
The University of Michigan 

 
Improved Position Estimation for Mobile Robots on 

Rough Terrain Using Attitude Information 
Technical Report UM-ME-01-01, August 2001 

 
By  

Lauro Ojeda and Johann Borenstein 
Department of Mechanical Engineering 

 

ABSTRACT 

Most mobile robots use a combination of absolute and relative sensing techniques for position 
estimation. Relative positioning techniques are generally known as dead-reckoning. Many 
systems use odometry as their only dead-reckoning means. However, in recent years fiber optic 
gyroscopes have become more affordable and are being used on many platforms to supplement 
odometry, especially in indoor applications. Still, if the terrain is not level (i.e., rugged or rolling 
terrain), the tilt of the vehicle introduces errors into the conversion of gyro readings to vehicle 
heading. In order to overcome this problem vehicle tilt must be measured and factored into the 
heading computation.  

This technical report introduces a new fuzzy logic expert rule-based method for fusing data 
from multiple low- to medium-cost gyroscopes and accelerometers in order to estimate 
accurately the attitude (i.e., heading and tilt) of a mobile robot. The attitude information is then 
further fused with wheel encoder data to estimate the three-dimensional position of the mobile 
robot. Experimental results of mobile robot runs over rugged terrain are presented, showing the 
effectiveness of our fuzzy logic rule-based sensor fusion method. 

1. INTRODUCTION 

Most mobile robots estimate their position through a combination of absolute and relative sensor 
systems. Absolute sensor systems are those that rely on external beacons or landmarks, such as 
GPS and natural or artificial landmarks in the environment [Borenstein et al., 1996]. Relative 
positioning sensors are those that don’t use clues from the environment, such as wheel encoders 
for odometry and inertial sensors. Navigation based on relative positioning, also called dead-
reckoning, is the subject of this technical report. 

It is generally unfeasible to use only dead-reckoning in a mobile robot, because relative 
positioning accumulates errors over time and/or distance, and these errors grow without bound. 
Absolute positioning alone is also unfeasible in most situations, because the external beacons or 
markers are not necessarily available everywhere along the vehicle’s path. This is particularly 
true in GPS-based outdoor systems, where dense foliage or tall nearby structures (the so-called 
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“urban canyon”) may obstruct the “view” of the sky of the receiver. It is therefore widely 
accepted practice to combine absolute and relative positioning, and experts agree that improved 
dead-reckoning increases the distance and/or time over which a mobile robot can operate without 
absolute position updates. 

The most popular and easy-to-implement means of dead-reckoning is odometry. However, 
this method introduces substantial, unbounded errors when traveling over irregularities on the 
ground. On rugged outdoor terrain it is therefore not feasible to use odometry as the only means 
for dead-reckoning.  

In recent years fiber optic gyroscopes have become very affordable, and in many mobile 
robots odometry and fiber optic gyroscope are combined, resulting in dramatically improved 
dead-reckoning accuracy. One problem, however, is that a single gyro is effective only on planar 
terrain. However, when used on rugged or rolling outdoor terrain, a single gyro will not suffice 
to measure accurately the change of heading of a vehicle if it turns on an incline. This is so 
because the sensitive axis of the vehicle-mounted gyro remains normal to the plane of the 
vehicle, but not parallel to the z-axis of the world coordinate system, in which the heading angle 
is measured. A discussion on this issue and a definition of terms is presented in Section 2. 

For accurate computation of the heading of a platform it is therefore necessary to know the 
deviation of the platform from the horizontal plane. We will explain in Section 3 that this 
information, also known as “tilt,” is best obtained from a three-axis gyro systems (with some 
other enhancements, also explained in Section 3). 

While three-axes gyros are commercially available, high-quality units typically cost over 
$10,000. Because this cost is inhibitive for most mobile robot applications we have developed a 
three-axes gyro system that measures tilt with one low-cost, two-axes Corriolis gyro (costing 
~$150) in conjunction with low-cost accelerometers. A single high-quality fiber optic gyro 
(costing ~$2,000) is still used to measure the robot’s turning rate (i.e., the rotation about the 
platform’s z-axis). 

