
 K160

 Simple
 PICmicro®
 Programmer/
 Experimenter

 DIY Electronics (HK) Ltd
 PO Box 88458,
 Sham Shui Po,
 Hong Kong

 http://www.kitsrus.com
 mailto: peter@kitsrus.com

 Last Modified 16 Nov 2002

http://www.kitsrus.com
mailto: peter@kitsrus.com

DIY K160 Contents

Kit Construction

First Run

Flash That LED

Define The Problem

Writing The Software

Number Systems

Assembler Is Easy

Mnemonics

Labels

MPLAB

Config

Parts List

Schematic

PCB Overlay

PCB Design

DIY K160 Project - Page 1

Board Construction

The board is quite easy to construct as there are only a handful of parts.

It is advisable to read through the construction notes before starting.

WARNING

Be aware that the PIC16F627 and 4013 chips are sensitive to static electricity
discharge and could be damaged by mishandling of the chips. Do not touch the
pins and only handle the chips by the ends. It is advisable to use sockets for
these two chips.

Be careful with the board after assembly. Try to handle it only by the edges.

This project can work with the PIC16F627 or PIC16F628 chips.

DIY K160 Project - Page 2

Starting

The first thing to do is inspect the PCB for shorted or open tracks or other
damage. When you are satisfied that all is well, then you can proceed.

Start with the flattest parts first, which are the resistors. Hold each resistor body
by the thumb and forefinger and use your other hand to loosely bend both of the
leads over at right angles at the same time. Try not to make the bends too sharp,
and you will find that they slide straight into the mounting holes on the board.

Leave the pigtails on each of the components until after soldering as the extra
lead length serves as a heat sink for the component. Try not to leave the
soldering iron on the components too long or you risk damaging them. The usual
method is to hold the iron tip so that it touches the component lead and the PCB
pad at the same time, and then apply a small dab of solder. This operation
should only take about a second or two. If you are unsure of your soldering
ability, find some spare components and practice on these before building the
board.

Check that each solder joint is bright and shiny and doesn't look like a big dull
blob which could mean a dry solder joint. The solder should flow freely onto the
component lead and solder pad if it is to be a good joint.

After the resistors are soldered in, recheck your work and then mount diode D1
(IN4004).

There are 5 LEDs that can be mounted next. Make sure they
are oriented correctly. The Anode is marked on the PCB and
is the longer of the two leads on the component. The
Cathode has a flat surface on the LED body and is also
marked on the board.

Next, mount the IC sockets for the chips, if supplied.

Now you can mount the box poly (MKT) capacitors. These are all the same
value.

Next, mount the electrolytic capacitor C1. This component is polarity sensitive so
make sure it is mounted properly. The positive lead is longer than the negative
lead, and the negative lead is also marked on the side of the capacitor. On the
PCB overlay, there are holes marked [+] as the positive lead for this component.

DIY K160 Project - Page 3

Now mount the 78L05 regulator
making sure it is positioned
correctly. Then you can mount the
RS232 socket and the power jack.

Leave the 4013 and PIC chips off
the board at this stage.

That is all there is to the
construction.

Now please go over your work and
inspect it thoroughly. Check for
missed or odd looking solder joints, bad component placement and orientation,
and short circuits. If you are satisfied that all is well, connect a 9 - 12VDC power
source to the power jack. The center pin is positive. Place a voltmeter with the
negative lead on pin 7 of the 4013 chip socket and the positive lead on pin 14.
The meter should read close to 5V. If it doesn’t, turn off the power and check the
board again.

If all is well, turn off the power and insert the 4013 chip. Make sure it is placed
into the socket with pin 1 towards the RS232 socket.

Connect a suitable serial cable between the board and your PC. This cable is a
straight through type, NOT a null modem cable. In other words, pin 1 at one end
connects to pin 1 at the other end, pin 2 to pin 2 etc.

Run the programmer software for the kit. diyk160.exe

Make sure you have the correct COM port set. If the wrong port is showing, enter
the correct port number in the COM Port Value box and click on Port to
update it. If the port opens successfully then Online will be displayed. If it failed
to open then Offline will be displayed and you will have to try another port
number.

Assuming all is well, press Run and then OK in the dialogue box that opens.

You should see the Active LED light. If not, turn the power off and recheck your
work and the COM port setting. If it did light, then turn the power off and carefully
insert the PIC16F627 chip.

DIY K160 Project - Page 4

First Run

Make sure diyk160.exe is running and the serial cable is connected to the
project board. Apply power to the board.

Press Program and select the hex file called flash.hex which should be in
your installation directory.

The Active LED should light indicating that the code is being programmed into
the PIC.

The software will indicate the programming progress.

Once completed press Run.

You will get a dialogue asking if it is ok to continue, click Yes.

You should now see the LED connected to pin RA0 start to flash. You will also
see the Active LED light again.

When satisfied that all is well, press Stop.

If the Active LED did not light then there is a problem. Go over the construction
notes again and verify that everything is ok and try programming again. Make
sure the PIC is in the socket correctly.

Now that the construction is complete, it’s time to get
into the best stuff.

Hold onto your hats and we will discover how the PIC
code actually works.

DIY K160 Project - Page 5

Flash That LED

Flashing a LED would have to be the universal number one project for new PIC
programmers. If you have had anything to do with writing software for PC’s, then
it would be the equivalent of writing “hello world” on the monitor for the first time.

You might be thinking at this stage...“What a boring project. I want to create a
robot that flies to the moon, not mess around with silly ‘hello world’ or LED flash
programs.”

