carr] ing grid	Max. perm. effective bridge supply voltage	Solder terminals	VY11 90° - full bridge rosette Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}$ /K	VY1x Temperature variation adjusted acc. to customer specification see page 12
	Steel	Aluminum	Other	Ω	а	b	с	d	V			
-	1-VY11-3/120 1-VY11-6/120		1-VY1x-3/120 1-VY1x-6/120	120 120	3 6	7 14	13.5 23	13.5 23	6 12	LS 5/7 LS 5/7	Illustrations show actual size (Dimensions: Grid length in mm)	
											3	dl

	of pre	signation ference pes	Variable order designation	Nominal resis- tance	Mea		ons (mm) 25.4 mm Measur Carr] ing grid	Max. perm. effective bridge supply voltage	Solder terminals	MY21MY2xDiaphragm rosette Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted acc. to customer specification see page 12
	Steel	Aluminum	Other	Ω	а	b	с	d	V		
1-MY:	21-15/350		1-MY2x-6/120 1-MY2x-15/350	120 350	6 15	-	7.3	-	3.5 13	LS 7 LS 5	Illustrations show actual size (Dimensions: a in mm)
											Contents per package: 5 pcs.

Order des of prefe typ	erence	Variable order designation	Nominal resis- tance		1 inch	sions (r = 25.4 Meas grid C	mm] uring		Max.perm. effective bridge supply voltage	Solder terminals	KY11KY13Chain strain gage Comprising 10 measuring grids in parallel to the chain axis and 1 compensation strain gage Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Chain strain gage Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$ KY12
Steel	Aluminum	Other	Ω	а	b	с	d	t	V		Temperature variation adjusted ac to customer specification
1-KY11-1/120	1-KY13-1/120	1-KY1x-1/120#	120	0.6	1	7.2	14.5	1	2	LS 7	Illustrations show see page 12 actual size (Dimensions: t in mm) ↓ C → ↓ b → ↓
1-KY11-2/120	1-KY13-2/120	1-KY1x-2/120	120	1.5	1.3	6.7	24.5	2	2.5	LS 7	
1-KY11-4/120		1-KY1x-4/120	120	3	2.1	9.7	44.5	4	5	LS 7	┼╼∭╼┼
											ным
											1 2 4

	Order desi of prefe type Steel	rence	Variable order designation Other	Nominal resis- tance	Meas				t	Max. perm. effective bridge supply voltage	Solder terminals	KY21KY23Chain strain gage comprising 10 measuring grids vertical to the chain axis and 1 compensation strain gage temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Chain strain gage Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$ KY23KY24Emperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
	Jicci	Alumnum	Unci	52	a	U	C	u	t	v		Illustrations show see page 12
. 10		1 10/00 1/100		100							10.7	actual size
	21-1/120	1-KY23-1/120	1-KY2x-1/120#	120	0.8	0.8	6.9	15	1	1.5	LS 7	(Dimensions: t in mm)
1-KY	21-2/120		1-KY2x-2/120	120	1.7	1.7	9.5	27	2	3.5	LS 7	
												⊧ ci
												a
												HBM
												1 2

Chain strain gages

	Order des of prefe typ Steel	erence	Variable order designation Other	Nominal resis- tance	[Dimen: 1 inch uring id b	= 25.4	mm]	t	Max. perm. effective bridge supply voltage	Solder terminals	KY41 Chain strain gage comprising 10 measuring grids (5 parallel, 5 vertical to the chain axis, alternating and 1 compensation strain gage. Temperature variation adjusted to steel $\alpha = 10.8 \cdot 10^{-6}/K.$	KY4x Temperature variation adjusted acc. to customer specification
-	Steel	Aluminum	Other	52	a	0	с	u	ι	V	_		
			1-KY4x-2/120	120	1.2	1.3	9.2	24.5	2	2.5	LS 7	Illustrations show actual size (Dimension t in mm)	
	1-KY41-4/120		1-KY4x-4/120	120	3	3	11.5	44.5	4	6	LS 5		
													d
												R .	
												2	4
												Contents per package: 1 pc.	

Order desi of prefe type	rence	Variable order designation	Nominal resis- tance	Meas	Dimen: [1 inch suring rid		mm]		Max. perm. effective bridge supply voltage	Solder terminals	KY3x Chain strain gage contains five 0/60/120 degree rosettes comprising 5 rosettes with 3 measuring grids each, 0°/60°/120°, and 1 compensation strain gage Temperature variation adjusted acc. to customer specification see page 12
Steel	Aluminum	Other	Ω	а	b	с	d	t	V		
		1-KY3x-4/120			4.1	8.3	25	4	2.5		Illustrations show actual size (Dimension t in mm)
											Contents per package: 1 pc.

Chain strain gages

Order desi of prefe typ	erence	Variable order designation	Nominal resis- tance			= 25.4 Meas	mm]		Max.perm. effective bridge supply voltage	Solder terminals	KY5x Comprising 10 measuring grids parallel to the chain axis and one compensation strain gage Complete with integrated solder tabs Temperature variation according to customers specification see page 12
Steel	Aluminum	Other	Ω	а	b	с	d	t	V		
		1-KY5x-1/120#	120	0.6	1.1	5.6	12.8	1	1.5		Illustrations show actual size $ \neg \circ - \circ $ (Dimensions: t in mm) $\downarrow \neg \circ - \circ $
		1-KY5x-2/120	120	1.5	1.3	6	22.8	2	2.5		
											Contents per package: 5 pc. 1 2

	Order desi of prefe type	rence 25	Variable order designation	Nominal resis- tance	Meas gr	[1 inch suring rid	grid C	mm] uring Carrier		Max. perm. effective bridge supply voltage	Solder terminals	KY6x Comprising 10 measuring grids 90° to the chain axis and one compensation strain gage Complete with integrated solder tabs Temperature variation according to customers specification see page 12
	Steel	Aluminum	Other	Ω	а	Ь	с	d	t	V		
			1-KY6x-1/120# 1-KY6x-2/120	120 120	0.8	0.6	5.6	12.8 22.8	1	1.2 2.5		Illustrations show actual size (Dimensions: t in mm)
_												Contents per package: 5 pc. 1 2

of pre	isignation ference pes Aluminum	Variable order designation Other	Nominal resis- tance	Meas	Dimen [1 inch suring rid b	= 25.4 Meas		t	Max. perm. effective bridge supply voltage V	Solder terminals	KY7x Comprising 10 measuring grids alternating parallel and 90° to the chain axis and one compensation strain gage Complete with integrated solder tabs Temperature variation according to customers specification see page 12
		1-KY7x-2/120#	120	1.3	1.5	6	22.8	2	2.5		Illustrations show actual size (Dimension: t in mm)

Types marked by # are available adapted to aluminum, ferritic steel or austenitic steel only

Series C Strain Gages

- specialist for extreme temperatures (4 K...500 K)
- flexible, therefore easy to handle
- temperature variation adjusted across the entire measuring range

Technical Data		
strain gage construction measuring grid material thickness carrier material	μm	foil strain gage complete with embedded measuring grid CrNi special alloy 5 polyimide
base thickness cover thickness connections	μm μm	45 ± 10 25 ± 5 nickel plated Cu leads, approx. 30mm length
nominal resistance resistance tolerance gage factor nominal value of gage factor gage factor tolerance temperature coefficient of the gage factor	Ω %	120, 350 ± 0.35 ca. 2.2 specified on each package %± 1 specified on each package
reference temperature operation temerature range for static, i.e. zero point related measurements for dynamic, i.e. not zero point related measurements	°C °C °C	23 - 200 + 200 - 269 + 250
transverse sensitivity within reference temperature range using adhesive Z 70 on strain gage type LY 11-6/120	0/ <u>0</u>	- 0.15
temperature variation temperature variation acc. to selection, adjusted to thermal expansion coefficient α for ferritic steel for aluminum	1/K 1/K	specified on each package 10.8·10 ⁻⁶ 23·10 ⁻⁶
temperature variation tolerance adjustment of temperature variation within range	1/K ∘C	± 0.6 · 10 ⁻⁶ -200 + 250
mechanical hysteresis ¹⁾ at reference temperature and strain $\varepsilon = \pm 1000 \ \mu m/m$ strain gage type LY 11-6/120 at 1st load cycle and adhesive Z 70 at 3rd load cycle and adhesive Z 70	μm/m μm/m	1.25 0.75
maximum elongation ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LY 11_6/120		
strain limit ε for positive direction strain limit ε for negative direction	μm/m μm/m	20 000 (≙ 2 %) 100 000 (≙ 10 %)
fatigue life ¹⁾ at reference temperature using adhesive X 60 on strain gage type LY 11-6/120 stress cycle value L_ at		
alternating strain $\varepsilon_w = \pm 1000 \ \mu\text{m/m}$ and zero zero point drift $\epsilon_m \Delta \leq 300 \ \mu\text{m/m}$ $\epsilon_m \Delta \leq 300 \ \mu\text{m/m}$		>> 10 ⁷ (test was interrupted at 10 ⁷) > 10 ⁷ (test was interrupted at 10 ⁷)
minimum radius of curvature, longitudinal and transverse, at reference temperature within the measuring grid area within the area of the solder tabs	mm mm	0.3 2
usable bonding materials cold curing adhesives hot curing adhesives		Z 70; X 60; X 280 EP 250; EP 310

¹⁾ The data depend on the various parameters of the specific application and are therefore stated for representative example only

with 1 Measuring Grid, 2 Measuring Grids, 3 Measuring Grids

Order des of pref tyg		Variable order designation	Nominal resis- tance		Dimensions (mm) [1 inch = 25.4 mm] Measuring grid grid Measuring grid		Max. perm. effective bridge supply voltage	Solder terminals	LC11 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$	
Steel	Aluminum	Other	Ω	а	b	с	d	v		
										Illustrations show actual size (Dimensions: Grid length in mm)
1-LC11-3/120			120	3	3.2	8.5	5.5	6	LS 5	
1-LC11-6/120			120	6	3.2	12	5.5	9	LS 5	
1-LC11-10/120			120	10	3.2	16	5.5	11	LS 5	
1-LC11-3/350		1-LC1x-3/350*	350	3	3.2	8.5	5.5	10	LS 5	
1-LC11-6/350		1-LC1x-6/350*	350	6	3.2	12	5.5	14	LS 5	
1-LC11-10/350		1-LC1x -10/350*	350	10	3.2	16	5.5	18	LS 5	
										3 6 10
										Contents per package: 10 pcs.
Types marked by * a	re only available	with adjustment for	aluminum	and/or ste	uel .					

Types marked by * are only available with adjustment for aluminum and/or steel

Order des of pref typ	erence	Variable order designation	Nominal resis- tance					Max. perm. effective bridge supply voltage	Solder terminals	XC11 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
Steel	Aluminum	Other	Ω	а	b	с	d	V		
1-XC11-3/350		1-XC1x-3/350* 1-XC1x-6/350*	350 350	3 6	3.2 6.2	10 16	10 18	10 20	LS 7 LS 4	Illustrations show actual size (Dimensions: Grid length in mm) $\int_{a} \int_{a} \int_{b} \int_{b} \int_{c} \int_{b} \int_{c} \int$
										Contents per package: 5 pcs.

Types marked by * are only available with adjustment for aluminum and/or steel

of pre	esignation ference pes	Variable order designation	Nominal resis- tance		Dimensions (mm) [1 inch = 25.4 mm] Measuring Measuring grid grid Carrier		Max. perm. effective bridge supply voltage	Solder terminals	RC11 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$		
Steel	Aluminum	Other	Ω	a ₁	a ₂	b	с	d	V		
1-RC11-4/350		1-RC1x-4/350* 1-RC1x-6/350*	350 350	1.1	4	1.1	8	8	3.5 5	LS 7 LS 5	Illustrations show actual size (Dimensions: Grid length in mm)
											4 6 Contents per package: 5 pcs.