We also introduce in this technical report a novel Fuzzy Logic and Expert rule-based 
navigation method (FLEXnav) to fusing the data from these different sensor modalities. Unlike 
the commonly used Kalman filter techniques for fusing sensor data [Tonouchi, et al., 1994; 
Krantz and Gini, 1996], our system is based on expert rules derived from careful observations of 
the physical functioning of each sensor. Our basic philosophy is that many error mechanisms can 
be defined more specifically and accurately by expert reasoning, based on in-depth physical 
understanding of sensors and their associated error sources, than by the statistics-based Kalman 
Filter methods [Chung et al., 2001]. Our FLEXnav approach is explained in detail in Section 4. 
Section 5 briefly explains how to estimate position based on odometry and the heading 
estimations, and Section 6 presents experimental results, including actual robot runs over very 
rugged terrain.  

2. ATTITUDE ESTIMATION 

The angular attitude of a robot is a set of three angles measured between the robot’s body and 
the absolute world coordinate system. Sometimes the term “navigation frame” is used for a 
world coordinate system, in which the x  axis points east, the y axis points north, and the z axis 
is parallel but opposite in sign to the local gravity vector. Another coordinate system, called 
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“body frame” can be considered embedded in the robot body so that its x-axis points to the right, 
the y-axis points forward, and the z-axis points upward. Body axes are labeled xb, yb, and zb 
[Kelly et al., 1995], and the accelerometers and gyroscopes described in this technical report 
were mounted in alignment with these axes. Three angles express the relative orientation 
between the body frame and the navigation frame, as shown in Figure 1. 

The most common form of representation for these three angles is the so-called set of Euler 
angles, φ ,θ , and ψ . These three angles are called roll (sometimes also called “bank angle”), 
pitch (also called “elevation”), and yaw (also called “heading” or “azimuth”), respectively.  φ  Is 
the angle between xb and the horizontal plane (i.e., the plane that is normal to the z axis of the 
navigation frame), θ  is the angle between yb and the horizontal plane, and ψ  is the angle 
between x  and the projection of xb on the horizontal plane [Biezad et al., 1999]. For the 
mathematical treatment in the following sections we define a vector Λ = [φ ,θ , ψ ]T that will 
represent the Euler angles throughout this technical report. 

Rates of rotation of the body frame relative to the navigation frame can be expressed in terms 
of the derivatives of the Euler angles, called “Euler rates.”  

Specifically, Euler rates εΩ  and body rates of rotation bΩ  are related by: 

[ ] bb
T

C Ω==Ω ε
ε ψφθ &&&  (1) 

Where 



















−=

θ
φ

θ
φ

φφ
θφθφ

ε

cos
cos

cos
sin0

sincos0
tancostansin1

bC  

[ ]Tzyxb ωωω=Ω  

ωx, ωy, and  ω z are the rates of rotation of the vehicle around the respective axes of the body 
frame.  

 
Figure 1: Robot axes and Euler angles (adopted from [Kelly, 1995]) 
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Euler angles can be calculated from Euler rates by integrating εΩ  over time: 

[ ] ∫Ω==Λ dtT
εψφθ  (2) 

For many indoor mobile robotics applications, where floors are typically level, it is an 
acceptable and widely used assumption that φ  and θ  can be considered to equal zero. With this 
assumption we can rewrite Eq. (1): 

zωψ =&  (3) 

According to Eq. (3) the heading angle ψ  can be estimated by integrating only Zω .  

However, on rough terrain or when position estimation in three dimensions (3D) is required, 
all three attitude parameters must be considered. In the next section we introduce our low-cost 
sensing system for measuring all three attitude parameters. 