Patience my friend. Things like that will come in due course, and as the old
saying goes, “You have to crawl before you can walk”.

Before we get going, you have to understand that a PIC, or any other
microcontroller chip for that matter, is just a piece of silicon wrapped in plastic
with pins sticking out. It does not have any brains, nor can it think for itself, so
anything the chip does is the direct result of our intelligence and imagination.
Sometimes you may get the feeling that these things are alive and are put here
to torment your every waking minute, but this is usually due to bugs in your
software, not a personality problem inside the chip.

Remember:

The PIC will always do what you tell it to do,
not necessarily what you want it to do.

One other thing that can cause problems is in the way you handle the chip. Your
body is more than likely charged with Static Electricity and is usually the zap you
feel when you touch a metal object after walking on nylon carpet or similar. The
PIC’s don’t like this high voltage discharging into them. It can destroy the
functionality of the chip either totally or partially, so always try to avoid touching
the pins with your fingers. Handle the chips only by their ends.

The PIC16F627 data sheet is available in PDF format from the Microchip web
site.

OK then, so how do we get started?

You might be tempted to jump right in and write volumes of code right from the
start, but I can only say, that in all probability your software will not work.

http://www.microchip.com

DIY K160 Project - Page 6

Now this might sound a bit tedious, but planning is the best way to begin any
piece of new software. Believe me, in the long run, your code will stand a much
better chance of working and it will save you valuable time. Other benefits are
that your code will be well structured and documented, and in the future when
you have forgotten what you wrote, you can read through and understand it more
easily.

So just how do we get this piece of silicon to do our bidding, which in this case is
to flash a LED.

Fundamentally, the PIC needs three things to make it work.

1) 5 volt power source.
2) Clock source
3) Software

The 5 volt supply is there to power the chip, the clock source gives the chip the
ability to process instructions and the software is a list of instructions that we
create. The PIC will follow these instructions to the letter with no exceptions, so
we must make sure that they are written correctly or our program will not work as
intended.

Define the problem

To begin planning we must first define the LED flash problem that is going to be
solved for us by using a PIC. By this I mean the physical hardware needs of the
project. You can’t write reams of software without knowing what the PIC is going
to control. With some projects you may find that you need to alter hardware and
software as you progress through the development, but don’t be discouraged.
This is normal for a lot of projects and is called prototyping.

We can start this discussion by saying that we must have a voltage source
connected to the LED to make it light. Usually we put a resistor in series with the
LED to limit the current through it to a safe level and in most LED’s this current is
about 20mA maximum. There is no real point in driving a LED with 20mA with
this simple project, so let’s drive it with 3mA to be on the safe side.

Quite obviously, if the PIC is going to turn the LED on and off for us, then the
LED must be connected to one of its pins.

DIY K160 Project - Page 7

These pins can be set as inputs or as outputs and they are sometimes referred
to Input/Output (IO) pins. When they are set as outputs we can make each
individual pin provide 5 volts or 0 volts by writing either a Logic 1 or a Logic 0 to
them. We can now define this by saying we set a pin as an output high or as an
output low.

When a pin is an output high it will have 5 volts connected to it and is able to
source 20mA of current. When a pin is an output low it will have 0 volts
connected to it and can sink 25mA of current.

When these pins are configured as inputs we can read the value of the voltage
level applied to them by some external circuit arrangement. If the pin has 5 volts
applied, then the PIC will see a Logic 1. Conversely, if the pin has 0 volts applied
then the PIC will see a Logic 0.

Previously, we said that we are going to control the LED with about 3mA of
current which is well inside the PICs current rating. A red LED will consume
about 2.4 volts across it when it is being used. We know that an output pin will
supply 5 volts, so that means the series resistor needs to consume the remaining
2.6 volts. 5V - 2.4V = 2.6V. By using Ohms Law we can calculate the value of the
resistor which must drop 2.6 volts with 3mA of current flowing through it and the
LED.

V = I R or R = V / I R = 2.6 / 0.003

Therefore R = 866 ohms.

A general resistor around this value is 1200 ohms, so that is what
we will use.

Therefore, our circuit so far is a 1K2 ohm resistor in series with a
red LED.

Which pin are we going to use to drive this LED? On the 16F627
there are 16 pins available for us to use and these are divided into
2 Ports.

PORTA has up to 8 pins which are numbered RA0 - RA7.
PORTB has 8 pins which are numbered RB0 - RB7.

PORTA has other functions built into the chip and sometimes not all 8 pins are
available for IO use.

At this stage you might think that we can use any one of these, and you would be
right - except for one thing. Pin RA4 has an open collector output.

DIY K160 Project - Page 8

This means when this pin is set as an output it can only provide a connection to
0 volts not 5 volts. Therefore our LED would not turn on if the LED was
connected between this pin and ground. It would need to be connected between
this pin and the 5 volt supply.

There are a few hidden gotcha’s that exist in the world of microcontrollers and
the best way of knowing about them is by close examination of the device data
sheets. You will remember most of these tricks after you become familiar with a
particular chip, but even the most experienced programmers can get caught with
these problems sometimes.

Lets use pin RA0 to drive the LED in our first test program.

To summarise our project so far, we are going to flash a
red LED in series with a 1K2 ohm resistor from PORTA pin
RA0. As you may already know, a LED can only work if the
anode is more positive than the cathode, so the anode side
of the LED will be connected to RA0 which will drive that
end of the LED high.