HB

Series G Strain Gages

- strain gages for the manufacture of transducers
- nominal resistance 120 Ω and 350 Ω are available
- carrier material: glass fibre reinforced phenolic resin measuring grid material: Constantan

|--|

strain gage construction		foil strain gage complete with embedded measuring grid
measuring grid material thickness carrier	μm	Constantan foil 3.8 or 5. depending on strain gage type
material base thickness cover thickness connections	μm μm	polyimide 35 ± 10 25 ± 8 nickel plated Cu leads, 0.2 bzw. 0.3 x 0.06 x 30 mm
nominal resistance	Ω	
resistance tolerance gage factor nominal value of gage factors gage factor tolerance for 0.6 mm and 1.5 mm measuring grid length for ≧ 3 mm measuring grid length temperature coefficient of the gage factor nominal value of temperature coefficient of gage factor	% % % 1/K	120 oder 350, depending on strain gage type ± 0.35 ²⁾ approx. 2 specified on each package ± 1.5 ± 0.7 approx. (115 ± 10) · 10 ⁻⁶ specified on each package
reference temperature	°C	23
operation temperature range for static, i.e. zero point related measurements for dynamic, i.e. not zero point related measurements	°C °C	- 70 + 200 - 200 + 200
transverse sensitivity within reference temperature range using adhesive Z 70 on strain gage type LG 11-6/120	0/0	- 0.1
temperature variation		specified on each package
temperature variation acc. to selection, adjusted to thermal expansion coefficient α α for ferritic steel α for aluminum	1/K 1/K	10.8 · 10-6 23 · 10-6
other temperature variation adjustment on request temperature variation tolerance adjustment of temperature variation within range	1/K ∘C	± 0.3 · 10 ⁻⁶ -10 + 120
mechanical hysteresis ¹⁾ at reference temperature and strain $\epsilon = \pm 1000 \ \mu$ m/m strain gage type LG 11-6/120		
at 1st load cycle and adhesive EP 250 at 3rd load cycle and adhesive EP 250 at 1st load cycle and adhesive X 60	μm/m μm/m μm/m	0.5 0.5 3
at 3rd load cycle and adhesive X 60 at strain gage type LG11-3/350	μm/m	1.5
at 1st load cycle and adhesive Z 70 at 3rd load cycle and adhesive Z 70	μm/m μm/m	1.6 0.8
maximum elongation ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LG 11-6/120		
strain limit ϵ for positive direction strain limit ϵ for negative direction	μm/m μm/m	20 000 (≙ 2 %) 50 000 (≙ 5 %)
fatigue life ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LG 11-6/120		
$ \begin{array}{ll} \mbox{stress cycle value } L_{_{\rm w}} \mbox{at lternating strain } \epsilon_{_{\rm w}} = \pm \ 1000 \ \mu\mbox{m/m} \ \mbox{and} \\ \mbox{zero zero point } drift & \Delta \ \epsilon_{_{\rm w}} \leq \ 300 \ \mu\mbox{m/m} \ \mbox{m/m} \ \mbox{stress} > 10^7 \\ \Delta \ \epsilon_{_{\rm w}} \leq \ 30 \ \mu\mbox{m/m} \ \mbox{3} \cdot 10^6 \end{array} $		
at strain gage type LG11-6/350 $\Delta \epsilon_m \le 300 \mu\text{m/m} >> 10^7$		
$\Delta \varepsilon_{m} \ge 300 \mu\text{m/m} >> 10^{\circ}$ $\Delta \varepsilon_{m} \le 30 \mu\text{m/m} \qquad 3 \cdot 10^{6}$		
minimum radius of curvature, longitudinal and transverse, at reference temperature	mm	3
usable bonding materials cold curing adhesives hot curing adhesives		Z 70; X 60; X 280 EP 250; EP 310

with 1 Measuring Grid, 2 Measuring Grids

	Order des of pref typ	erence	Nominal resis- tance		Dimensions [1 inch = 25 ring grid	5.4 mm] Measur	ing grid rrier	Max. perm. effective bridge supply voltage	Solder terminals	LG11 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$	LG13 Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
	Steel	Aluminum	Ω	а	b	с	d	V			
										Illustrations show actual size	d
1-LG1	11-0,6/120		120	0.6	1.4	5	3.2	1.5	LS 7		
1-LG1	11-1,5/120		120	1.5	1.2	6.5	4.7	2.5	LS 7		
1-LG	11-3/120		120	3	1.4	8.3	4.5	4	LS 7		нвм – ас
1-LG	11-6/120	1-LG13-6/120	120	6	2.8	13	6.3	8	LS 5		
1-LG1	11-10/120		120	10	4.9	18.5	9.5	13	LS 5		
1-LG	11-3/350	1-LG13-3/350	350	3	1.5	8.5	4.5	7	LS 7		
1-LG	11-6/350	1-LG13-6/350	350	6	2.9	13	6	14	LS 5	0.6 1.5 3	6 10
1-LG1	11-10/350	1-LG13-10/350	350	10	5.0	18.5	9.5	23	LS 5		
										Contents per package: 10 pcs.	

Order designation of preference types	Nominal resis- tance	Measur	Dimension [1 inch = 2 ring grid	25.4 mm]	ing grid rier	Max. perm. effective bridge supply voltage	Solder terminals	XG11 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
Steel Aluminum	Ω	а	b	с	d	V		
								Illustrations show actual size
1-XG11-1,5/120	120	1.5	1.5	10.3	5.7	3	LS 5	
1-XG11-3/120	120	3	3.0	14.5	7.5	6	LS 4	à c
1-XG11-6/120	120	6	6.0	23.5	11	12	LS 5	
1-XG11-3/350	350	3	3.0	14.4	7.3	10	LS 4	
1-XG11-6/350	350	3	6.0	23.3	10.5	20	LS 5	
								1,5 3 6
								Contents per package: 5 pcs.

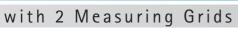
Order designation of preference types	Nominal resis- tance	Measu	[1 in	ich = 2		ring grid rier	Max. perm. effective bridge supply voltage	Solder terminals	XG21 Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
Steel Aluminum	Ω	а	b ₁	b ₂	с	d	V		
									Illustrations show actual size
1-XG21-1,5/120	120	1.5	1.9	2.5	7.6	6.3	2.5	LS 7	
1-XG21-3/120	120	3	4.3	5.3	11.2	9.5	6	LS 5	
1-XG21-6/120	120	6	8	10	17.5	12.7	11	LS 5	
1-XG21-6/350	350	6	7.8	10	17.5	12.7	19	LS 5	
									3 6
									Contents per package: 5 pcs.

U

Series K Strain Gages

	tη
Technical da	1 0
reennieur uu	c u

Туре		LK11, LK13, DK11, DK13, XK51, XK53, XK11, XK13, MK11	LK21,LK23, LK41, DK21, DK23, XK61, XK21, MK21
strain gage construction		foil strain gage with em- bedded measuring grid, with integrated leads	foil strain gage open face, with integrated solder tabs
measuring grid material thickness carrier material base thickness	μm μm	phenolic resin, g	' tan foil 5 lass fibre reinforced ± 10
cover thickness connections	μm	25 ± 8 nickel plated Cu leads, approx. 30mm in length	
nominal resistance resistance tolerance ²⁾ gage factor	Ω %	± 0,35	50 ± 0,3 prox. 2
nominal value of gage factor gage factor tolerance temperature coefficient of the gage factor nominal value of temperature coefficient of gage factor	% 1/K	specified or ± ca. (115	each package :0,7 ± 10) · 10 ⁻⁶ each package
reference temperature	°C	· · · · · · · · · · · · · · · · · · ·	3
operation temperature range for static, i.e. zero point related measurements for dynamic, i.e. not zero point related measurements	°C °C	- 70	. + 200 + 200
transverse sensitivity within reference temperature range using adhesive Z 70 on strain gage type LK 11-6/120	0/0	-	0,9
temperature variation		specified or	each package
temperature variation acc. to selection, adjusted to thermal expansion coefficient α α for ferretic α für Aluminum other advections are request	1/K 1/K		3 · 10-6 · 10 ⁻⁶
other adaptions on request temperature variation tolerance adjustment of the temperature variation within range	1/K ∘C		10 ⁻⁶ + 120
creep adjustment The end loop length "u" corresponds to a multiple of the grid line width s		ID letter A: u = 1s M: u =	= 7s
		C: u = 2s O: u = E: u = 3s O: u = G: u = 4s S: u = I: u = 5s U: u =	= 8s = 9s = 10s = 11s = 12s
mechanical hysteresis ¹⁾ at reference temperature and strain ϵ = ± 1000 µm/m on strain gage type LK11E-3/350			
at 1st load cycle and adhesive Z 70 at 3rd load cycle and adhesive Z 70	μm/m μm/m		1,1 0,8
maximum elongation ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LK 11–6/120			
strain limit ε for positive direction strain limit ε for negative direction	µm/m µm/m		(≙ 2 %) (≙ 5 %)
fatigue life ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LK 11-6/120 stress cycle value L _a at alternating strain $\varepsilon_{m} = \pm 1000 \ \mu m/m$ and zero zero point drift $\Delta \varepsilon_{m} \leq 300 \ \mu m/m$ $\Delta \varepsilon_{m} \leq 300 \ \mu m/m$			> 107 • 10 ⁶
minimum radius of curvature, longitudinal and transverse, at reference temperature usable bonding materials cold curing adhesives	mm	Z 70: X	3 60; X 280
hot curing adhesives ¹⁾ The data depend on the various parameters of the specific application and are therefore stated for representative of ²) With measuring grid lengths of 0.6 mm, the nominal resistance may deviate by ± 1%.	examples only.		D; EP 310
-) with measuring grid lengths of 0.6 mm, the nominal resistance may deviate by \pm 1%.			


with 1 Measuring Grid

	Ту	/pe	creep adjust- ment	[Dimensions (mm) [1 inch = 25.4 mm] Measuring grid carrier			Max. perm. effective bridge supply voltage	Solder terminals	LK11LK13with coverwith coverTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ with coverTemperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
	Steel	Aluminum		а	b	с	d	V		
										Illustrations show actual size (Dimensions: Grid length in mm)
	1-LK11E-3/350	1-LK13E-3/350	Е	3	3	9.5	5	10	LS 212	
	1-LK11K-3/350	1-LK13G-3/350	K/G	3	3	9.5	5	10	LS 212	
	1-LK110-3/350	1-LK13K-3/350	O/K	3	3	9.5	5	10	LS 212	d + b
	1-LK11E-6/350	1-LK13A-6/350	E/A	6	3	12.5	5	14	LS 212	
	1-LK11G-6/350	1-LK13C-6/350	G/C	6	3	12.5	5	14	LS 212	
	1-LK11I-6/350	1-LK13E-6/350	I/E	6	3	12.5	5	14	LS 212	
										3 6
										Contents per package: 10 pcs.
-		1								

Туре		creep adjust- ment	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Measuring grid carrier				Max. perm. effective bridge supply voltage	Solder terminals (1)	LK21LK23open faceopen faceTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
Steel	Aluminum		а	b	с	d	V		
									Illustrations show actual size (Dimensions: Grid length in mm)
1-LK21K-3/350	1-LK230-3/350	К/О	3	3	9.5	5	9	LS 212	
1-LK210-3/350	1-LK23S-3/350	0/S	3	3	9.5	5	9	LS 212	- d
1-LK21S-3/350	1-LK23W-3/350	S/W	3	3	9.5	5	9	LS 212	-+ b +-
1-LK21G-6/350		G	6	3	12.5	5	13	LS 212	
1-LK21K-6/350		К	6	3	12.5	5	13	LS 212	
1-LK210-6/350		0	6	3	12.5	5	13	LS 212	
									3 6
									Contents per package: 10 pcs.

	Туре	creep adjust- ment	Measur	Dimension [1 inch = 2 ing grid	25.4 mm]	ing grid rier	Max. perm. effective bridge supply voltage	Solder terminals (1)	LK41 open face Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$		
	Steel		а	b	с	d	V				
	1-LK41K-3/350 1-LK410-3/350 1-LK41S-3/350	K O S	3 3 3	3 3 3	10.5 10.5 10.5	5 5 5	9 9 9	LS 212 LS 212 LS 212	Illustrations show actual size (Dimensions: Grid length in mm)		
									HBM HBM I I I I I I I I I I I I I I I I I I I		
(1) De sui	rement for solder terminals is not m								Contents per package: 10 pcs.		