3. ATTITUDE ESTIMATION SENSORS 

Attitude relative to the horizontal plane xy  (i.e., roll and pitch – φ and θ , respectively) is 
often referred to as “tilt.” Low cost tilt sensors are commercially available, typically in the form 
of electrolytic fluid sensors. However, most of these sensors are suitable only for static or quasi-
static conditions because of their slow response time. In other words, they are suitable only for 
operation on gently rolling terrain. For operation on rugged terrain faster tilt sensors are required.  

 Tilt can also be measured with magnetometers, but this approach is not suitable for indoor 
applications, where locally strong fluctuations in magnetic fields are introduced by electric 
power lines, metal structures, or other electromagnetic sources. Yet another approach is based on 
measuring tilt with accelerometers, although the problem here is the high drift rate of these 
sensors [Merhav, et al., 1996].  

For dynamic applications requiring all three attitude parameters the conventional approach 
has been based on integration of rate information from sets of three mutually perpendicular 
gyroscopes. Three-axis gyroscopes are commercially available but aimed primarily at use in 
aircraft or missiles. Such systems, although typically more accurate than the system described 
here, are also prohibitively expensive for most mobile robot applications. 

In this technical report we described an approach that aims at using lower-cost sensing 
components while still providing high accuracy. We compensate for the relative poor 
performance of these low-cost components by taking into account the particularities of mobile 
robot navigation on rugged terrain. Some of these particularities are: 

1. The mobile robot is horizontal, near horizontal or at constant tilt, most of the time. 

2. Mobile robot velocities and accelerations are small – orders of magnitude lower than those 
of missiles or aircraft. 

3. Wheeled and even tracked vehicles allow for the use of odometry – an advantage entirely 
absent in aircraft or watercraft.   

In our system we used one accurate (but more costly) fiber-optic gyroscope, and two low-cost 
but inaccurate Coriolis gyros. In addition we used two low-cost accelerometers.  
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The accurate gyro is a fiber optic gyro model RA2100 made by [KVH]. In earlier work we 
developed a precision calibration system for this gyro, which reduces the errors due to the non-
linearity of the scale factor and temperature by about one order of magnitude compared to an off-
the-shelf unit [Ojeda et al., 2000].   

We use this rather accurate, calibrated gyro to measure the heading angle ψ , which, 
according to assumption (1) above, is the most important angle for land vehicles and is affected 
mostly by zω (see Eq. 1). To measure the less important angular rates xω  and yω , we used a low 
cost two-axes Coriolis-based gyroscope made by [GYRATION]. Again under assumption (1) 
these angular speeds will affect primarilyφ  and θ . The low-cost Coriolis gyroscopes have 
significant limitations, such as large drift errors, noisy output, inaccuracy, sensitivity to 
acceleration, etc. The most severe limitation of the Coriolis gyros is the large drift rate. However, 
as was shown by Borenstein and Feng [1996], one can overcome this limitation by using the 
gyro readings only during carefully selected, short periods of time.  

We also incorporated two low-cost accelerometers [ANALOG DEVICES] along the rx and 

ry  axes to estimate tilt information φ  and θ  when the robot is static or moving linearly at 
constant speed. Under these conditions tilt can be calculated as follows:  









= −

g
gx1sinφ

  (4) 









= −

g
g y1sinθ  (5) 

where 

g   gravitational acceleration 

xg  x -component of the gravitational acceleration. 

yg  y -component of the gravitational acceleration 
 

Similar to gyroscopes, accelerometers suffer from bias drift problems. It is well established 
that accelerometers are generally not suitable for measuring linear displacement in mobile robots 
[Barshan and Durrant-Whyte, 1995]. This is because accelerometer measurements must be 
integrated twice to yield position, and thus even small amounts of drift will grow substantially 
and without bound. However accelerometers can be used as tilt sensors since tilt information can 
be derived directly form the accelerometer readings (see Eqs. 4 and 5). No integration is needed 
and therefore drift is not a dominant source of errors. Rather, other sources of error become 
relatively more significant, such as: inaccuracy, noise, non-linearity, and sensitivity to vibration. 
Nonetheless, accelerometers can be useful to bound and reset the tilt information calculated by 
the gyroscopes. A block diagram of the complete system is shown in Figure 2, and a photograph 
is shown in Figure 3). It should be emphasized that it is critically important to mount the sensors 
in proper alignment.  