You can easily tell the cathode from the anode. The cathode pin will have a flat
surface moulded next to it into the red plastic, and the anode pin is longer than
the cathode pin.

Now that we have our LED circuit figured out, the next stage is to write the
software that will flash it for us.

As you can now see, there’s not much point writing any software without knowing
what the hardware will be.

Writing The Software

There are quite a few ways to create software for the PIC. You can write it with a
simple text editor like NotePad, or use MPLAB from Microchip. There are other
ways like using a BASIC or C complier.

The PIC doesn’t care what method you use to write the software because it only
understands raw hex code which is placed into the chip by using an appropriate
programmer.

Over the page is the actual flash.hex code that was programmed into the PIC
to make it flash the LED connected to pin RA0.

DIY K160 Project - Page 9

:100000008501860183168501C03086008312073082
:100010009F000030850010200F3085001020092837
:10002000A001A1010130A200A00B1428A10B1428EB
:06003000A20B14280800D9
:02400E00B83FB9
:00000001FF

It’s not very meaningful to us is it, but that does not matter because we are not
computers.

Hex numbers may be new to you so it will be best to have a quick look at them
now. At some stage you will need to use them in your programs as well as
decimal and binary numbers.

Number Systems

Any computer system, whether it be a PIC, a PC, or a gigantic main frame
computer, can only understand these 2 things.

One’s and Zero’s - 1’s and 0’s.

The reason is quite simple. A computer is made up of millions of switches that
can either be on or off. If a switch is on, it has a 1 state. If a switch is off, it has a
0 state. In computer terms these are called Logic States.

Logic 1 - switch is on.
Logic 0 - switch is off.

It is exactly as we mentioned before when we were talking about the output port
pins of the PIC. If a pin is output high then it is Logic 1 or 5 volts. If the pin is
output low then it is Logic 0 or 0 volts. If a pin is configured as an input and 5
volts is connected to this pin, then the PIC would see a Logic 1. Similarly, the
PIC would see a Logic 0 on this pin if 0 volts were connected.

We were taught to count in a base 10 or decimal number system because we
have 10 fingers on our hands. In this system, we add 1 to each number until we
reach 9. We then have to add an extra digit to the number to equal ten. This
pattern continues until we reach 99 and then we place another digit in, and so
on.

DIY K160 Project - Page 10

The computer uses a base 2 or binary number
system because it only has 2 Logic states to
work with. If we only have the numbers 1 and 0
to use, it would seem obvious that after we count
0 then 1, we have to start adding more numbers
to the left. If we count from 0 to 15 this is how it
would look in decimal and binary.

Now you may be able to see how a computer
can represent numbers from 0 to 15.

To do this it would need at least 4 switches
because the number 15 represented in Binary is
4 digits long. Another way to say that, is the
number is 4 binary digits long. The term binary
digits is often abbreviated to bits, hence our
binary number is now 4 bits long, or just 4 bits.
This table emphasises the bit count. Remember,
0 bits represent a logic 0 value so we should not
leave them out.

The hex number system is Base 16, that is you
count 16 numbers before adding an extra digit to
the left. This is illustrated in the table below.

Notice how letters A - F are used after the
number 9

Perhaps you can see why we only counted up to
the number 15. This is a nice even 4 bit number
and in computer terms this is called a nibble.

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Decimal Binary Hex

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

DIY K160 Project - Page 11

If you look at the data sheet for the PIC 16F627,
you will see that it is an 8 bit device. That means
it can only deal with binary numbers that are 8
bits wide. This is how 8 bit numbers are
represented.

Looking at this table, you can see that an 8 bit
binary number can have a maximum value of
255 in decimal or FF in hex. 8 bit binary
numbers are called bytes.

Our binary numbers can get quite large, and as
they do so they will get more complicated and
harder to understand. We are not computers,
but we want to understand what we write for
them, so with the help of an assembler we can
use decimal, binary and hex numbers in our
software.

Have a look at a 32 bit binary number.

10001100101000001000110010100000

It’s not hard to see why hex and decimal are easier to use. Imagine a 64 bit
number and larger still. These are common in today’s computers and are
sometimes used with PIC’s.

Lets try to see what this value equals.

First off, split the number into bytes.

10001100 10100000 10001100 10100000

Looking Easier - Now split these into nibbles.

1000 1100 1010 0000 1000 1100 1010 0000

Even easier - Now convert these into hex. This may be difficult at first, but
persevere. After awhile you will be able to convert binary to hex and vice versa
quite easily.

8 C A 0 8 C A 0

Combine the hex numbers for our result.

8CA08CA0

Decimal Binary Hex

0 00000000 00
1 00000001 01
2 00000010 02
3 00000011 03
4 00000100 04
5 00000101 05
6 00000110 06
7 00000111 07
8 00001000 08
9 00001001 09
10 00001010 0A
11 00001011 0B
12 00001100 0C
13 00001101 0D
14 00001110 0E
15 00001111 0F
16 00010000 10
17 00010001 11
18 00010010 12
- - - - - -
252 11111100 FC
253 11111101 FD
254 11111110 FE
255 11111111 FF

DIY K160 Project - Page 12

To show that we are talking in hex values we put in a little (h) after the number
like this.

8CA08CA0h

If you are dealing with PIC programming and are working with a PIC assembler
then hex numbers that begin with a letter should be preceded by 0x.

0xFF45AC 0xA786097

You can also use this notation if the value starts with a number.

0x8CA08CA0 0x000011

Lets convert that hex number back to decimal again.