Ту	creep adjust- ment	[Dimensions 1 inch = 25 ring grid	.4 mm] Measur	ing grid rrier	Max. perm. effective bridge supply voltage	Solder terminals	DK11DK13with cover Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ with cover Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$	
Steel	Aluminum		а	ь	с	d	V		
1-DK11G-3/350 1-DK11K-3/350 1-DK110-3/350 1-DK11E-6/350 1-DK11G-6/350 1-DK11I-6/350	1-DK13E-3/350 1-DK13G-3/350 1-DK13K-3/350 1-DK13A-6/350 1-DK13C-6/350 1-DK13E-6/350	G/E K/G O/K E/A G/C I/E	3 3 3 6 6 6	3 3 3 3 3 3 3	9.5 9.5 9.5 12.5 12.5 12.5	8.5 8.5 8.5 8.5 8.5 8.5	10 10 10 14 14 14 14	LS 224 LS 224 LS 224 LS 224 LS 224 LS 224 LS 224	Illustrations show actual size (Dimensions: Grid length in mm)
									Contents per package: 5 pcs.
Type creep adjust ment			l	Dimensions [1 inch = 25 ring grid b	5.4 mm] Measur	ing grid rrier d	Max. perm. effective bridge supply voltage V	Solder terminals (1)	DK21DK23open faceDepen faceTemperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ DK23open faceTemperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
Steel 1-DK21K-3/350 1-DK210-3/350 1-DK21S-3/350 1-DK21G-6/350	Aluminum 1-DK230-3/350 1-DK23S-3/350 1-DK23W-3/350 1-DK23G-6/350	K/O O/S S/W G/G	3 3 3 6	3 3 3 3 3	9.5 9.5 9.5 12.5	8.5 8.5 8.5 8.5	9 9 9 13	LS 224 LS 224 LS 224 LS 224 LS 224	Illustrations show actual size (Dimensions: Grid length in mm) HI B MS HI B MS T
1-DK21K-6/350 1-DK210-6/350	1-DK23K-6/350 1-DK230-6/350	K/K 0/0	6 6	3	12.5 12.5	8.5 8.5	13 13	LS 224 LS 224	

HBA

Τ	/pe	creep adjust- ment	l	Dimensions 1 inch = 25 ing grid	5.4 mm] Measur	ring grid rrier	Max. perm. effective bridge supply voltage	Solder terminals	XK51XK53with cover Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$ with cover Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$
Steel	Aluminum		а	b	с	d	V		
									Illustrations show actual size (Dimensions: Grid length in mm)
1-XK51A-3/350	1-XK53A-3/350	А	3	3	10	10	10	LS 224	
1-XK51E-3/350	1-XK53E-3/350	E	3	3	10	10	10	LS 224	
1-XK51M-3/350	1-XK53M-3/350	М	3	3	10	10	10	LS 224	НВМ
1-XK51A-6/350		А	6	6	16	18	20	LS 224	
1-XK51C-6/350		С	6	6	16	18	20	LS 224	
1-XK51E-6/350		E	6	6	16	18	20	LS 224	
									3 6
									Contents per package: 5 pcs.
(1) Requirement for so	lder terminals is not ma	andatory							

34

with 2 Measuring Grids

Туре		creep adjust- ment		Dimensior [1 inch = 2 ring grid	5.4 mm] Measur	ing grid rier	Max. perm. effective bridge supply voltage	Solder terminals (1)	XK61 open face Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
Steel A	Aluminum		а	b	с	d	V		
									Illustrations show actual size (Dimensions: Grid length in mm)
1-XK61A-3/350	2	А	3	3	10	10	9	LS 224	
1-XK61E-3/350)	E	3	3	10	10	9	LS 224	d
1-XK61M-3/350	0	М	3	3	10	10	9	LS 224	
1-XK61A-6/350	D	А	6	6	16	18	18	LS 224	
1-XK61E-6/350)	E	6	6	16	18	18	LS 224	
1-XK61I-6/350	I	I.	6	6	16	18	18	LS 224	
									3 6
									Contents per package: 5 pcs.

Ту	creep adjust- ment		[1 inc	h = 25	(mm) .4 mm] Measurii carri		Max. perm. effective bridge supply voltage	Solder terminals	XK11XK13with cover Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-8}/K$ with cover Temperature variation adjusted to Aluminum with $\alpha = 23 \cdot 10^{-6}/K$	
Steel	Aluminum		а	b ₁	b ₂	с	d	V		
										Illustrations show actual size (Dimensions: Grid length in mm)
1-XK11E 3/350	1-XK13E 3/350	E	3	4.5	5.5	15	8	10	LS 224	
1-XK11K 3/350	1-XK13G 3/350	K/G	3	4.5	5.5	15	8	10	LS 224	
1-XK110 3/350	1-XK13K 3/350	0/К	3	4.5	5.5	15	8	10	LS 224	
1-XK11E 6/350	1-XK13A 6/350	E/A	6	5.5	10.4	20	13	15	LS 212	
1-XK11G 6/350	1-XK13C 6/350	G/C	6	5.5	10.4	20	13	15	LS 212	
1-XK11I 6/350	1-XK13E 6/350	I/C	6	5.5	10.4	20	13	15	LS 212	
										3 6 a
										Contents per package: 5 pcs.

Туре	creep adjust- ment	Measu	[1 in	ch = 2	s (mm) 5.4 mm] Measuring grid carrier		Max. perm. effective bridge supply voltage	Solder terminals (1)	XK21 open face Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
Steel Aluminum		а	b ₁	b ₂	с	d	V		
									Illustrations show actual size (Dimensions: Grid length in mm)
1-XK21K 3/350	K	3	4.5	5.5	15	8	9	LS 224	
1-XK210 3/350	0	3	4.5	5.5	15	8	9	LS 224	← d →
1-XK21S 3/350	S	3	4.5	5.5	15	8	9	LS 224	_{+-b2-+}
									3 (^{a)}
									Contents per package: 5 pcs.
(1) Requirement for solder terminals	is not manda	atory							

Κ

with 4 Measuring Grids

	Туре	creep adjust- ment		Dimensior [1 inch = 2 Iring grid	5.4 mm] Measur	ring grid rier	Max. perm. effective bridge supply voltage	Solder terminals	MK11 diaphragm rosette with cover Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$
	Steel		а		с	d	V		
-	1-MK11M-10/350 1-MK11M-15/350	M M	10 15	_	13 18	-	8 13	LS 224 LS 224	Illustrations show actual size (Dimension a in mm)
									10 15
									Contents per package: 5 pcs

Туре	creep adjust- ment	Measu	Dimensior [1 inch = 2 uring grid	5.4 mm] Measu	ring grid rier	Max. perm. effective bridge supply voltage	Solder terminals (1)	$\begin{array}{l} \textbf{MK21} \\ \textbf{diaphragm rosette} \\ \textbf{open face} \\ Temperature variation \\ adjusted to steel \\ with \alpha = 10.8 \cdot 10^{-g}/K \end{array}$
Steel		а		с	d	V		
1-MK21M-10/350	м	10	_	12	_	7	LS 224	Illustrations show actual size (Dimensions: Grid length in mm)
								a j
								10
								Contents per package: 5 pcs.
(1) Requirement for solder terminals	is not manda	atory						

Strain Gages / Series K

Balancing and compensation elements

NA1 6/4,73

Adjustable foil resistor for zero point balancing on a polyimide carrier with a raw resistance of twice 9 Ω $\pm 20\%$. For each bridge branch, a maximum of 4.73 ohms can be adjusted – with the following stages: $2,4 \Omega - 1,2 \Omega - 0,6 \Omega - 0,3 \Omega - 0,15 \Omega - 0,08 \Omega \pm 20\%$

Zero point balancing resistor

TN1 3/1,05

Adjustable foil resistor for the temperature compensation of the zero point. Nickel foil on a poly-imide carrier with a raw resistance of twice $0.7\Omega\pm20\%$. For each bridge branch, a maximum of 1.05 ohms can be adjusted - with the following stages: $0.6\ \Omega - 0.3\ \Omega - 0.15\ \Omega \pm 20\%$ Temperature coefficient of the resistor: (+ 20°C...+70°C): 4,9 \cdot 10 $^{-3}/K$

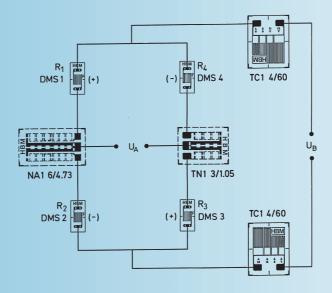
TC_o compensation resistor

TC1 4/60

Adjustable foil resistor for compensation of TCspan. Nickel foil on a polyimide carrier with a raw resistance of twice 1 Ω ±20%. A maximum of 60 Ω can be adjusted - with the following stages: 32 Ω - 16 Ω - 8 Ω - 4 Ω ± 20% Temperature coefficient of the resistor: (+ 20°C...+ 70°C): 4,9 · 10⁻³/K

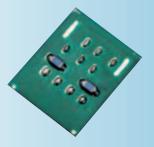
TCspan compensation resistor

Contents per package: 10 pcs.

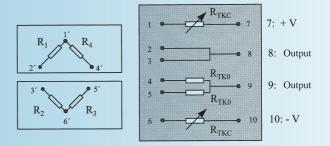

Contents per package: 10 pcs.

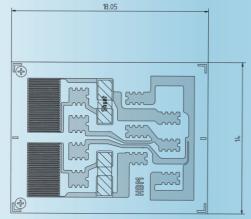
Contents per package: 10 pcs.

Dimensions (mm); 1 inch = 25.4 mm grid carrier Туре а b с d 1-NA1-6/4,73 14.5 6 8 1-TN1-3/1,05 6 11 8 1-TC1-4/60 4.2 7 11.5 9


Wheatstone bridge circuit with integrated balancing and compensation elements

K


37


Features

- compensation of the TC-span error
- compensation of TC₀-error
- closely tolerated TC-span error
- significantly reduced wiring effort
- excellent quality
- short response time in the event of temperature changes

Function Diagram

Are you interested ?

Request additional information material or contact us directly

or attend our seminar

Technical Data

- TC-span compensation for aluminum tolerance +- 30 ppm/10K (for bridge resistance $R_{p} = 350 \Omega \pm 0.7 \Omega$)
- TC-zero compensation range \pm 500ppm/10K
- pre-tinned soldering tabs
- the element is coated with a protective finish
- dimensions: 18.05 mm x 14 mm x 0.8 mm

The following scripts

are available

- Notes on installing a compensation element
- TC-zero balancing with the 1-TCE 01-AL
- Zero balancing of the Wheatstone bridge
- Correction of TC-span errors
- Calibration of a load cell

Seminar DM

- Everything you need to know regarding the manufacture of transducers on a strain gage basis
- Application of compensation element 1-TCE 01-AL
- Stress analysis with strain gages

Encapsulated Strain Gages with 3m Cable

Series V Strain Gages

- low cost encapsulated strain gages
- 3m cable, PVC insulated
- high mechanical protection

Order designation of preference types	Nominal resistance		Dimensions (mm) [1 inch = 25.4 mm]		Max. perm. effective bridge supply voltage	LV41 Contents per package: 10 pcs.	Temperature variation s. adjusted to steel with α = 10.8 \cdot 10- $^{\rm e}/\rm K$		
			suring rid	Measu car	ring grid rier		XV91	RV91	
Steel	Ω	а	b	с	d	V	T-rosette 0°/90° Contents per package: 5 pcs.	0° /45°/90° rosette Contents per package: 5 pcs.	
1-LV41-3/120	120	3	1.1	19	12	2			
1-XV91-3/120	120	3	1.4	24.5	20.5	2		1771	
1-RV91-3/120	120	3	1.25	24.5	20.5	1			
							LV41 XVS	91 RV91	
Technical Data									


strain gage constuction foil strain gage with embedded measuring grid measuring grid in plastic resin Constantan foil material thickness μm 5 carrier material polyimide base thickness μm 45 <u>+</u> 10 25 ± 5 cover thickness μm total thickness mm 1.5 PVC coated stranded wire for connection, 3m in length, connections two wire connection nominal resistance Ω 120; connection leads inclusive resistance tolerance % ± 0.5 gage factor approx. 2 nominal value of gage factor specified on each package gage factor tolerance 0/0 <u>+</u> 1 temperature coefficient of the gage factor 1/K ca. (115 ± 10) · 10⁻⁶ nominal value of temperature coefficient of gage factor specified on each package ٥C 23 reference temperature operation temperature range for static, i.e. zero point related measurements ٥C -30 ... + 105 ٥C for dynamic, i.e. not zero point related measurements -30 ... + 105 temperature variation specified on each package Adjustment of temperature variation within range °C -10 ... + 105 maximum elongation1) bat reference temperature using adhesive Z 70 on strain gage type LV41-3/120 20 000 (🛆 2 %) strain limit ϵ for positive direction μm/m strain limit $\boldsymbol{\epsilon}$ for negative direction 50 000 (≙ 5 %) μm/m minimum radius of curvature, longitudinal and transverse, at reference temperature 10 mm usable bonding materials Z 70; X 60; X280 cold curing adhesives

¹⁾ The data depend on the various parameters of the specific application and are therefore stated for representative examples only.

V

Encapsulated Strain Gage complete with stranded wire

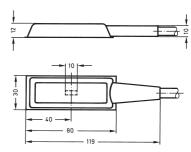
- according to protection class IP 67¹)
- with 1 m teflon-insulated connection wire
- proof against humidity and resistant against chemicals², as encapsulated on all sides
- excellent zero signal stability with changing humidity
- optional selection of 2-wire or 4-wire circuit

Order designation of preference types	Nominal resistance	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Measuring grid carrier		Max. perm. effective bridge supply voltage	LE11 encapsulated linear gage Temperature variation adjusted to steel with α = 10.8 \cdot 10 ⁻⁶ /K		
Steel	Ω	а	Ь	с	d	V	
							Illustration shows actual size
1-LE11-3/350Z (2-wire connection)	350	3	2	15	9	6	10.65 C
1-LE11-3/350V (4-wire connection)	350	3	2	15	9	6	
							Contents per pack. 5 pcs.