Under dynamic conditions, i.e., when the robot accelerates, accelerometers will also measure 
the acceleration of the robot in addition to the robot’s tilt. Such ambiguity can be resolved using 
encoder readings.  
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4. FUZZY MULTI-SENSOR DATA FUSION 
USING EXPERT RULES 

Based on the specific physical shortcomings 
and strengths of each sensor modality, we have 
defined the following basic expert rules: 

 

Rule 1:  
If the vehicle is in the process of turning about 
any of its axes, our best attitude estimate is the 
one derived from the gyroscope outputs, that is 

gΛ≈Λ , where 

[ ]Tgggg ψφθ=Λ   (6) 

and the index ‘g’ indicates that the value was 
derived from gyro data. θg, φg, and ψg are 
computed from gyro data according to 
equations (1) and (2). 

 

Rule 2:  
If the robot is not turning around any axis and 
not accelerating linearly, the accelerometers 
can directly measure the roll and pitch attitude 
parameters ( aφ  and aθ ). If the conditions of 
Rule 2 are met for several seconds 
uninterruptedly, then we can also measure and 
correct for the bias drift errors of the gyroscope 
(see [Ojeda et al., 2000]) and reset the tilt 
parameters of the robot to the tilt estimated by 
the accelerometers (see Eqs. 4 an 5), therefore  

aφφ ≈  and aθθ ≈  (7) 

In both cases the symbol “ ≈ ” means 
“tendency” instead of “equality.” 

Even though the sensor integration conditions are well defined and sensible, it is not feasible 
to implement them as strictly binary rules. This is due to the natural imprecision of the sensors 
and because conditions like “robot not turning” or “constant speed” are not realistic when the 
vehicle is in motion on rugged terrain. 

An integration algorithm that takes into account the physical capabilities and limitations of 
each sensor is therefore necessary. We found that fuzzy logic is well suited for this task. 

• Fuzzy logic uses rules to map inputs and outputs. Using natural language, expert rules as the 
ones described above can be translated easily into IF-THEN statements used by fuzzy logic 

Expert system 
position 

estimation

Wheel-encoders

Accelerometers

Gyroscopes

Gyro Roll Gyro Pitch

Gyro Yaw (fiber-optic)

Left Front

Left Rear

Right Front

Right Rear

Expert system 
attitude 

estimation

θ,Φ,Ψ

x,y,z 2001 Low-cost dead-reckoning.flo

Accel. YAccel. X

 
Figure 2: Block diagram of our low-cost 3D position 
estimation system for mobile robots.  

 
Figure 3: The inertial components of the attitude 
measuring system: KVH fiber-optics gyroscope, Gyration 
two-axes Coriolis gyroscope and an Analog Devices two-
axis accelerometer. 
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rules. This feature was especially important to incorporate the fusion conditions into the 
system. 

• Fuzzy logic is specifically designed to deal with the imprecision associated with the noisy 
low-cost sensors used in our system. 

• Trying to use a deterministic approach to solve this kind of problem accurately would require 
the development of a highly non-linear system model, which, in turn, would increase the 
complexity and development time. Fuzzy logic, on the other hand, can handle nonlinear 
models of arbitrary complexity [Sang et al., 1997]. 