8 C A 0 8 C A 0

Remember in decimal, each value in the columns increases by a power of 10 as
we move to the left, and in binary they increase by a power of 2. In hex, as you
may have guessed, they increase by a power of 16. Be like me if you wish to,
cheat and use a calculator to convert between the three number systems, it is
much easier. In fact having a calculator that does these conversions is a very
good investment for a programmer.

Lets start from right to left and convert each individual hex number to decimal.

Add up the last column and we get a total of 2,359,332,000.

Therefore:

10001100101000001000110010100000 = 8CA08CA0h = 2,359,332,000.

Isn’t it lucky that we don’t have to think like computers.

Hex Decimal Multiplier Calculate Result

0 0 1 0 x 1 0
A 10 16 10 x 16 160
C 12 256 12 x 256 3,072
8 8 4,096 8 x 4,096 32,768
0 0 65,536 0 x 65,536 0
A 10 1,048,576 10 x 1,048,576 10,485,760
C 12 16,777,216 12 x 16,777,216 201,326,592
8 8 268,435,456 8 x 268,435,456 2,147,483,648

DIY K160 Project - Page 13

The PIC can only deal with individual 8 bit numbers, but as your programming
skills increase and depending on your software requirements, you will eventually
need to know how to make it work with larger numbers.

When you combine 2 bytes together, the binary number becomes a word.

Remember:

Break large problems into many smaller ones because the
overall problem will be much easier to solve. This is
when planning becomes important.

Well then, just how do we create a hex file like this.

The answer is - by using an Assembler.

The Assembler

Assembler is easy - easy - easy.

An assembler is quite an ingenious piece of software because it can read a text
file that we have written as our program and turn it into a data file similar to the
sample above.

We can actually write our programs by collecting all the hex values that our
program will use, and then create a data file ourselves. The trouble with that idea
is that it is a very tedious task and it would be terribly painful to try and find errors
in it especially in large projects.

The program data file that we saw earlier is just a list of hex numbers. Most of
these numbers represent the program instructions and any data that these
instructions need to work with.

To combine data and instructions together, the PIC uses a special binary
number that is 14 bits wide. If you look at the data sheet, you will see that the
PIC 16F627 has 1024 14 bit words available for program storage. In computer
language 1024 means 1K, so this PIC has 1K of program space.

Assembler language enables us to write code in such a way that we can
understand and write it easily.

DIY K160 Project - Page 14

Some people do not want to write code in assembler because they think it is too
hard to learn, and writing code in a language such as BASIC is much easier.
This can be true, but sometimes you cannot write tight and fast code with these
higher level languages and this may not be the best course of action for your
particular project.

This is especially so with PIC’s because there are only 35 instructions to work
with. Sometimes you will get into difficulty with assembler such as solving
problems with multiply and divide, but these routines are freely available from
many sources including the internet. Once you have them, it is usually only a
simple matter of pasting them into your code if needed. Mostly, you will not even
care how they work, but it is a good exercise to learn the techniques involved
because it builds up your own individual knowledge.

Saving special code routines in a directory on your PC can be very productive
and this is termed a Code Library.

Writing code for an assembler is quite easy, but as with most things there are a
few things to learn.

First off, the code you are writing for the assembler is called Source Code. After
the assembler has assembled the source code successfully, it generates another
file that is called Object Code. This is the hex data file we saw earlier.

When you use the assembler program, there are some options that you can
enable or disable such as, generating an error file, case sensitivity in your source
code and a few others. Mostly you can ignore these and leave the default
settings, but when you get more advanced at programming, you may like to
change them to make the assembler work more suitably for your particular
needs.

The assembler must be able to understand every line of source code that you
write or it will generate an error. If this happens, the object code will not be
created and you will not be able to program a chip.

Each line of code in the source file can contain some or all of these following
types of information. The order and position of these items on each line is also
important.

 Labels
 Mnemonics
 Operands
 Comments

Labels must start in the left most column of the text editor.

DIY K160 Project - Page 15

Mnemonics can start in column two and any other past this point.

Operands come after the mnemonic and are usually separated by a space.

Comments can be on any line usually after an operand, but they can also take
up an entire line and are followed by the semi colon character (;).

One or more spaces must separate the labels, mnemonics and operands. Some
operands are separated by a comma.

Here is a sample of the text that an assembler expects.

 Title "Simple Program"

 list p=16f627 ; processor type

;
; -------------
; PROGRAM START
; -------------
;
 org 0h ; startup address = 0000

start movlw 0x01 ; simple code
 movwf 0x05
 goto start ; do this loop forever

 end

You can see the label called start in column 1. Then comes a tab or space(s)
to separate the label from the mnemonic movlw. Then comes another tab or
space(s) to separate the mnemonic from the operand 0x01. Finally, you can see
the comment which comes after the semi colon ; simple code

Lets have a look at his a bit closer.

The first line has a Title directive.

This is a predefined part of the assemblers internal language and lets you define
a name for your source code listing.

The next line has a list assembler directive and tells the assembler what type
of processor it is assembling for - in this case, a 16F627 chip. This feature can
be helpful if you write too much code for this particular processor to use. The
assembler will check how much code it has assembled and let you know if it is
too much to fit in that particular chip. Directives like these control how the
assembler builds the final object code.

DIY K160 Project - Page 16

The next lines are just comments put there to help you the programmer know
what is going on.
;
; -------------
; PROGRAM START
; -------------
;

It is vital that you get into the habit of writing comments all over your code. This
will help you understand what you have written especially when you come back
to read it another time. Believe me, it is very easy to get confused trying to follow
the meaning of your code if there is no explanation on how it works. Notice how
comments begin with a semi colon (;). Any line that begins with one of these is
ignored.