Technical Data

Туре		LE11-3/350
strain gage construction		foil strain gage, IP 67, resistant against chemicals ²⁾
measuring grid material		Constantan foil
measuring grid length	mm	3
carrier		
material		special plastic material
thickness	μm	25
cover material		special plastic material, 25 µm in thickness
thickness of the complete strain gage	mm	0.65
nominal resistance	Ω	350
resistance tolerance per package	%	± 0.5
gage factor		approx. 2
nominal value of gage factors		specified on each package
gage factor tolerance	%	±1
<u></u>		
reference temperature	°C	+ 23
operation temperature range		
for application with Z 70	°C	- 70 + 120
for application with EP 250/EP 310/X 280	°C	-200 + 180
temperature variation adjusted to		
thermal expansion coefficient α for ferretic steel	1/K	10.8 · 10 ⁻⁶
adjustment of temperature variation within range	°C	- 10+ 120
transverse sensitivity at reference temperature	0/	0.05
using adhesive Z 70	%	0.25
minimum radius of curvature, longitudinal and transverse, at reference temperature	mm	3
maximum elongation at reference temperature		5 + 50 000 (<u>△</u> + 5 %)
	μm/m	± 50 000 (± ± 5 %)
fatigue life ¹⁾ at reference temperature using adhesive Z 70		
stress cycle value L at alternating strain		
$\varepsilon_{\rm m} = \pm 1000 \mu{\rm m/m}$ and zero zero point drift $\Delta \varepsilon_{\rm m} \leq 300 \mu{\rm m/m}$		>> 10 ⁷ (test was interrupted at 10 ⁷)
$\Delta \epsilon_{m}^{m} \leq 30 \mu\text{m/m}$		> 10 ⁷ (test was interrupted at 10 ⁷)
connection cable 1m in length		2 or 4 teflon-insulated wires
adhesive		Z 70, EP 310, EP 250, X 280

¹⁾Please note the resistance of the adhesive used for bonding the strain gage ²⁾Strongly concentrated acids (sulphuric acid, nitric acid) only will destroy this special plastic material.


²¹ Strongly concentrated acids (support acid, nitric acid) only will destroy this special plastic material. High resistance against fuels and engine oils.

Encapsulated Strain Gages

Here, you will find the suitable strain gage for applications in unfavourable conditions, e.g. on building sites or in difficult to access positions, already completely wired up and perfectly protected against environmental influences. This encapsulated strain gage complete with connection wires or cables is particularly suitable for use in rough environmental conditions which require a special protection for the strain gage.

DA2

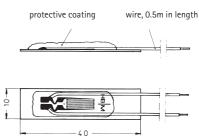
Illustrations do not show actual size Contents per package 1 pc.

Туре	Application	Special Requirements	R _{nenn}	Temperature variation adjusted to	Bonding	
DA2	Steel beams, ships, etc.	half-bridge, one gage active	120 Ω	Steel with α = 10.8 \cdot 10 ⁻⁶ /K	X60	

Technical Data

Туре		DA 2
strain gage construction		foil strain gage
measuring grid material		Constantan foil
mesuring grid length carrier	mm	10
material		polyimide/brass sheet metal
thickness	mm	0.2
cover material		rubber
nominal resistance	Ω	120 (half-bridge), 1 strain gage is active
resistance tolerance	%	± 1
gage factor		approx. 2
nominal value of gage factor		specified on strain gage
maximum permissible bridge supply voltage	V	6
reference temperature	°C	+ 23
operation temperature range for applications with X 60/Z 70	°C	- 70 + 60
temperature variation adjusted to	C	/o 1 00
thermal expansion coefficient α for ferretic Steel	1/K	10.8 · 10 ⁻⁶
temperature variation on steel 0° 50°C	<u>μm</u> /K	< 3
temperature variation on steer o so e	m	
minimum radius of curvature, longitudinal and transverse,		
at reference temperature	mm	_ + 3000 (≙ + 0.3%)
maximum elongation at reference temperature for 1000 strain alternations	μm/m μm/m	$\pm 3000 (\Delta \pm 0.3\%)$ $\pm 1000 (\Delta \pm 0.1\%)$
for 10000 strain alternations	μm/m	$\frac{1}{\pm}$ 500 ($\stackrel{\frown}{=}$ \pm 0.05%)
strain related restoring force	N 1000 μm/m	approx. 550
weight c/w cable, approx.	g	395
connection cable, 5m in length		three wire, screened
usable bonding materials		V co
adhesive	pos	X 60
contents per package	pcs.	1

Weldable Strain Gages and Strain Gages for High Strain


Application

Strain measurements in increased temperatures on weldable components, on which – due to their size – strain gage application with hot curing adhesive is not possible. Strain gage use "on site" where the cleanliness required for bonding cannot be guaranteed (on construction sites, in production plants etc.).

Attachment

Spot welding is among the simplest attachment procedures for strain gages as hardly any preparations are necessary, and very little practical experience is required of users.

LS31

Illustrations do not show actual size Contents per package: 5 pcs.

Technical Data

Туре		LS 31
strain gage construction		foil strain gage (quarter bridge), polymide carrier and Constantan measuring grid, hot-bonded to carrier sheet
measuring grid length	mm	6
carrier sheet		
lxb	mm	40 x 10
thickness	mm	0,1
material		X 8 Cr 17 (1.4016)
nominal resistance	Ω	350
resistance tolerance per package	%	± 1
gage factor		approx. 2
nominal value of gage factor		specified on strain gage
maximum permissible bridge supply voltage	V	15
reference temperature	۰C	+ 23
operation temperature range	°C	- 200 + 150
temperature variation adjusted to thermal expansion coefficient	-	
thermal expansion coefficient α for ferretic steel	1/K	10.8 · 10 ⁻⁶
adjustment of temperature variation within range	°C	- 10+ 120
minimum radius of curvature, longitudinal and transverse,		
at reference temperature	mm	75
maximum elongation at reference temperature	μm/m	±3000 (≙ ± 0.3 %)
srtain related restoring force	<u>N</u>	< 250
	1000 μm/m	
bonding type	spot welding	
5 /1	,,	

1) Each package contains 2 metal sheets for welding exercise

Order designation	Nominal resis- tance	Mea				Max. perm. effective bridge supply voltage	Solder terminals	LD20 for high strains Temperature variation not adjusted			
	Ω	а	b	с	d	V					
1-LD20-6/120 1-LD20-10/120	120 120	6 10	2,8 4,9	12,8 18,5	6 9,5	8	LS 7 LS 5	Illustrations show actual size			
Strain gages for high strain These strain gage can be used wherever there is extreme strain or compression.	Technical Data maximum elongation: ± 100000µm/m (≙±10%). Fatigue life: cannot stand as much cycles as Y strain gages. Temperature variation: not adjusted Other data: see p. 15							$\begin{array}{c} Helm \\ \hline \\ \hline \\ 6 \\ 10 \end{array}$			

Crack propagation gages

Using crack propagation gages, it is possible to determine the crack propagation on a component. HBM offers three different types: Type RDS22 consists of grid lines connected in parallel which will tear if the crack extends underneath the crack propagation gage. This will increase the electrical resistance of the strain gage in stages as the crack continues to extend.

The types RDS20 and RDS40 consist of electrically separated grid lines, that is, as the crack extends individual circuits will be interrupted.

Order designation of standard type	Resis- tance per tie Ω	Dimens tie length a	ions (mm); measu- ring grid width b		5.4 mm] rrier d	Pitch t tie centre/ tie centre mm	Number of ties	Max. perm. effective bridge supply voltage V	RDS20, RDS22, RDS40
1-RDS20 1-RDS22 1-RDS40		20 22 40	22.5 5 8.4	28 27.8 47	25 6.8 10	1.15 0.1 0.8	20 50 10	1.5 0.8 2.5	Illustrations show actual size $\begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ $
Resistance tolerance ± 15%									$ - b \rightarrow $ 20 22 40 Contents per package: 5 pcs.

Strain Gages for Determination of Residual Stress

For determining residual stresses, the two following proven strain gage based technologies are frequently used: the ring core method and the hole-drilling method. A common feature of both methods is the following application of the strain gage rosettes onto the workpiece, the residual stress condition is disturbed by a suitable process. In case of ring core method this is done by cutting a circular groove around the strain gage rosette. In case of the holedrilling method, a milling cutter is used to drill a hole into the centre of a strain gage rosette. Following this action, residual stresses effect strains on the surface of the workpiece, which are detected by the strain gage rosettes, and then used for calculating the residual stress state.

Within the HBM product range, you can select among three different processes for determining residual stresses.

Ring core method

The rosettes XY51 (for residual stresses with known principal direction) and RY51 (for residual stresses with unknown principal direction) are specifically designed for the ring core method. This process enables to carry out high precision measurements and as a result you'll get the residual stresses in relation to the depth.

	signation rerence pes	Variable order designation	Nominal resis- tance	Me	Dimensions (mm) [1 inch = 25.4 mm] M Measuring grid Measuring grid carrier		[1 inch = 25.4 mm] Measuring Measuring grid		[1 inch = 25.4 mm] leasuring Measuring grid		[1 inch = 25.4 mm] asuring Measuring grid		nch = 25.4 mm] ing Measuring grid		= 25.4 mm] Measuring grid		= 25.4 mm] Measuring grid		inch = 25.4 mm] ring Measuring grid		nch = 25.4 mm] ing Measuring grid		Solder terminals	XY51 o'/90° ring core rosette Strain gage complete with integrated solder tabs Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-5}/K$ Adjustment of the temperature variation within the range: + 10° + 60°C
Steel	Aluminum	Other	Ω	а	Ь	с	d	v																
1-XY51-5/350 Image: Constraint of the second se										Illustrations show actual size														
As these strain gages are covered by a print plate, they can be used on level or weakly curved surfaces only.																								
Order de	signation	Variable	Nominal		Dimensio	ons (mm))	Max. perm.	Solder	RY51														

of pref	signation erence bes	Variable order designation	Nominal resis- tance		Dimensio [1 inch =	ons (mm) 25.4 mm		Max. perm. effective bridge supply voltage	Solder terminals) (1
Steel	Aluminum	Other	Ω		isuring Irid		ring grid rrier I d	V		v A t
1-RY51-5/350			350	5	2.5	12	-	4.5	-	

Technical Data:

Resistance tolerance ± 1% Other data: see p. 15

As these strain gages are covered by a print plate, they can be used on level or weakly curved surfaces only.

	-16
K) –	(("
	927
	N/C

Contents per package: 5 pcs.

0°/45°/90° ring core rosette

Illustrations show actual size

with $\alpha = 10.8 \cdot 10^{-6}/K$

Strain gage complete with integrated solder tabs Temperature variation adjusted to steel

Adjustment of the temperature variation within the range: + 10° ... + 60° C

| b |----

Hole-drilling method according to the integral procedure

Using RY21 or, particularly easy to handle, RY61 and the associated drilling device (page 48), it is possible to determine the residual stresses according to the integral method. The result is the integral mean value of the residual stresses over the entire drilling depth.

Order designation of preference types	Variable order designation	Nominal resis- tance	Mea	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Measuring grid carrier		Max. perm. effective bridge supply voltage	Solder terminals	RY21 $0^{\circ}/45^{\circ}/90^{\circ}$ hole-drilling rosette Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$	
Steel Alum	num Other	Ω	а	b	с	d	V		
1-RY21-3/120		120	3	2.5	22	22	4.5		Illustrations show actual size $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $

Order des of pref typ Steel	erence	Variable order designation Other	Nominal resis- tance Ω	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid grid carrier a b c d		Max. perm. effective bridge supply voltage V	Solder terminals	RY61 o'/45'/90' hole-drilling rosette for application with HBM hole-drilling device RY 61 (see p. 48) with $\alpha = 10.8 \cdot 10^{-6}/K$ Adjustment of the temperature variation within the range: + 10' + 60°C (s. p. 48).		
Steel	7.101111011	otilei		u	0	с -	u	•		
1-RY61-1,5/120			120	1.5	0.7	_	12	2	LS 5	Illustrations show actual size
1-1101-1,5/120			120	1.5	0.7	-	12	2	L3 5	rd
Technical D Resistance tolera Other data: see p	ance ± 1%		<u> </u>							

As these strain gages are covered by a print plate, they can be used on level or weakly curved surfaces only.

Contents per package: 5 pcs.

Hole-drilling method by means of "High speed drilling"

The rosettes RY 61S, RY 61K, and VY 61S have been specially designed for th7e requirements of high speed drilling. This procedure uses a special drilling technology, with the milling cutter operating at a speed of 300.000 revs./min. This prevents new residual stresses from arising due to processing. The result are highly precise measurement values which al lows a very precise representation of the residual stresses in relation to the drilling depth. The relevant measuring chain (MTS 3000) is shown on page 47.

Order des of prefi typ	erence	Variable order designation	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Measuring grid carrier		Max. perm. effective bridge supply voltage	Solder terminals	RY61K o'/45'/90'rectangular hole-drilling rosette for application with HBM MTS 3000 (see p. 47) Strain gage complete with integrated solder tabs Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$		
Steel	Aluminum	Other	Ω	а	b	с	d	V		
										Illustrations show actual size
		1-RY6x-1,5/120K**	120	1.5	0.7	5.3	10.2	2	LS 7	
										Contents per package: 5 pcs.
** = Available only in a :	steel adjustment versio	on								

Order desi of prefe typ	erence	Variable order designation	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Measuring grid carrier		Max. perm. effective bridge supply voltage	Solder terminals	RY61S $0^{\circ}/45^{\circ}/90^{\circ}$ hole-drilling rosette for application with HBM MTS 3000 (see p. 47) Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$		
Steel	Aluminum	Other	Ω	а	b	с	d	V		
										Illustrations show actual size
1-RY61-1,5/120S			120	1.5	0.7	-	10.2	2	LS 5	
Technical Da Resistance tolera Other data: see p	ince ± 1%									

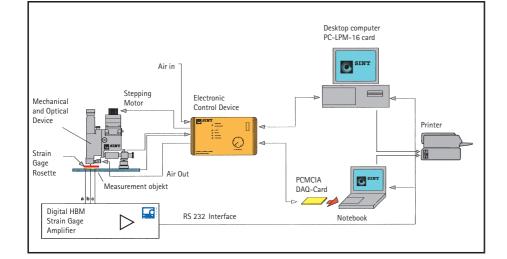
Order des of prefe typ Steel	erence	Variable order designation Other	Nominal resis- tance	Dimensions (mm) [1 inch = 25.4 mm] Measuring grid Carrier a b c d		Max. perm. effective bridge supply voltage V	Solder terminals	VY61S 0'/45'/90'/135' hole-drilling rosette for application with HBM MTS 3000 (see p. 47) Temperature variation adjusted to steel with $\alpha = 10.8 \cdot 10^{-6}/K$		
		1-VY6x-1,5/120S**	120	1.5	0.7	-	10.2	2	LS 5	Illustrations show actual size Contents per package: 5 pcs.