Our fuzzy data fusion uses four fuzzy membership functions1 inputs and two outputs (see 
Figure 4). The first input represents the state of rotation (i.e., whether the platform is rotating 
about any axis).  The parameter that determine this condition is calculated by: 

zyxt ωωωω ++=   (8) 

The second and third inputs will determine whether or not the acceleration of the robot is 
changing as seen by the accelerometers, which would suggest that the robot is rotating, or 
accelerating (see Eqs. 9 and 10): 

[ ] [ ]1−−=∆ nanaa xxx  (9) 

[ ] [ ]1−−=∆ nanaa yyy   (10) 

If 0≈∆ xa  and 0≈∆ ya  then this means 
that the robot is either standing or moving 
with constant acceleration, and that it is 
standing or moving on terrain that has a 
constant slope. The “standing-or-moving” 
ambiguity can be resolved using encoder 
information, which is the fourth input to the 
system. The first derivative of the velocity as 
measured by the encoders represents the 
acceleration of the robot (see Eq. 11). 

[ ] [ ]1−−=∆= nvnvva eeee   (11) 

The outputs of the fuzzy fusion system, τφ  and τθ , are dimensionless weighting factors that 
emphasize either the gyroscope readings, the accelerometer readings, or both of them. In practice 
these weighing factors can range from 0 to 1 and are used as follows. 

( ) τφφφφφ gag −+=  (12) 

( ) τθθθφθ gag −+=  (13) 

Once the inputs and outputs are identified and defined, one needs to establish the relationship 
between them. As mentioned above, fuzzy logic uses IF-THEN rules to map inputs and outputs. 
For our fuzzy logic fusion system we translated our knowledge base (fusion rules) into the fuzzy 
rules shown below: 

                                                 
1 In Fuzzy Logic, a “membership function” is defined as a curve that maps each point in the input space to a 

membership value or grade between 0 and 1. 

 
Figure 4: Inputs and outputs of the fuzzy multi-sensor data 
fusion system. 
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1ℜ : if tω is not SLOW then τφ  is GYRO and τθ  is GYRO 

2ℜ : if xa∆ is HIGH then τφ  is GYRO 

3ℜ : if ya∆ is HIGH then τθ  is GYRO 

4ℜ : if ea  is HIGH then τφ  is GYRO and τθ  is GYRO 

5ℜ : if tω  is SLOW and xa∆  is LOW and ea  is LOW then τφ  is ACCEL 

6ℜ : if tω  is SLOW and ya∆  is LOW and ea  is LOW then τθ  is ACCEL 

7ℜ : if tω  is SLOW and xa∆  is LOW and ea  is MED then τφ  is BOTH 

8ℜ : if tω  is SLOW and ya∆  is LOW and ea  is MED then τθ  is BOTH 

9ℜ : if tω  is SLOW and xa∆  is MED and ea  is LOW then τφ  is BOTH 

10ℜ : if tω  is SLOW and ya∆  is MED and ea  is LOW then τθ  is BOTH 

11ℜ : if tω  is MED and xa∆  is LOW and ea  is LOW then τφ  is BOTH 

12ℜ : if tω  is MED and ya∆  is LOW and ea  is LOW then τθ  is BOTH 

13ℜ : if tω  is MED and xa∆  is not LOW  then τφ  is GYRO 

14ℜ : if tω  is MED and ya∆  is not LOW then τθ  is GYRO 

15ℜ : if tω  is MED and ea  is not LOW then τφ  is GYRO and τθ  is GYRO 

 
Figure 5 shows the membership functions used as input and output of our system, and Figure 

6 shows how the τφ output of the expert system relates to some specific input conditions. Similar 
relationships were derived for τθ . 

It should be noted that the FLEXnav system described in this technical report is only used to 
reduce errors in roll and pitch (φ  and θ , respectively), which would otherwise be very large 
because neither the accelerometers nor the low-cost gyros by themselves are very accurate. And 
since roll and pitch affect the computation of the heading angle ψ  (as shown in Eq. 1, for rugged 
terrain), reducing the errors in roll and pitch reduces the errors in ψ . The experimental results in 
Section 6 substantiate this claim.  