Org 0h is another directive that tells the assembler to set the current memory
address where the following instructions will be placed into. Remember that the
16F627 has 1024 location available for code use. Org 0h tells the assembler to
start loading the instructions starting from memory address 0. In other words the
movlw 0x00 instruction will occupy memory location 0 and the movwf 0x05
instruction will occupy memory location 1. goto start will occupy memory
location 2.

One thing you may have missed here, is the fact that memory addresses start
from location 0, not location 1. The code memory space is actually from 0 to
1023, not from 1 to 1024. Remember 0 is a valid binary number.

It is probably best to use the correct terminology now to refer to code memory
locations as ROM addresses - Read Only Memory.

goto start is an instruction mnemonic followed by a label name. The
assembler knows that the instruction start movlw 0x00 is at ROM address
0, so when it sees the instruction goto start, it will generate code to tell the
PIC’s processor to goto ROM address 0 to fetch the next instruction.

So what happens if there is no label called start anywhere in the source
listing?

The assembler will complain that it cannot find the label, generate an error and
will not complete the assembly process. Usually these errors are written to a
separate error file and in a listing file as well. These files have the same name as
your source file but with *.err and *.lst extensions.

You cannot have two labels with the same name either. That confuses the
assembler because it does not know which particular label you are referring to
and this also generates an error.

DIY K160 Project - Page 17

Don’t get too worried about error messages. They are simply there to help you
find problems with the way you wrote your code.

You will also receive warning messages at times. These are generated to tell you
that you may be doing something wrong, like forgetting to set a page bit.

Warning [205]: Ensure page bits are set.

If you are certain that your code is correct, you can ignore them. We will talk
about page bits later.

start movlw 0x01 ; simple code
 movwf 0x05
 goto start ; do this loop forever

Code that is written like this is called a loop. That is because the code executes
until the goto start instruction forces the processor to begin at the start
label again. This particular code will loop forever or until you remove power from
the chip. Your code will always have some sort of loop even if you did not create
one.

How is this so I hear you ask. Well, if you only write this code line...

start movlw 0x01 ; simple code

...what happens after it is executed. The PIC doesn’t stop just because you didn’t
write anything else. It will happily increment to the next code address and
execute whatever is there - in this case nothing.

As a matter of fact nothing will be programmed into the rest of the ROM space
either. They will all be blank and these will have the value 0x3FFF in them.

The PIC processor actually decodes 0x3FFF as ADDLW 0xFF. This means to
add the value 0xFF to the W register, or ADD Literal to W. So even though you
only wrote one code line the PIC will execute ADDLW 0xFF 1023 times and then
the program counter will wrap around back to 0x0000 and execute your code
line again.

So what exactly does this small piece of code do?

start movlw 0x01 ; simple code
 movwf 0x05
 goto start ; do this loop forever

Remember our LED flash problem?

The LED was connected to pin RA0 which is PORTA pin 0.

DIY K160 Project - Page 18

If we had to turn the LED on we have to write a Logic 1 to this pin. Remember
that once we have done this, 5 volts will appear on the pin if it is set as an output.

What value should we write to PORTA if we want to set only pin RA0 to Logic 1?
Here is a small sample of a binary table.

Decimal Binary

0 00000000
1 00000001
2 00000010
3 00000011
16 00010000
47 00101111

If we consider that pin RA0 is represented by bit 0 in this table we can see that
we need to write decimal value 1. Bit 0 is the far right binary bit, bit 7 is the far
left.

Another thing you must consider here, is that we can do this because nothing
else is connected to PORTA. If other devices were connected to the other PORTA
pins, we need to be more specific about the value we write to PORTA so that we
do not upset their operation.

In our case, to turn the LED on, we can write the value 0x01 to PORTA, and to
turn the LED off we can write 0x00 to PORTA. So just how do we do this? If you
look at the original code, this is the first line.

start movlw 0x01 ; simple code

First we have a label called start, followed by the instruction movlw 0x01.

movlw means to move a literal value into the W register. A literal value is any
value that can fit into 8 bits. Remembering that the PIC is an 8 bit device, this
means a literal value can be any value from 0 to 255, (0x00 to 0xFF). In this case
it is the value 1, or 0x01. This instruction can also be written as

 movlw b’00000001’ ; binary notation
 movlw d’1’ ; decimal notation
 movlw 1h ; another type of hex notation.
 movlw 01h ; another type of hex notation.
 movlw 0x01 ; another type of hex notation.

Binary notation is quite good for writing to the ports because any bits in the value
that are 1 means the corresponding output port pin will be at 5 volts, and any that
are 0 will be at 0 volts.

The exception is pin RA4 which is at a high impedance state when it is at Logic 1
because it is an Open Collector output.

DIY K160 Project - Page 19

Looking back at the code, the next line is

 movwf 0x05

movwf means to move the contents of the W register to the file register
specified. In this case it is RAM address 0x05.

If you look at the 16F627 data sheet, and most other PICs for that matter, you
will see that RAM address 5 is PORTA. So in other words, this instruction moves
the contents of W to PORTA.

This seems a lot of effort. Why can’t we just write 1 to PORTA? Unfortunately the
PIC does not function like that. You cannot directly write any 8 bit values to any
RAM locations. You have to use the W register to do the transfer. That is why it is
called the W or Working Register.

Mnemonics

This is a funny looking word. You pronounce it

Nem On Icks.