** = Available only in a steel adjustment version

MTS 3000

. . . the measurement chain for determining residual stresses using

MTS 3000

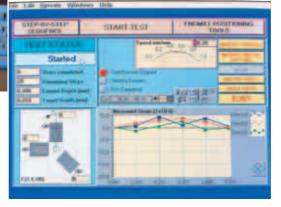

Residual stresses which exist in components, without there being any visible symptoms, influence their strength behaviour. Therefore, it is endeavoured to determine the stresses existing in the components in order to take them into account when dimensioning components. With the hole-drilling method for determining residual stresses, a small drill bit of 1.6 mm will be drilled into the object; and any strain changes which occur will be measured by means of strain gages. HBM now offers a complete measuring chain by means of which this process is easy to implement. A milling machine rotating with 300 000 revs./min is used to generate the hole whose advance is effected by a stepper motor. The strain changes arising due to the step-bystep drilling of the hole into the workpiece will be detected by a strain gage rosette specially designed for this process.

The entire signal processing is effected digitally. In addition to system control functions, the software package comprises four different evaluation algorithms.

The entire measurement process is PC-controlled. This ensures a high degree of measurement precision as well as optimum reproducibility.

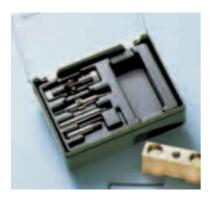
RY61S-special strain gage rosette

Block diagram of the complete measuring chain


MTS 3000

strain gages acc. to the hole-drilling method

UNE SEQUENCE


To provide you with more detailed information, we will be pleased to send you our technical data sheet MTS 3000.

Spare turbine for MTS 3000: Order no.: 1-SINTT Spare drill for MTS 3000: Order no.: 1-SINTB Diamond drill for MTS 3000: Order no.: 1-SINTD

Complete measuring chain with amplifier and control PC

Drilling device for hole drilling rosette RY 61

The drilling device is used to apply the hole in the centre of the applied hole drilling rosette. It comprises a magnetic holder, a centering pin, a shaft drill, and a universal coupling: Order no.: 1-RY61

Spare drill for material hardness up to 30 HRC: Order no.: 5-8410.0019

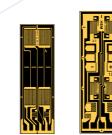
Carbide drill for material hardness up to 45 HRC: Order no.: 2-9219.9133

You have special requirements which cannot be met by a strain gage from our standard product range ? You are looking for a strain gage which is equivalent to the one you currently use? Or you have designed your own strain gage ? Then send us your layout direct via fax or e-mail. Contact us, we will produce specially customized strain gages according to your requirements.

Below, there are just a few examples out of more than 2000 special strain gages which we have already implemented.

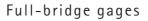
If requested, the grid geometries shown here by way of example are available in the following versions:

Carrier material


- phenolic resin
- polyimide
- PEEK

Measuring grid material

- Constantan (CuNi-alloy)
- Modco (CrNi-alloy)
- Nickel Ni for modulus gages
- Manganin for high pressure measurement gages


Options

- adhesive coating
- Covered measuring grid
- Lead wires

Half-bridge

gages

T-Gages

Diaphragm

rosettes

Bonding materials

The most common way in which strain gages are attached to measured objects is by bonding.

The adhesives listed below meet the following requirements:

- transmission, as much as possible without loss, of the deformations of the measured object to the strain gages
- stable behaviour across a temperature and strain range which is as wide as possible
- strain gage and measured object must not be chemically attacked

Your criteria for adhesive selection should be:

HBM adhesive program

Adhesive	Description	suitable strain gage	Pot life at room temperature	Storage time dry
cold curing Z 70 Order no.: 1-Z 70 for optional BCY Ø1	single component adhesive thin liquid very easy to handle use with Z 70: accelerator for Z 70	optimum: Y, C, LD, LE, V residual stress strain gages good: K, G		6 Month at – 15°C: almost unlimited
X 60 Order no.: 1-X 60	two component adhesive pasty, even on absorbent or uneven surfaces	optimum: Y, C, LD, DA, V residual stress strain gages good: K, G, LS	5 minutes	> 1 Year
X 280 Order no.: 1-X 280	two component epoxy resin adhesive for smooth and absorbent surfaces	optimum: Y, C, LD, LE, V good: G, K	30 minutes	1 Year at + 4°C
hot curing EP 310 S Order no.: 1-EP 310 S	two component adhesive thin liquid very easy to handle	optimum: Y, C, K, G, LD, LE	1 month (at RT) 6 month (at + 2°C) 12 month (at – 32°C)	6 month
EP 250 Order no.: 1-EP 250	two component adhesive pasty, even on absorbent or uneven surfaces	optimum: Y, C, K, G, LD, LE good: residual stress strain gages	24 h	1 Year

¹⁾ zero-point-related measurement; ²⁾ non zero-point-related measurement; ³⁾ curing conditions: relative humidity of between 30 – 80 %

Bonding materials

- application temperature
- material of your workpiece and recommendations for the relevant strain gage
- requirements for long-term stability and reproducibility

Hot curing adhesives

Hot curing adhesives can be used where the measured object can be brought up to the curing temperature. This is generally possible in the manufacture of transducers, but also where installations can be made before machine assembly or where the machine can be disassembled. Hot curing adhesives meet higher quality demands and can be used within a greater temperature range than cold curing adhesives.

Cold curing adhesives

Cold curing adhesives are easy to use and can be processed at minimum cost and effort since they harden under normal ambient conditions. The preferred field of application is in experimental stress analysis.

Spot welding

Spot welding is only possible with the special strain gage type LS 31, and if the object to be measured is of a weldable material. Since hardly any preparations are necessary and the installer needs very little previous experience, spot welding is one of the simple installations. HBM offers the compact spot welder SG 01A for this purpose.

Curing temperature ³⁾	Curing period ³⁾	Contact pressure (N/mm ²)	lower	Temperature limits upper static ¹⁾	upper dynamic ²⁾	Delivery quantity
5°C 20°C 30°C	10 minutes 1 minute 0.5 minutes	thumb pressure	– 70°C	+ 100°C	+ 120°C	10 ml
0°C 20°C 35°C	60 minutes 10 minutes 2 minutes	thumb pressure	– 200°C	+ 60°C	+ 80°C	component A = 0.1 kg B = 80 ml other quantities see price list
RT 95°C	8 h 1 h	0.05 2.0	– 70°C	+ 200°C	+ 280°C	6 double pouches à 10 g = 60 g
95 205°C	5 h 0.5 h	0.1 0.5	– 270°C	+ 260°C	+ 310°C	component A = 60 ml B = 30 ml
95200°C	16 h 0.5 h	0.1 1.5	– 240°C	+ 250°C	+ 315°C	5 double pouches à 10.5 g = 52.5 g

Protective Coatings

The quality of a measuring point with strain gages is not only dependent on the strain gage itself but also on the type of application and its implementation. A perfectly functioning measuring point requires a thorough preparation of the application surface, careful bonding, correct connection, and a protective coating. It is therefore important to provide the applicator with all necessary aids. With its strain gage accessories, the HBM product range offers everything necessary for a good strain gage application.

Strain Gage Protective Coatings

In general, it is recommended that strain gages be protected against external effects such as humidity or mechanical damage since even small fluctuations in the atmospheric humidity affect the measured signal of an open gage.

The following table will help in the selection of a suitable means of gage protection, which for special requirements can also be carried out in several steps. For instance, it would make sense to apply AK22, with – in extremely humid environments – additional sealing by ABM 75.

Strain gage protective coatings

Strain gage protective coating	Temperature range of resistance in air in °C	Package contents	one package suffices for approx.	Application method	Curing conditions	Storage capability at room temperature	Components
AK 22 viscous putty Order no.: 1-AK 22	- 50 + 170	1 kg	30 strain gages	Kneading on by hand	-	unlimited	viscous, kneadable sticky putty
ABM 75 aluminum foil c/w knead. compound Order no.: 1-ABM 75	- 196 + 75	11 pcs. 205 mm x 100 mm	200 strain gages	Pressing on by hand	-	unlimited	0,05 mm thick aluminum foil, coated with 3 mm thick kneading compound
NG 150 nitrile rubber Order no.: 1-NG 150	- 269 + 150	3 bottles c/w approx. 25 cm³ each	35 strain gages	Brush application	air drying at room temperature	max. 1 year	single component nitrile rubber cont. solvents
SG 250 transparent silicon rubber Order no.: 1-SG 250	- 70 + 250	tube with approx. 85 g	20 strain gages	Tube application	air drying at room temperature	6 month	transparent single component silicon rubber without any solvents
PU 120 polyurethane paint Order no.: 1-PU 120	- 40 + 120	4 bottles c/w approx. 30 ml each	250 strain gages	Brush application	room temperature + 100°C	1 year	single component polyurethane paint with solvents
SL 450 transparent silicon resin Order no.: 1-SL 450	- 50 + 450	3 bottles c/w approx. 25 g each	90 strain gages	Brush application	in temperature steps from 95°C bis 315°C	6 months	transparent silicon resin cont. solvents

HBM

Protective Coatings

Chemical resistance of HBM protective coatings

	1 		2			
Chemical substance	AK 22	ABM 75	NG 150	SG 250	PU 120	SL 45
Exposure	yes	yes	yes	yes	yes	yes
Water:	yes	yes	yes	yes	yes	yes
Water under pressure (400 bar)	yes	-	-	-	-	-
condensation	-	-	-	-	yes	-
tropical climate	-	-	-	-	yes	-
/apour	no	-	-	-	-	-
Oils:	no	no	yes	yes	yes	-
engine oil (RT/70°C)	-	-	yes	-	-	-
mineral oil (RT/70°C)	-	-	yes	-	-	-
hydraulic oil (RT/70°C)	-	-	yes	-	-	
Fats	-	-	-	-	yes	-
Solvents general	no	conditional	conditional	no	conditional	conditi
Fuels:	no	no	yes	no	-	-
petrol	no	no	yes	no	-	-
kerosene	-	-	yes	-	-	-
Aromatic substances/aliphatic mixtures	-	-	conditional	-	-	-
Aromatic substances:	no	no	conditional	no	conditional	no
benzene	-	-	no	-	-	-
toluene	no	no	conditional	no	yes	no
xylene	no	no	conditional	no	conditional	no
Chlorinated solvents	no	no	no	no	no	no
dichloromethane	no	no	no	no	no	no
carbon tetrachloride	-	-	no	-	-	-
perchloroethylene	-	-	no	-	-	-
1.2-dichloroethane	-	-	no	-	-	-
o-dichlorobenzene	-	-	no	-	-	-
Alcohols	conditional	yes	conditional	conditional	conditional ¹⁾	yes
ethyl alcohol	conditional	yes	conditional	conditional	conditional	yes
methyl glycole	-	-	no	-	conditional	-
butyl alcohol	-	-	conditional	-	conditional	-
so-propyl alcohol	-	-	conditional	-	conditional	-
ethylene glycole	-	-	yes	-	-	-
Ketone:	conditional	conditional	no	no	no	conditi
acetone	conditional	conditional	no	no	no	yes
methyl ethyl ketone (MEK)	no	no	no	no	no	conditi
Terpene:	-	-	conditional	-	-	-
dipenten	-	-	conditional	-	-	-
turpentine	-	-	yes	-	-	-
Acids:	no	conditional ²⁾	conditional	yes	no	yes
hydrochloric conc.	no	-	conditional	yes	no	ye
sulphuric acid 50 %	no	-	yes	yes	no	yes
acetic acid 50 %	no	-	no	yes	no	conditi
nitric acid 50 %	no	-	no	yes	no	yes
oleic acid conc.	-	-	yes	-	-	-
lactic acid conc. air which contains acid	<u> </u>	_	conditional –	_	– yes	_
		11.1				
Lyes	conditional	conditional ²⁾	conditional	no	conditional	yes
sodium hydroxide 10 %	conditional	-	no	no	no	yes
potassium hydroxide 10 %		-	no	-	-	-
ammonia 28 %		_	conditional –	_	– yes	_
air which contains alkaline					,	
	_	_	Ves	_	_	_
air which contains alkaline Liquified gas (except oxygen) UV resistance	-	-	yes	-	-	-

¹⁾ low alcohol ²⁾ up to 5% (destruction of aluminum foil) conditional = conditionally resistant (minimum 10 days at RT)

Chemical resistance:

Unless identified specifically, the resistance referred to is room temperature. No information can be provided on long term effects. The data is based on our own experience or was taken from literature. Since the specific conditions vary with each user, it is recommended individual users carry out their own tests on resistance. Some protective coatings become milky when in contact with some chemicals.