 
Figure 5: Membership functions of the fuzzy fusion 
algorithm: a), b), c) and d) are inputs; e) and f) are 
outputs  

 
Figure 6: Relationships between the four inputs and one of 

the two outputs, τφ . 
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5. POSITION ESTIMATION 

Once attitude has been calculated, the next step is to use this information to estimate the 
position of the robot with respect to the navigation frame, denoted as [ ]zyxP = .  Our dead 
reckoning system uses only wheel encoder information as a means of measuring the linear 
movement of the robot, which means that we can only sense the motion of the robot along the ry  
robot axis. We will denote the linear displacement of the robot along its longitudinal axis ry∆ . 
Therefore any other kind of movement will not be detected or considered in the solution. In other 
words 

0=∆ rx  sideways movement  

0=∆ rz  vertical movement 

Under these conditions, the estimation of the instantaneous linear movement of the robot with 
respect to the navigation frame can be calculated as follows: 

 

∆P = [∆x, ∆y, ∆z] = ∆yr[cosθ cosψ, cosθ sinψ, sinθ] (14) 

At any instant n, the position of the robot can be expressed as: 

Pn = [xn, yn, zn] = Pn-1 + ∆P (15) 

6. EXPERIMENTAL RESULTS 

We performed several experiments to test our multi-sensor data fusion algorithm on rugged 
terrain. The mobile platform used in all experiments was a Pioneer AT 4-wheel drive/skid-steer 
mobile robot, shown in Figure 7. The robot was remotely controlled to drive along a closed loop 
path so that at the end of each run it returned to the initial position. The total path length was 
about 100 m and the duration of each trip was about 98 sec. Thus, the platform’s average speed 
was about 1 m/sec. During each 
experiment all the sensor signals 
where recorded for posterior analysis. 

The experiments were performed 
on sloped and gently rolling lawn. 
Bark, heaped up highly around large 
trees on the lawn provided for 
somewhat steep moguls, as shown in 
Figure 8. The remote operator took 
particular care to make the Pioneer 
turn right on those moguls, as these 
slopes were expected to introduce the 
largest errors. As a result, the 
trajectories looked irregular, as 
shown in Figure 9. 

 
Figure 7: This Pioneer AT was used in all of the experiments. 
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6.1  Experimental results for the heading angle 

We ran the robot several times approximately along the above described path. A set of roll 
and pitch angles computed only from readings from the accelerometers and Coriolis gyroscopes 
are shown in Figure 10a and Figure 10b for a typical run. Figure 10c show the roll and pitch 
angles after fusing the accelerometer and Coriolis gyro data with our FLEXnav method . 
 

 
Roll angle φ  Pitch angle θ  

Figure 10:  Roll angle (left pane) and pitch angle (right pane) of the robot as measured by  
a) the accelerometers, and b) the Coriolis gyroscopes. c) Roll angleφ and pitch angle θ as computed after 
merging accelerometer, gyroscope, and odometry data with our FLEXnav system. 

 
Figure 8: Partial view of the terrain on which the 
experiments were run. Moguls with up to 10-degree 
slopes were created by the piles of bark surrounding 
the trees.  

 
Figure 9: Robot traveled path, dashed lien shows the 
path of the robot estimated using only a fiber optics 
gyroscope on the Z axis, solid line is the estimated path 
of the robot as seen by our FLEXnav system 
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Once the momentary tilt of the platform is computed (i.e., the data plotted in Figure 10c), the 
heading angle ψ can be computed using Eqs. (1) and (2) and the data from the high-quality fiber-
optic gyroscope. Since in our experiments there was no way to measure the absolute attitude of 
the robot at any given time, we can compare in our experimental results only the final, computed 
pose (i.e., position and heading) with the actual pose of the robot. We recall that the robot was 
steered so that its final pose coincided with its starting pose.  