These items are quite a powerful concept in programming because they provide
an interface between us mere mortals and computers. It can become very
confusing to write software if we have to refer to RAM addresses and data
values by their binary numbers. Mnemonics makes it a lot easier for us to
understand what we are writing by allowing us to assign names and labels to
instructions, RAM locations and data values.

As an example, what do you think this means?

0000100000000011

Any ideas?

What about this?

0803h

Try this.

movf 03h, 0

DIY K160 Project - Page 20

Lets change it to something we can understand using mnemonics.

movf STATUS, W

That’s a little easier to understand don’t you think. It is exactly the same thing as
the original binary number except the first way the computer understands, the
second and third ways we may understand, but the fourth way is quite easy to
understand.

It means...

Move the contents of file register [Status] into W.

It’s all too easy. Of course we still need to understand what MOVF, STATUS and W
mean, but that will come soon.

The assembler is used to generate code that the PIC can understand by
translating these mnemonics into binary values and store them as a hex data file
ready for a programmer to use. The standard assembler for a PIC is called
MPASMwin. This is a free program and is available from the Microchip web site.

Labels

We mentioned the use of labels before. With an assembler, we have the luxury
of being able to create our own label names and we can use these to define
things like general RAM addresses, special RAM locations, port pins and more.

As an example of this concept we can change our original code...

start movlw 0x01 ; simple code
 movwf 0x05

into this...

start movlw TurnOnLED ; simple code
 movwf PORTA

By writing your code in this way, you can just about comprehend the meaning of
these two code lines.

Get a value and write it to PORTA to turn on a LED.

Now this is all very fine except for one thing. How does the assembler know the
meaning of the labels TurnOnLED and PORTA?

DIY K160 Project - Page 21

The assembler has the inbuilt ability to understand all of the PIC instructions like
movlw, and it also knows what labels are generally, but you, as the programmer,
have to tell the assembler the meaning of any labels that you create.

To do this you use the equ assembler directive. This tells the assembler that the
label on the left of the equ directive has the value on the right side.

TurnOnLed equ 0x01 ; value to turn on LED with RA0
PORTA equ 0x05 ; PORTA address

You should note something here, and that is the first equate assigns a value to a
label that will be used as a literal, and the second equate assigns a value to a
label that will be used as a RAM address. These values are quite
interchangeable by the way because the labels just represent simple numerical
values.

For example...

start movlw PORTA ; simple code
 movwf TurnOnLED
 goto start ; do this loop forever

This new piece of code is quite valid and still makes sense to the assembler,
however when the PIC executes this code it will now get the literal value 0x05
and place it in W, and then it will get this value from W and place it into RAM
address 0x01. The assembler does not care what we write because its only
concern is that it can successfully assemble this code.

Now that we know about labels, this is how we can rewrite the original code
listing and make it more readable

 Title "Simple Program"

 list p=16f627 ; processor type
;
; -------------
; PROGRAM START
; -------------
;
TurnOnLed equ 0x01 ; value to turn on LED with RA0
PORTA equ 0x05 ; PORTA address
 org 0h ; startup address = 0000

start movlw TurnOnLed ; simple code
 movwf PORTA
 goto start ; do this loop forever

 end

Quite simple isn’t it.

DIY K160 Project - Page 22

One thing to note is that label names must start in the first column on a separate
line, you cannot have spaces or TABs before them.

Now each time the assembler comes across a label called TurnOnLED it will
substitute it for the value 0x01.

When it comes across a label called PORTA it will substitute it for the value 0x05.
The assembler does not care in the least what these labels mean, they are there
just to make it easier for us to read our code. Lets have a quick look at how the
assembler turns the source code into a hex file.

When the assembler begins working, it creates a symbol table which lists all the
labels you created and then links the values you associated with them.

TurnOnLed equ 0x01 ; value to turn on LED with RA0
PORTA equ 0x05 ; PortA address

The assembler generates a symbol table that will look like this.

SYMBOL TABLE
LABEL VALUE
PORTA 00000005
TurnOnLed 00000001

The assembler also has a ROM address counter which is incremented by 1 each
time it assembles a line of code with an instruction in it.

This next line is an assembler directive and it tells the assembler to set this
counter to ROM address 0h.

 org 0h ; startup address = 0000

The next code line has an address label attached to it so the assembler also
adds this to its symbol table. At this stage the ROM address counter equals 0 so
the start label gets the value 0.

start movlw TurnOnLed ; simple code

The symbol table will look like this.

SYMBOL TABLE
LABEL VALUE
PORTA 00000005
TurnOnLed 00000001
start 00000000

Next on this code line is movlw. If you look in the PIC data book, the MOVLW
instruction has a binary number associated with it.

DIY K160 Project - Page 23

Remember about computers only understanding 1’s and 0’s. This is also how the
PIC understands instructions.

MOVLW in binary = 11 00XX kkkk kkkk
We need to decipher this instruction a bit.

The 1100XX is the part of the instruction that tells the processor that it is a
MOVLW instruction. The ‘XX’ part means that it doesn’t matter what value these
two bits are. They can be either 1’s or 0’s and the PIC will still decode the
instruction as MOVLW. The kkkk kkkk represents the 8 bits of data and will be
the actual literal value.

Now knowing what the actual instruction is, the assembler will look up its symbol
table and find the label called TurnOnLED and return with its value of 1. It will
then insert this information into the MOVLW instruction data.

Therefore the complete instruction becomes 11 0000 0000 0001 which is 3001h.