Strain Gage Accessories Cleaning Agents / Aids for bonding and soldering

Cleaning agent RMS 1

Satisfactory bonding joints are only achieved if the adhesive covers the bonded surfaces well. Therefore, the application surfaces must be cleaned prior to bonding with a chemically pure solvent and a clean cleaning pad. RMS 1 is an environmentally friendly solvent which dissolves all normal contamination.

Order no.: 1-RMS 1

Cleaning agent dispenser

Polyimide tape

33 m heat resistant tape, 19 mm in width. Suitable for all standard strain gage application procedures to ensure safe positioning of the strain gage on the workpiece. Order no.: 1-Klebeband

Cleaning pads

Cellulose for cleaning of strain gages and strain gage application surfaces. Format 5 cm x 5 cm. Package contents: 500 pcs. Order no.: 3-8402.0026

Cleaning agent dispenser "RSP 120"

In order to avoid contamination of the solvent during the course of time, we recommend the cleaning dispenser "RSP 120". Order no.: 1-RSP 120

Resin cored solder

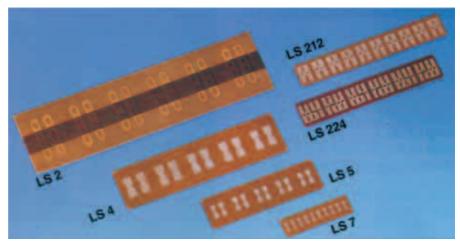
Resin cored solder as used in strain gage applications. Soldering wire Ø 0.5 mm consisting of solder S-SN60Pb38Cu2 c/w resin core, type F-SW32. Melting range: 183 to 190 C. Delivery form: 1 kg on reel Order no.: 1-Lot

Teflon foil

33 m Teflon foil on reel, suitable for cold curing and hot curing strain gage bonding. Thickness: 0.05 mm, width: 60 mm Order no.: 1-Teflon

Flux pen

Soldering aid in felt pen format helps to achieve perfect small soldering connections. Suitable for solders with melting points up to 350°C. The flux pen contains non-corrosive flux without chloride. Package contents: 5 pcs. Order no.: 1-FS 01


Fluxpen FS 01

Solder Terminals

For strain gages with leads or wires solder terminals should be installed between the connecting cables and the strain gage itself. This facilitates the perfect soldering joint and strain relief of the gage connection. The solder terminals are installed in the same manner as the strain gages onto the object to be measured.

HBM offers solder terminals in different designs and dimensions.

HBM's range of solder terminals

Technical Data

Type Illustrations	Туре	Solderi a		sions (mm) Car c	rier d	Distance t	Contents per package
LS2 bronze soldering ears on teflon carrier suitable for dynamic loads attachement to measured object: bonding usable up to 180°C, for short periods up to 260°C	1-15.2	2.5	14	72	20	4	36 Pairs
LS7/5/4 copper, nickel-plated, on polyimide attachment to measured object: bonding usable up to 180°C, for short periods up to 260°C	1-LS 7 1-LS 5 1-LS 4	1 1.5 2.5	3 4.5 6.5	20 35 50	6 10 13	2 2.5 4	125 Pairs 125 Pairs 125 Pairs 125 Pairs
LS212 copper nickel-plated on polyimide attachement to measured object: bonding usable up to 180°C, for short periods up to 260°C	1-LS 212	3.7	6	47.5	8	1	125 Pairs
copper nickel-plated on polyimide attachement to measured object: bonding usable up to 180°C, for short periods up to 260°C	1-LS 224	6.5	6	45	8	1	75 Pairs

Cables and wires

PVC-flat strip cable

PVC insulated flat band strip cable consisting of six leads with a cross section of each 0.14 mm², 50 m per reel, resistance 0.131 Ω/m .

Order no.: 4-3133.0034

HBM Jumper wire and Paint insulated Cu-wire

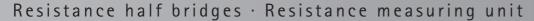
Paint insulated copper wire

Polyurethane-insulated copper wire with a cross section of 0.04 mm², 25 m in length. Order no.: 1-CULD01

Jumper wire

Teflon insulated jumper wire with a cross section of 0.05 mm², yellow, 100 m per reel, resistance 0.34 Ω /m. Order no.: 1-3130.0239-G

Very flexible wire


For internal, exposed wiring of transducers; cross section of 0.04 mm² with 20 cores and 0.6 mm outer diameter, resistance 0.417 Ω/m , permissible temperature +70°C, 25 m per reel, PVC insulation. Order no. 1-SLI 01

Flexible wire

Teflon-insulated flexible wire with a cross section of 0.24 mm² with 19 cores and an external diameter of 0.9 mm, 100 m per reel, resistance 0.0741 Ω/m .

blue	Order no.: 1-3301.0092-B
green	Order no.: 1-3301.0091-Gr
white	Order no.: 1-3301.0094-W
black	Order no.: 1-3301.0088-S
red	Order no.: 1-3301.0089-R

Designation	Insulation	Thermal resistance	Chemical resistance
Flexible wire 1-3301.0088-S 1-3301.0089-R 1-3301.0091-Gr 1-3301.0092-B 1-3301.0094-W	Teflon	– 200 + 260 °C	Resistant against nearly all chemicals: Except: elementary flouride, chlorine triflouride, molten alkali metals
Jumper wire 1-3130.0239-G	Teflon	– 200 + 260 °C	see flexible wire
Very flexible wire 1-SLI 01	PVC	short period 105 °C permanent90 °C	non resistant against: ester, chlorinated hydrocarbons, ketone, aromatic hydrocarbons, benzene, liquid halogens, nitric acid conc., depending on the softener used, also aqueous solutions
PVC flat strip cable 4-3133.0034	PVC	short period 105 °C permanent90 °C	see very flexible wire
Paint insulated copper wire 1-CULD 01	polyurethane	short period 120 °C permanent -4080 °C	non resistant against: strong acids, strong lyes, alcohols, aromatic hydrocarbons, saturated vapour, hot water

Resistance half bridges

Resistance half bridges are wired together with the strain gages on the measuring point to set up the Wheatstone bridge circuit. In accordance with the nominal strain gage resistances, HBM offers various different resistance values.

2 x 120 Ω, Order no.: 3-3054.0334 2 x 350 Ω, Order no.: 3-3054.0282

Technical Data

Resistance measuring unit TO 3

The TO 3 is an electronic measuring unit (ohmmeter and megohmmeter) for determining resistances within the range 0 to 50 G Ω .

This pocket megohmmeter has been designed, and is particularly suitable, for fast checking of the insulation resistance of strain gage installations and strain gage resistances in the field and in service. It features a total of 16 measuring ranges for insulation resistance and throughput measurements. Four measuring voltages (50 V, 25 V, 10 V, and 2,5 V) provide for adjustment to the measuring task in hand and prevent any possible destruction of a test piece by a test voltage which is too high.

The megohmmeter is accommodated in a solid plastic housing complete with carrying handle, and it is supplied with a protective bag and two measuring cables.

Order no.: 1-TO3

Resistance measuring unit TO 3

lechnical Data		Resistance measuring unit 10 3					
measuring ranges	MΩ	0 – 50 000					
number of measuring ranges		16					
minimum resistance	Ω	20 is the minimum value that can still be read off					
measuring voltages	V	2;5; 10; 25 und 50, dep. on measuring range					
open circuit voltage		1.1 x UN max.					
display		analog display c/w mirror scale, scale length 110 mm					
application position		horizontal					
precision class		2.5 (IEC publication 51)					
adjustment time, max.	S	4					
operational temperature range	°C	0+40 (30% up to 60% rel. humidity)					
temperature fault	%/10K	±1.5					
batteries		6 pcs. 1.5 V, rod batteries (type IEC LR 14)					
measuring time/numberof measurements		approx. 2000 with a single battery set					
protection class acc. to EN 60529 (IEC 529)		IP 50 (measuring mechanism), IP 20 (other parts)					
safety		EN 61010-1 class 2, (tested at 1 kV AC / 1 Min.)					
conformity (CE symbol)		EN 45014, EN 50081-1, EN 50082-1, EN 61010-1, IEC 51, IEC 529, VDE 0410					
housing		plastic, impact resistant, c/w carrier strap					
dimensions	mm	205 x 128 x 100					
weight, approx.	kg	1					

Strain gage starter kit DAK 1

The starter kit DAK1 provides the first time user with a low cost and interesting option to start with the application of strain gages. The well-designed and robust plastic case contains all aids required for initial applications. An original package containing 10 strain gages and the cold curing adhesives X60 and Z70 ensure the best possible results from different measurements in experimental stress analysis. In addition to the practical components of the starter kit DAK1, the specialist book on strain gages "An Introduction to Measurements using Strain Gages" by Karl Hoffmann, an experienced specialist in strain gage technology, is also included in the scope of delivery. This book is available in a German as well as an English language version. Due to many years of DAK1 use in company-internal strain gage and instrumentation seminars, the contents of this book has been constantly optimized.

Order no.: 1-DAK1

Contents of DAK 1

1

1

1

1

1

1

10 pieces	Strain gages
	LY11-6/120A

Z 70, cold curing adhesive X 60, cold curing adhesive

- AK 22, protective coating
- ABM 75, protective coating Solder terminals Connecting wire Sand paper Cleaning agent RMS 1 Cleaning pads
- Solder
 - Specialist book on
 - strain gages "An Introduction to Measurements using Strain Gages"

Petri dish

1 1

1

1 1

1

1 1

1

1

1 1

1

Strain gage installation case DAK 2

The strain gage installation case DAK 2 contains all tools and aids required for strain gage installations. It is portable and lockable.

Dimensions: 470 x 170 x 360 mm Weight: approx. 6 kg (incl. standard scope of delivery) Order no.: 1-DAK 2

In the bottom part of the strain gage installation case there is empty space for various adhesives and other uses, below the removable insert.

Contents of DAK 2

Ersa soldering iron (16 W)
flat brush
folding magnifying glass
(6 times)
graduated ruler, 150 mm
glass fibre erasing brush,
plus 1 spare brush
pair of scissors, toothed
pair of pointed scissors
wide pair of tweezers
pointed pair of tweezers
flexible ruler, 300 mm
dental probe with bent tip
cement spatula
cutting pliers with wire
strippers

Starter kit DAK 1

1	Petri dish 60/15
1	scalpel holder,
	plus 6 blades
10 m	flat strip cable
	6 x 0.14 mm ² ,
	multi-coloured
25 g	solder diameter Ø 1 mm
1	flux pen
1	roll of Scotch tape
1	rubber
1	HBM pen
1 each	sheets of sand paper
	grade 180/220/360
100 cm ³	cleaning agent RMS 1
200	cleaning pads
	50 x 50 mm

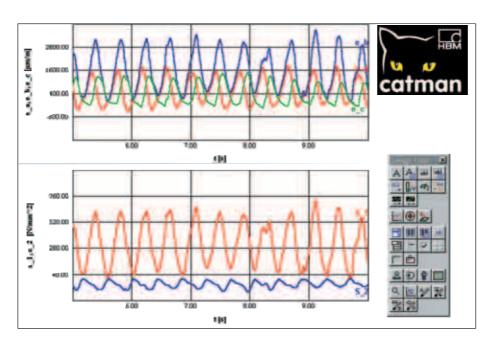
HBM software for stress analysis

catman[®]

catman®

For all computer-controllable HBM amplifier systems, we now offer the universal measuring technology software package catman[®] for MS-Windows 95/98 and NT.

Using catman[®], the devices are conveniently adjusted by means of virtual front panels. In addition, all parameters can be printed, stored, and retrieved again.


Having defined device type and interface in catman[®], pre-fabricated measuring sequences - catModules - can be used to start measurements immediately. The measured values will be instantly visualized in ready-made graphics screens. However, the user is also able to define his own graphics screens and use them without any programming effort being required - in combination with measurement assistants. The format for data storage is selectable.

An excellent characteristic feature of the new catman[®] 3.1.2 version is the simultaneous data input from different devices on different interfaces. However, it is possible to continue mathematical processing of the measurement data during or after the actual measurement.

