Series G Strain Gages - strain gages for the manufacture of transducers - lacksquare nominal resistance 120 Ω and 350 Ω are available - carrier material: glass fibre reinforced phenolic resin measuring grid material: Constantan | ctrain gage construction | | foil strain gage complete with embedded measuring grid | |--|----------------------|--| | strain gage construction measuring grid material thickness | μm | Constantan foil 3.8 or 5. depending on strain gage type | | carrier material base thickness cover thickness connections | μm
μm | polyimide 35 ± 10 25 ± 8 nickel plated Cu leads, 0.2 bzw. $0.3 \times 0.06 \times 30$ mm | | nominal resistance resistance tolerance gage factor nominal value of gage factors gage factor tolerance for 0.6 mm and 1.5 mm measuring grid length | Ω
% | 120 oder 350, depending on strain gage type ± 0.35 ²⁾ approx. 2 specified on each package ± 1.5 | | for \geqq 3 mm measuring grid length temperature coefficient of the gage factor nominal value of temperature coefficient of gage factor | %
1/K | \pm 0.7 approx. (115 \pm 10) \cdot 10-6 specified on each package | | reference temperature operation temperature range | °C | 23 | | for static, i.e. zero point related measurements for dynamic, i.e. not zero point related measurements | °C
°C | - 70 + 200
- 200 + 200 | | transverse sensitivity within reference temperature range using adhesive Z 70 on strain gage type LG 11-6/120 | 0/0 | - 0.1 | | temperature variation temperature variation acc. to selection, adjusted to thermal expansion coefficient α | - 114 | specified on each package | | lpha for ferritic steel $lpha$ for aluminum other temperature variation adjustment on request | 1/K
1/K | 10.8 · 10-6
23 · 10-6 | | temperature variation tolerance
adjustment of temperature variation within range | 1/K
∘C | ± 0.3 · 10-6
-10 + 120 | | mechanical hysteresis ¹⁾ at reference temperature and strain ϵ = \pm 1000 μ m/m strain gage type LG 11-6/120 | | | | at 1st load cycle and adhesive EP 250
at 3rd load cycle and adhesive EP 250
at 1st load cycle and adhesive X 60 | μm/m
μm/m
μm/m | 0.5
0.5
3 | | at 3rd load cycle and adhesive X 60 at strain gage type LG11-3/350 at 1st load cycle and adhesive Z 70 | μm/m
μm/m | 1.6 | | at 3rd load cycle and adhesive Z 70 | μm/m | 0.8 | | maximum elongation ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LG 11-6/120 | | | | strain limit ϵ for positive direction strain limit ϵ for negative direction | μm/m
μm/m | 20 000 (≜ 2 %)
50 000 (≜ 5 %) | | fatigue life ¹⁾ at reference temperature using adhesive Z 70 on strain gage type LG 11-6/120 | | | | stress cycle value L_w at alternating strain $\epsilon_w = \pm 1000 \ \mu\text{m/m}$ and zero zero point drift $\Delta \epsilon_m \le 300 \ \mu\text{m/m}$ $>> 10^7$ $\Delta \epsilon_m \le 30 \ \mu\text{m/m}$ $3 \cdot 10^6$ | | | | at strain gage typ $^{\text{m}}$ LG11-6/350 $\Delta \ \epsilon_{\text{m}} \leqq 300 \ \mu\text{m/m} >> 10^7$ $\Delta \ \epsilon_{\text{m}} \leqq 30 \ \mu\text{m/m} \qquad \qquad 3 \cdot 10^6$ | | | | minimum radius of curvature, longitudinal and transverse, at reference temperature | mm | 3 | | usable bonding materials
cold curing adhesives
hot curing adhesives | | Z 70; X 60; X 280
EP 250; EP 310 | | | | |