Notice there are 14 bits for the instruction, and that the instruction itself is
represented with the literal data combined. In this way each PIC instruction only
occupies 1 single ROM address in the chip. Therefore the 16F627 with 1K of
ROM space, can store 1024 instructions in total.

The assembler is now finished with this code line because it does not care about
the comment, so it increments it’s address counter by 1 and continues with the
next line.

 movwf PORTA

MOVWF = 00 0000 1fff ffff

00 0000 1 are the bits that define the MOVWF instruction and fff ffff are the
bits that define the RAM address where the W register contents will end up. The
assembler looks up PORTA in it’s symbol table and returns with its value of 5.

Therefore the complete instruction becomes 00 0000 1000 0101 which is 0085h.

This is the next line.

 goto start ; do this loop forever

GOTO = 10 1kkk kkkk kkkk

DIY K160 Project - Page 24

10 1 are the bits that define the GOTO instruction and the kkk kkkk kkkk are
the eleven bits that define the new ROM address that the processor will begin
executing from after this instruction executes.

If you do the math you will see that a number with 11 bits can range from 0 to
2047. This means that a GOTO instruction has enough information to let the
processor jump to any ROM address from 0 to 2047. The 16F627 only has a
ROM address space that ranges from 0 to 1023 so a GOTO instruction can let the
processor jump to any code memory address in this device.

The assembler will look up the symbol table for the label name ‘start’ and
return with the value 0.

Therefore the complete instruction becomes 10 1000 0000 0000 which is 2800h.

The final hex code assembled for this little program is 3001h 0085h 2800h.

This next line is another assembler directive and tells the assembler that this is
the last line of the source file. Please don’t leave it out or the assembler will get
cranky and generate an error.

 end

It’s not hard to imagine now why the assembler will complain if you leave out a
label name or use one that was spelled incorrectly.

After assembly the following shows what the listing file will look like.

MPASM 02.30 Released FIRST.ASM 12-31-1999 17:26:38
PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 Title "Simple Program"
 00002
 00003 list p=16f627 ; processor type
 00004
 00005 ;.
 00006 ;
 00007 ; -------------
 00008 ; PROGRAM START
 00009 ; -------------
 00010 ;
00000001 00011 TurnOnLed equ 0x01 ; value to turn on LED with RA4
00000005 00012 PORTA equ 0x05 ; PORTA RAM address
 00013
0000 00014 org 0h ; startup address = 0000
 00015
0000 3001 00016 start movlw TurnOnLed ; simple code

DIY K160 Project - Page 25

0001 0085 00017 movwf PORTA
0002 2800 00018 goto start ; do this loop forever
 00019
 00020
 00021 end
MPASM 02.30 Released FIRST.ASM 12-31-1999 17:26:38
PAGE 2
Simple Program

SYMBOL TABLE
LABEL VALUE

PortA 00000005
TurnOnLed 00000001
__16F627 00000001
start 00000000

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXX------------- ---------------- ---------------- --------------
--

All other memory blocks unused.

Program Memory Words Used: 3
Program Memory Words Free: 1021

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed

If you look through this listing you should be able to verify what has just been
discussed.

On the far left of the listing, are the current ROM addresses and these increment
as each instruction is added. You will notice that they start off at 0 because of
the ORG 0h directive.

If a code line has an instruction on it, then next to the ROM address, you will see
the 4 digit hex code that represents that instruction.

This is followed by the actual assembler code.

After the end directive you will see the Symbol Table contents, then how much
of the processors memory was used, and finally, some information on errors that
the assembler may have encountered.

The listing file is not used by a PIC programmer to program a device, they use
the hex files. The list file can be used by us to verify how the code was created.
Later in your programming life you may need to use this information.

If the name of your source file was called first.asm then the generated list file
will be first.lst and the generated hex file will be first.hex.

DIY K160 Project - Page 26

These new files will be created in the same directory where first.asm is
located and are simple text files that can be viewed with any text editor program
such as Notepad.

After successful assembly, this is what the generated hex file looks like.

:060000000130850000281D
:00000001FF

This is the object code and has all the information that a programming device
needs to write this program code to a chip. The default hex file generated by
MPASM is a style called INHX8M, and this is how it is dissected.

:BBAAAATTLLHH....LLHHCC

BB This is a 2 digit value of the number of bytes on the line. 16 MAX

AAAA The starting address of this line of data.

TT A record type. Normally is 00, but will be 01 on the last line.

LLHH A data word presented as low byte high byte format.

CC The checksum value of this line of data.

:060000000130850000281D

:06 means 6 bytes of data on the line.
Our new code was 3 WORDS long which = 6 BYTES.

:060000000130850000281D

0000 means the bytes on this line are programmed starting from ROM address 0

:060000000130850000281D

00 means record type, but not on last line

:060000000130850000281D

01 30 85 00 00 28 are the 6 data bytes in low byte/ high byte format.

If you swap the bytes around and merge them into 3 words, you get

3001 0085 2800

DIY K160 Project - Page 27

This is the same as our code data.

:060000000130850000281D

1D is the checksum for all the data listed on this line. It is sometimes used by a
programmer to make sure all the data on each line has not been corrupted when
the programmer software read the data from a disk.

:00000001FF

The last hex line has 00 bytes listed and 01 in the record type which means it is
the last line of the file.

MPLAB

If you haven’t installed MPLAB on your computer, please do so when
convenient. It can be downloaded from the Microchip web site, but be warned -
it is big. When this program is installed you will have access to the MPLAB
Integrated Development Environment by Microchip.