	10				TRACT AND A					- 0
Project (05 cp)	10.000			and the second s		-	-			- 14
E I/O definitions							Section 1			
El almásico	-zit	ala.	5 A5 00			1	Ist			
ER 105:100				[mil.] m.1.			1.001			
docted IOD	Defin	e ha	dware device	-			10		10	
- ER Dwpdag.iod				Nation	-	Name		ce lupe	Interface	Adde
OCtopogage	1 State	nowin		Device type	SPD ac		Spide	88	LPT1	-
HIGCDasi00		-	-	Davice (No	2		-	_		_
- E spectest.IOD	N G	PIB (EEE 498	Interface	-		-			
ER spdsul00	10	-		Addens	-				1	
E Covice setups	- Ma				-	_	_	_	_	-
- 63 105 mgc		100	Modily							Remov
- CD decdag DPS	1	-	and the second	-					-	
KIMpebgagm ED	L/O.K	anale								
E La Online documenta	- 22	-3								
E 1051.opg			-	1	-	_	-	-	-	-
- L2, 85s OPG		ID.	Name	Connection	1 1	Setup	Scaling	Unit	Status	
THE REPORT OF THE PARTY OF THE										
	1	-	These bases	10 Total	No.		Make	-		-
-D Soript project	1	10	Time base	() Time	Master I		Note		OK OK	
Auto Command lists	1	343	Chatcel2	SPD.at	AIN O	ŧ D	Um		ок Ок О 13 532062	
- D Soript project	1	2000	Channel3	 SEDing Not committee 	AIN O	60 nef2, CHO	and the second se		ок Ок О 13 532062	
Script project Auto Convend lists Date	1	5000	Channell Channell	 SPD.sp Not connected Not connected 		60 nef2, CHO	CF+Froques	cy bar	ок Ок О 13 532062	
Sospt project Auto Command lists Date aphrackille dat	1 7 4 5	00000	Dharnel3 Dharnel4 Dharnel6	Not connected Not connected Not connected Not connected		en 1112, 1240 111	CF+Frequen	cy bar	o OK A SEIZING I plate SH	YX
Sonjet projekt Auto Command lists Dote Jose Sonjet projekt Auto Command lists Forcelan Forcelan Forcelan	1 7 4 5 8	000000	Dhannell Dhannell Dhannell Dhannell	SSDAu Not connected		60 nef2, CHO	CF+Frequen	cy bar	o OK A SEIZING I plate SH	
Songet avaged Auto Conserved lists Dots Songet avaged Auto Conserved lists Dots Songet avaged Forwards Forwards	1 7 4 5 8 7	0000000	DameS DameS DameS DameS DameS DameS	Not connected Not connected Not connected Not connected			-0.3	cy bnu 106	O OK De service r plate SH	YX
Solpt project Auto Command lists Data Solpt Auto Command lists Data Solpt Auto Command lists Data Solpt Auto Command lists Command Auto Auto Command Auto	1 7 4 5 5 7 3	00000000	Dhannell Dhannell Dhannell Dhannell	SSDAu Not connected			CF+Frequen	cy bnu 106	O OK De service r plate SH	YX
Soipt project Auto Command linis Auto Command linis Auto Command linis	1 7 4 5 5 7 8 9	000000000	DameS DameS DameS DameS DameS DameS	Not connected		40 1172 (240) 223 224 224 224 224 224 224 224	-0.3	cy bnu 106	OK Constants or plate SH.	YX
Solpt project Auto Connerad laite Auto Connerad laite Build Auto Connerad laite	1 3 4 5 5 7 8 9 10	00000000	Channell Channell Channell Channell Channell Channell Channell	Not connected	All C	to adaptive Fill	-0.3	cy bne 106	O OK De service r plate SH	
Solpt project Auto Commend laits Auto Commend laits Build Solution Solution Commend laits Commend l	1 3 6 5 6 7 8 9 10	00000000	Disroell Charnell Charnell Disroell Disroell Disroell Disroell Obsmell	Not connected	Addition Consumers Traver	to ccc ccc ccc ccc ccc ccc ccc c	-0.3	cy bne 106	OK Constants or plate SH.	
Sonja project Auto Command laite Auto Command Inspersory Compositio Command Inspersory Compositio Compositio Compositio Compositio Command Inspersory Compositio Compositio Command Inspersory	11	00000000	Elszcik Charneli Charneli Charneli Charneli Charneli Charneli Charneli Charneli	SPDay Not connection	Addition Consumers Traver	AD India California CCC Indianese Fill Fullbeidge Verbiedge Verbiedge Verbiedge Verbiedge	II	cy bne 106	OK Constants or plate SH.	
Solpt project Auto Command laits Auto Command laits Auto Command laits E all aphachis dat E all aphachis da		00000000	Elszcik Charneli Charneli Charneli Charneli Charneli Charneli Charneli Charneli	SPDay Not connection	Time	40 mCL CHO CCL dansy 78 Falbeige National National National	-0.3 55 ier Angeler 199	cy bne 106	OK Constants or plate SH.	

Simple device configuration

catman[®] offers mathematical functions for this purpose ranging from simple arithmetic via FFT, digital filters, rosette calculation for experimental stress analysis to rainflow analysis. Using the Auto-Command list, offline calculations and other actions such as saving, printing, or direct transmission of data into an Excel spreadsheet can be automated.

With its script language, catman[®] is a development tool for complete applications. The object-oriented syntax and code builder simplify the generation of a script. Via this script language, catman[®] is also open for extensions. Easy to install script drivers enable the inclusion of almost all intelligent measuring systems.

Rosette evaluation

HBM amplifiers in stress analysis

DMD20A · MGCplus · Scout55

DMD20A

Portable mains-independent measuring amplifier for strain measurements

- for strain gage full bridges and half bridges
- digital indication of the strain
- analogue output
- connect via terminal clamps or connectors
- power supply from own accumulator

DMD20 A, amplifier from HBM

MGCplus

Modular computer-controllable measuring amplifier system for universal applications

- autarchic measuring amplifier slide-in units for all standard measurement quantities
- different computer interfaces (RS232, RS485, IEEE-488, Ethernet, 2 PC-Card-Slots) with standard and field bus protocols (CAN profibus DP)
- parallel synchronous data aquisi-

tion of up to 128 channels per device

- measuring rate up to 19.200 measured values / sec. / channel
- resolution 20 bit
- can be operated manually via operating panel or computer
- autarchic measuring data detection of the PC-Card hard disk
- Quarter, half- and full bridges, even with 8-channel plug-in units in famous HBM technology

Scout55

Single channel universal amplifier, carrier frequency 4.8 kHz, for strain gages (halfand full bridges) as well as inductive halfand full bridges, LVDT, piezo-resistant and potentiometric transducers

- Serial interface RS 232 for signal output and conditioning
- Functional compact housing with support grip
- Complete operation via LCD display and keyboard

"One Stop Shop"

Centipede · Spider 8 · Spider Mobil

Centipede

Multipoint measuring unit with up to 100 measuring points especially for experimental stress analysis

- for serial measurement of static and quasistatic measurement quantities such as strain, pressure, force, displacement, temperature, etc. (e.g. up to 100 strain gage measuring points, 1/4 and/or 1/2 and/or 4/4 bridges, can be connected simultaneously)
- integrated triple measuring amplifier (DC, TF 600 Hz, and 5 kHz) will be individually programmed for each measuring point
- 100% computer-controllable via serial or parallel interface

Spider Mobil

Digital multichannel measurement acquisition system (8 or 16 channel version) fitted in an aluminium case

- measurement electronics with eight 4.8 kHz carrier frequency amplifiers, a further eight channels optionally equipped with modules of type SR55 or SR01
- power management electronics complete with wide range power pack, fitted accumulator and auto adapter for mains-independent operation
- notebook, well equipped brand name notebook in the top quality product segment as well as colour inkjet printer, completely functionally tested and configured with MS Windows Software and Spider8 Control

Centipede

Spider 8 and Spider 8/30

PC measurement technology with parallel signal processing with 4 carrier frequency amplifiers SR55/4.8 kHz or S2 30 (600 Hz), another 4 channels can be equipped optionally with SR01 modules (DC-voltage) or with SR55/ 4.8kHz (max. 8 channels per device).

- power supply via power pack, or 10 -16 V/DC (e.g. 12 V/DC battery voltage in a car)
- measurement of voltages, currants, frequencies, quarter bridge (Spider 8/30 only) half-, full bridges, temperatures
- sensor feed, signal adaptation, A/D conversion, digital filter and com-

puter interface in one single housing that fulfils the EMC-requirements

- high sampling rate with a resolution of 16 bit
- Serial and parallel interface for conditioning the device and data acquisition (connection for example via printer interface)
- No operation inside the computer necessary
- 8 devices can be cascaded via printer interface

Strain Gage Application Service

At your premises

Our experienced service engineers will

- Visit you
- Advise you
- Install strain gages
- Carry out measurement

Strain gage application for stress analysis on pipes

For applications in field For applications at HBM factory Tel.: +49 (0) 61 51/80 36 19

Tel.: +49 (0) 80 00 18 23 88

In our Darmstadt works

HBM is equipped with an application laboratory which will inplement strain gage applications for:

- Component investigation
- Quality assurance
- Identifying the cause of damage on single workpieces
- Monitoring of operational loads in a small series
- Examinations support in medical and dental medicine
- Support in research and teaching

Special transducers which are constructed, applied and tested in the strain gage application laboratory.

Specialist Book on Strain Gages

"An introduction to measurements using strain gages". A practical introduction into this specialist area of measuring technology.

The book covers the use of strain gages in stress analysis as well as the construction of simple transducers for measuring forces and torques. Particular emphasis is put on how to identify the cause of faults and how to take measures to avoid or correct measuring faults in order to obtain reliable measurement results.

Order no. 1-Hoffmann Buch

Strain Gage Teaching Pack

For newcomers and occasional users, the strain gage teaching pack provides helpful support for installing strain gages.

Two video cassettes explain the competent installation of strain gages by means of cold curing and hot curing adhesives. In addition, the tips and tricks shown can be read in the manuscript "Introduction to the application of strain gages". In addition, the specialist book "An introduction to measurements using strain gages" by Karl Hoffmann explains the laws in strain gage technology. Order no.: 1-DMS-Lernpaket

Strain Gage Seminars

Due to the rapid advances in technological development today it is particularly important to keep up with the new technologies by comprehensive continuing education. But also for users who use strain gages for the first time and /or convert from one type to another, practical training and continuing education is necessary with regard to the specific problems of the electric measuring of mechanical quantities. Make use of our specialist know-how which has been acquired in decades of practical experience for your success in the solution of your technical measurement problems.

By means of experimental lectures, the basics of the specialist area will be explained in a first part and then demonstrated. This is subsequently followed by training on devices and transducers or even bonding of strain gages. Theory and practice sessions alternate several times during the course of the seminar, in order e.g. to discuss and clarify questions - which usually first occur in practical application sessions - in the next theory block. Learning by rote is not quite our style, for we know that learners need to solve prepared tasks independently - following appropriate instruction - in order to expand and strengthen their newly acquired knowledge.

In order to support effective working, each practical experience place will be allocated a maximum of two participants only. In the case of strain gage applications, each participant will be given his/her own workplace.

DK

Basics of strain gage bonding and measuring technology

Target group

Specialist personnel, master tradesmen or engineers who want to implement strain gage applications independently and under their own responsibility.

DM

Strain gage measuring technology in transducer construction and experimental stress analysis

Target group

Users from all specialist disciplines who want to carry out measurements by means of strain gages.

In addition to the two strain gage application seminars mentioned above, HBM offers additional seminars in HBM device technology and software. It is naturally possible to implement all seminars that are offered in our seminar centre at Darmstadt directly on your own premises. On request, we will modify our seminars in order to enable us to offer a target-oriented and practical training and continuing education.

DMSdirekt CD

electronic order catalog and manual for strain gages

The CD-ROM **DMS***direkt* is to make it as easy as possible for you to apply and order strain gages. The CD-ROM **DMS***direkt* contains help and assistance with regard to strain gage selection, application notes, as well as tips and tricks in strain gage handling. The CD-ROM provides you with the option to generate a legally binding strain gage quotation for yourself as well as to print out the appropriate order and send it to the relevant sales office. As all strain gages (preferential types as well as standard types) are stored in the CD-ROM, each type can be correctly ordered. In addition to the graphical illustration of the strain gage, all type-specific features such as dimensions, nominal resistance, maximum feed voltage etc are also stated. The relevant product range of application accessories completes the package.