We performed a total of four runs in clockwise (cw) and four runs in counter-clockwise (ccw) 
direction. The resulting absolute heading errors after returning to the starting position were 
measured and are shown in Table I and Figure 11 for four different sensing configurations: a) 
with only the fiber optic gyro that measured heading (i.e., without any, tilt information); with tilt 
information based (b) only on the Coriolis gyros; (c) only on the accelerometers; or (d) on the 
FLEXnav system (Coriolis gyros and accelerometers). The results show that the FLEXnav 
system improves heading measurement accuracy by about one order of magnitude over the other 
three options. Figure 11 shows a plot of the difference between the momentary heading angles as 
computed by the fiber optic gyro only and by the fiber optic gyro with FLEXnav-derived tilt 
data, for one of the runs. If we assume for a moment (as is supported by the low return heading 
errors in Table I) that the heading computed with FLEXnav-derived tilt data is almost absolutely 
correct, then Figure 11 shows how the heading error in the case of the fiber optic gyro-only 
(without tilt data) would accumulate on rugged terrain. 

6.2  Experimental results for position estimation 

From Equation 12 and 13 it is clear that an attitude estimation error will be reflected in the 
positioning estimation, and that this error will increase over time. The final positioning error for 
the experiments explained in Section 6.1  are shown in Figure 13. 

 
Figure 11: Difference between the momentary heading 
angles as computed by the fiber optic gyro only and by the 
fiber optic gyro with FLEXnav-computed tilt data. 

Table I: Absolute return heading errors after returning to the starting position for a total of eight runs along the 
path of Figure 9.  

 Absolute Heading Error (in degrees), after correcting the fiber optic gyro 
data (heading) with tilt data from 

Run # 

No tilt data 
used in 
heading 

calculation 

Coriolis 
gyros tilt data 

only 

Accelerometers’ 
tilt data only 

Coriolis gyros and 
accelerometers, 

fused with FLEXnav 

1 (cw) 7.5 9.2 21.8 0.3 

2 (cw) 18.2 6.5 21.3 1.9 

3 (cw) 5.2 6.2 29.7 0.8 

4 (cw) 12.0 13.6 14.3 1.5 

5 (ccw) 5.7 7.9 15.2 1.9 

6 (ccw) 6.8 20.8 12.2 0.8 

7 (ccw) 15.0 1.3 6.5 1.1 

8 (ccw) 4.5 10.3 9.1 0.7 

Average 9.4 9.4 16.3 1.1 
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In addition to the corrections of the final position estimation, our system can provide an 
estimate on the third position coordinate, z . In a different set of our experiments we ran the 
robot over an elevated plateau (see Figure 14a) and our system correctly estimated the contour of 
this plateau, as shown in Figure 14b. 

 
(a) 

 
(b) 

Figure 13: Final positioning errors of the robot. Blue circles show the errors when using the fiber-optic gyro only, 
while green squares show the errors when using the fiber optic gyro with our FLEXnav tilt information. (a) Clockwise, 
(b) counter-clockwise. 
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Figure 12: Absolute return orientation errors after completing the 100 m run over rugged terrain. 
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Figure 14: a) Robot traveling over an elevated plateau, b) Plot of the z-component of the robot’s position while 
traversing the plateau.  

7. CONCLUSIONS 

On rugged terrain momentary tilt information must be taken into account for correcting 
heading measurements, regardless of the quality of the main heading sensor (a fiber optic gyro, 
in our case here). To do so we have proposed and implemented a fuzzy logic expert rules-based 
navigation system, called FLEXnav. The FLEXnav system compensates for the comparatively 
poor performance of the low-cost sensors that were used to measure tilt, thereby making them 
suitable for measuring tilt in a fast moving mobile robot. The tilt correction provided by our 
FLEXnav system results in a ten-fold improvement in heading estimation accuracy on 
moderately rugged terrain, as compared to a system that uses only a single gyroscope for 
measuring heading or compared to systems that use only one low cost sensor modality to 
measure tilt (i.e., low-cost Corriolis gyros or accelerometers).  
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