To request your free DMSdirekt CD, please contact your local representative

List of Representatives

Germany

Hottinger Baldwin Messtechnik GmbH: Büro Berlin: Magirusstraße 5, D-12103 Berlin Tel. (030) 75 48 95 50, Fax (030) 75 48 95 52 Büro Dresden: Würzburger Str.35, D-01187 Dresden Tel. (0351) 4 70 06 21, Fax (0351) 4 70 06 22 Büro Düsseldorf: Hauptstraße 13, D-40699 Erkrath Tel. (02104) 93 56 01, Fax (02104) 93 56 11 Büro Frankfurt: Robert-Bosch-Str. 52, D-63225 Langen Tel. (06103) 48 629-172, Fax (06103) 48 629-120 Büro Hannover: Gutenbergstraße 3, D-30966 Hemmingen / Hannover Tel. (0511) 94 26 48 0, Fax (0511) 94 26 48 20 Büro Nürnberg/München: Goldbachstr. 9, D-90480 Nürnberg Tel. (0911) 940 83 10, Fax (0911) 940 83 33 Büro Stuttgart: Bassermannstraße 7, D-70563 Stuttgart Tel. (0711) 901 55 50, Fax (0711) 901 55 88

Europe

Austria: Hottinger Baldwin Messtechnik GmbH, Carlbergergasse 38, Pf. 19, A-1233 Wien Tel. (+43) 1 865 84 41, Fax (+43) 1 865 84 41-420 e-mail: hbm@hbm.at

Baltic provinces (Estonia, Latvia, Lithuania): ISOmetrija SIA, Mukusalas iela 42, LV-1004 Riga, Tel. (+371) 76 14 427, Fax (+371) 76 15 140 e-mail: isometrija@apollo.lv

Belgium: refer to Netherlands

Bulgaria:

SKELIT GMBH, 56, Janko Sakazov Bul., BG-1504 Sofia Tel. (+359) 2 9449 546, Fax (+359) 2 46 65 54 e-mail: skelit@exco.net

Croatia: refer to Slowenia Czech Republic and Slovakia Republic: HBP, Ing. Ivan Wasgestian, Podskalska 7 CZ-128 00 Praha 2,

Tel. (+42) 02 24 92 18 61, 02 24 91 24 37 Fax (+42) 02 24 91 36 57

e-mail: hbmcz@mbox.vol.cz

Denmark:

NORIS Måleteknik ApS, Nydamsvej 19D,

DK-8362 Hørning Tel. (+45) 87 68 05 00, Fax (+45) 87 68 05 01 e-mail: thorkil_hyllested@noris.dk

Finland:

Oy Transmotec Ab, Kutomotie 9C, SF-00380 Helsinki Tel. (+358) 98 67 830 0, Fax (+358) 98 67 830 30 e-mail: kurt.lindstrom@transmotec.fi Web: http://www.transmotec.f

Web, http:// France: HBM France SAS, 46 rue du Champoreux, BP 76 F-91542 Mennecy Cedex Tel. (+33) 1 69 90 63 70, Fax (+33) 1 69 90 63 80 evel infeben@hbm fr

Greece:

Meta Engineering, 54 Agias Marinis Str., GR-15127 Melissia

GH-15127 Menssia Tel. (+30) 10 6130929, Fax (+30) 10 6131329 e-mail: meta@ath.forthnet.gr Web: http://www.meta-gr.com

Great Britain:

HBM United Kingdom Ltd., 1 Churchill Court, 58 Station Road, North Harrow, Middlesex, HA2 7SA Tel. (+44) 20 85 15 61 00, Fax (+44) 20 85 15 61 49 e-mail: sales@hbm-uk.co.uk

Hungary: HB Mérnöki Iroda, Ákos Teleki, Remsey krt. 13, P.O. Box 81, H-2101 Gödöllö Tel. (+36) 28 430 209, Fax (+36) 28 430 115 e-mail: hbmiroda@mail.digitel2002.hu Ireland: refer to Great Britain

 Italy:
 R.G.F. Rilevazione Grandezze Fisiche s.r.l.

 Milano Office:
 Via Teodosio 7, I-20131 Milano

 Tel. (+39) 0270 630 851, Fax (+39) 0223 61 228

 Web:
 www.rgf.it, e-mail: info@rgf.it

 Torino Office:
 Via San Rocco 47, I-10045 Piossasco (TO)

 Tel. (+39) 0119 04 20 46, Fax (+39) 0119 04 17 08

 Web:
 www.rgf.it, e-mail: info@rgf.it

 Liechtenstein:
 refer to Switzerland

 Liveremburg:
 refer to Switzerland

Luxembourg: refer to Netherlands

Netherlands: HBM Benelux, Laan van Westroijen 2F-G, NL-4003 AZ Tiel, Postbus 6035, NL-4000 HA Tiel Tel. (+31) 344 67 3434, Fax (+31) 344 67 3435 e-mail: benelux@hbm.com

Norway: IAF Maaleteknikk AS, P.B. 254, Kapellveien 18, N-1411 Kolbotn Tel. (+47) 66 82 31 60, Fax (+47) 66 82 31 61 e-mail: post@iaf.no

*= for Weighing components **= for Industrial Measurement components

Poland: *Biuro Inzynierskie M. Zajaczkowski ul. Towarowa 17/19, PL 61-586 Poznan Tel. + Fax (+48) 61 83 52 230 e-mail: info@bimzajac.com.pl **Biuro Inzynierskie, mgr. Inz. Jan Zajaczkowski, ul. Grunwaldzka 250B, 60-166 Poznan Tel. (+48) 61 661 9333, Fax (+48) 61 868 5664 e-mail: janzajaczkowski@hottinger-baldwin.pl Portugal: refer to Spain Romania: PROCSIMEX INTEC Srl <u>Büro Bukarest:</u> Str. Turda 119, bl.6, Ap. 77, RO-78201 Bucuresti, Sect. 1 Tel. (+40) 12 24 29 81, Fax (+40) 12 11 53 75 e-mail: procesimex@dnt.ro <u>Büro Cluj-Napoca;</u> Dipl. Eng. Dragos Muntean Str. Donath 17, Bloc M2, Scara 2, Ap. 14 RO-3400 Cluj-Napoca Tel. + Fax (+40) 64 18 64 26 e-mail: dragos_muntean@mail.dntcj.ro Russia (West): *KWT-M, Romanov per., 3, of. 87, RUS-103009 Moskau Tel. (+7) 095 743 6827, Fax (+7) 095 747 8362 e-mail: hbmwt@aha.ru **Messtechnik Moskau A/ja (post-Box) 63, RUS-125047 Moskau Tel. (+7) 095 787 11 84, Fax (+7) 095 787 11 83 e-mail: hbmimt@aha.ru Slovenia and Croatia: TRC, Vreckova 2, SLO-4000 Kranj Tel. (+386) 4 235 83 10, Fax (+386) 4 235 83 11 e-mail: ljudmila.licen@siol.net Sweden: Metrolink Scandinavia AB, P.O. Box 224, Reprovägen 6, S-183 23 Täby, Tel. (+46) 87 56 23 33, Fax (+46) 87 56 23 47 e-mail: info@metrolink.se Switzerland: Switzeriand: Spectris (Schweiz) AG - Hottinger Baldwin Messtechnik Postfach 69, Grabenstraße 6, CH-8606 Nänikon Tel. (+41) 19 43 60 80, Fax (+41) 19 43 60 81 <u>Büro Yverdon;</u> Spectris (Suisse) SA Rite de Bellevue 11, 1400 Yverdon-les-bains Tel. (+41) 24 426 72 80, Fax (+41) 24 426 72 85 Spain: HBM Ibérica, S. L., Avda. de los Encuartes, 19, E-28760 Tres Cantos (Madrid) Tel. (+34) 91 806 2610, Fax (+34) 91 804 9327 e-mail: hbm@spectris.es Turkey: Elimko Elektronik Imalat ve Kontrol Tic. Ltd. Sti., 8. Cadde 68. Sokak No. 16, TR-06510 Emek / Ankar: Tel. (+90) 312 2 12 64 50, Fax (+90) 312 2 12 41 43 Tel. citediako@elimko.com.tr *ANWIT, Metallistiwstr. 17, w.401, UA-03057 Kiew
 *ANWIT, Metallistiwstr. 17, w.401, UA-03057 Kiew
 Tel. + Fax (+380) 44 53 61 017
 WPS-Kiev, bulvar Lesi Ukrainki, 15, Komn.27, UA-252133 Kiev Tel. + Fax (+380) 44 295 01 89 e-mail: wps@public.ua.r Yugoslavia and Macedonia: TRC, Bul. M. Pupina 17/II, YU-21000 Novi Sad Tel. + Fax (+381) 21 22 267 e-mail: trcpro@neobee.net **Non-European Countries

Europe (Continuation)

Algeria ALITECH SARL, Algérie Industries et Technologies 28, Rue le Savoie, 16000 Hydra-Alger Tel. (+213) 2 603 575, Fax (+213) 2 603 438 e-mail: alitech@mail.wissal.dz

Argentina: **Coasin S.A.C.I. y F., Virrey del Pino 4071, C1430CAM Buenos Aires Tel. (+54) 11 45 52 31 85, Fax (+54) 11 45 55 33 21

coasin@coasin.com.ar Australia:

*Ranger Instruments, 41 Success Street, Acacia Ridge, Qld. 4110, P.O. Box 300, Archerfield, Qld. 4108 Tel. (+61) 7 3216 7166, Fax (+61) 7 3216 6211 Web: www.rangerinstruments.com

e-mail: sales@rangerinstruments.com Brazil:

Prazil: Spectris do Brasil Ltda, Rua José Carvalho, 55 São Paulo, SP, 04714-020 Brazil Tel. (+55) 11 5182 8166, Fax (+55) 11 5181 7400 *e-mail: hbm.wt.jrdamelio@uol.com.br **e-mail: rdvivo@uol.com.br

Non-European Countries (Continuation)

Canada: refer to USA Chile: refer to USA China: Hottinger Baldwin Measurement (Suzhou) Co., Ltd. 11-2 Binhe Road, Suzhou 215011, Jiangsu, P.R. China Tel. (+86) 512 825 6146, Fax (+86) 512 825 5422 e-mail: hbmchina@public1.sz.js.cn Egypt: **SOI Scientific Office for Instruments, P.O. Box 262; Sidi Gaber, El Horia Avenue behind 330 Sidi Gaber Tel. (+20) 3 542 5609, Fax (+20) 3 546 5412 e-mail: ebtehalf@aast.edu Hong Kong: refer to China India: IPS, Integrated Process Systems, 9 MP Avenue, Santhome, Madras-600 004 Tel. (+91) 44 498 17 86, 44 498 00 91 + 92 Fax (+91) 44 498 17 90 e-mail: ips@vsnl.com Indonesia: refer to China **Elina Technologies Ltd., P.O. Box 11475, 3 Hametzuda St,, Ind. Area Azur, Azur 58001 Tel. (+972) 3 559 0277, Fax (+972) 3 559 0360 e-mail: elina@inter.net.il Spectris Co., Ltd., HBM Division Yagishita Bldg., 5F, 313-10 Urawa-Nakacho, Saitama City, Saitama Pref., 336-0007, Japan Tel. (+81) 48 814 0251, Fax (+81) 48 814 0252 e-mail: kyomi_yokokawa@spectris.co.jp Korea: Spectris Korea Co. Ltd. / HBM Team, #431-070, 4FL, Shinsegi town., Phungchon-dong, Dongan-Ku, Anyang city, Kyounggi-Do, Korea Tel. (+82) 31 387 8023, Fax (+82) 31 387 8025 e-mail: wcjung@hbmkorea.co.kr Web: http://www.hbmkorea.co.kr Malaysia: refer to China Mexico: refer to USA Morocco: Auterep S.A.R.L., 8 Bis, Rue Neufchatel - Belvédère, Casablanca 05 Tel.: (+212) 22 24 73 -36 / -46, Fax: (+212) 22 24 79 74 www.auterep.co.ma, e-mail: auterep@alpha.net.ma Singapore: refer to China South-Africa: "H. Rohloff (Pty) Ltd.
 770, 4th Street, P.O. Box 202, Bergylei 2012 (Tvl.)
 Tel. (+27) 11 78 63 0 20, Fax (+27) 11 88 77 1 99 e-mail: info@rohloff.co.za *Massamatic (Pty) Ltd. Boompies Street, P.O. Box 6007, Parow East 7501, Western Cape Province Tel. (+27) 21 930 25 10, Fax (+27) 21 939 84 88 e-mail: sales@massamatic.com Syria: *Charbek & Harirah Est., Al-Taweel Building, New Clock Square, P.O. Box 4439, Homs / Syria Tel. (+963) 31 226 577, Fax (+963) 31 222 020 e-mail: abc.net@scs-net.org Taiwan: Liu-Weight Enterprise Inc., General Manager Tony Liu, 9F-2, No. 240, Sec. 2, Ta-Tung Rd., Hsi-Chi Town, Taipei Hsien, Taiwan R.O.C., Tel. (+886) 2 2649 7330, Fax (+886) 2 2649 7335

e-mail: liu.wt@msa.hinet.net Tunisia:

SCOPIA, 24 Bis, Rue Said Abou Baker, 1001 Tunis Tel. (+216) 1 354 435, Fax (+216) 1 332 706 e-mail: Sonelect.scopia@gnet.tn Thailand:

**Dynistec Co Ltd., 200 / 76 Moo 8, Nuanchan Rd., Klongkum, Bungkum, Bangkok 10230 Tel. (+66) 2 946 1314, Fax (+66) 2 946 0458 e-mail: dynistec@asiaaccess.net.th Uruguay: refer to USA

USA:

Hottinger Baldwin Measurements, Inc. 19 Bartlett Street, Marlborough, MA 01752 Tel. (+1) 508 624 45 00, Fax (+1) 508 485 74 80 e-mail: hbmsales@hbminc.com Venezuela: siehe USA Vietnam:

**Thuan Quoc & Co., 6 VU ngoc Phan, Dong Da -Hanoi Tel. (+84) 4 776 0616, Fax (+84) 4 776 0626 e-mail: tgco@hn.vnn.vn

Hottinger Baldwin Messtechnik GmbH

Im Tiefen See 45 D-64293 Darmstadt Germany

Tel. +49/6151/803-0 Fax +49/6151/803-9-100

e-Mail: info@hbm.com Internet: www.hbm.com