If you have the package we are going to do our first assembly using this
program. First off, make a short cut on the desktop to the MPLAB software so
that you can start it easily.

Start up MPLAB and click on File - Open and select simple.asm from the
DIY K160 software installation directory as the file to load. A window should
appear with the source code listed.

Click on Options - Development mode and set the processor to 16F627
then make sure the MPLAB Sim - simulator item is checked and then press
Reset to close the window.

Now click on Project - Build Node and a dialogue box will appear showing
the compiler configurations. Just use the default values shown and press OK and
the software will automatically run the assembler to assemble this code.

Easy isn’t it.

What ???? It created an error.

Oh my gosh, what now.

http://www.microchip.com

DIY K160 Project - Page 28

There should have been a Build Results window that popped up after assembly,
and in it you will have this text line...

Error[113] C:\DIYPROJECTS\SERIAL\SIMPLE.ASM 15 : Symbol not previously
defined (PortA)

What this is telling you is that PortA is not defined in the symbol table.

I’m guessing now that you are saying - Well yes it is...

Ahaaah!!! Look a little closer......

How is PortA defined??

PORTA equ 0x05 ; PortA address

Is PortA the same as PORTA.

Close the Build Results window.

Press [ALT F10]. This is the same as clicking on Project - Build Node.

Look at the Invoke Build Tool window that opened and find the option named
Case Sensitivity. Do you see that it is checked. To the assembler, PortA is
not the same as PORTA.

You can do one of two things here, uncheck this item and assemble, or go back
and change the offending code line. For now, leave it checked and press OK to
start the assembly process again.

The same error line will appear. This time double click on the error line and this
will open the code editor window with the cursor appearing on the offending line.

Change the line...

 movwf PortA

to...

 movwf PORTA

Now press [ALT F10] and OK to reassemble the code and this time no errors
should be produced. Note that MPLAB always saves your simple.asm file
before assembly takes place.

DIY K160 Project - Page 29

Click on Options - Development mode and make sure the MPLAB SIM -
SIMULATOR function is checked, then press Reset to close the window. Click OK
if a dialogue opens afterwards.

Now press [ALT - F10] again to reassemble.

Now you can click on the Step button on the tool bar at the top of the
screen. This is the button with two feet on it. Each time you do this the
code will execute one line at a time in a simulator window. You will notice
that after this line executes...

 goto start ; do this loop forever

...the processor jumps back to this line...

start movlw TurnOnLed ; simple code

...and continues indefinitely.

Press the Reset Processor button to exit this mode - the button with a
chip and a step on it.

Click on the editor window and put a semicolon at the start of this code line like
this.

; goto start ; do this loop forever

Now press [ALT F10] to reassemble and start stepping again.

Notice that after a few steps the processor has jumped into blank ROM space.
Remember the 0x3FFF values. This is because the GOTO instruction was not
assembled with the code as the assembler now thinks it is a comment. Therefore
there is no instruction there to make the loop operate as intended.

There are a lot of things you can do in MPLAB and it is quite a large and
complicated program. You will not need to worry too much about all the functions
it can do. Just learn them as you go and remember to look at the help files
supplied.

Lets now look at the code that was supplied with the kit. This code flashes the
LED on PORTA pin 0 - or more simply RA0.

Close the simple.asm file in MPLAB and any other open windows. Now load
the flash.asm file.

As you can see it is a bit more complicated than the simple.asm program.

DIY K160 Project - Page 30

There is a new __CONFIG directive which we will not worry about in this project
and there are some new definitions and a bit more code. You should still be able
to see that the general layout of the code is the same.

To understand how to formulate code for a project it is
sometimes useful to create a flow chart. Here is one that
describes this project.

As you can see this representation makes it a lot easier
to understand what is going on.

Just follow the arrowed lines to follow the code flow.

All we are doing is setting up the port pins so they work
with the circuitry that will be connected to them. Then we
simply turn the LED on, wait for 1/2 a second, turn the
LED back off, wait for 1/2 a second and then continue
the loop forever.

We still have our ORG statement at the start of the code
to set the ROM address where the code will start from.

 org 0h ; startup address = 0000

The first thing to do is set up the ports quickly so that the pins are set up ready to
control whatever circuit is connected to them.

All port pins are set as inputs when power is first applied to the chip.

In our project we need RA0 set as an output so that it can drive the LED
connected to it. As you know there are also a lot more IO pins that are not going
to be used. So what do we do with them. Well, we can’t simply ignore them
because they don’t just vanish if we don’t write code for them.

If you only set RA0 as an output and leave the others set as an input you will
create what are called Floating Inputs. This means they are trying to decide on a
logic level to jump to because they are being controlled only by stray electrical
charges around the circuit. This is undesirable because the internal pin circuits
may be damaged and the chip may draw excess current.

You can just connect the pins to the 0V or 5V rails but if you code runs astray for
some reason the pins could accidentally get changed to outputs and cause a
short circuit. Imagine a pin set as a HI output and you have connected it directly
to the 0V rail. - a smoking PIC.

You can avoid this by using resistors to tie the pins to a logic level but why waste
components.

DIY K160 Project - Page 31

Why not just set them all as outputs and set them all logic 0 or logic 1.

This is a good and simple solution but be aware that you could also short the
pins out to a power source while developing the project and still cause damage.

Here is the code that sets the pins to Logic 0.

 clrf PORTA ; all port pins = 0
 clrf PORTB

The pins are reset to inputs on powerup, so we need to change them all to
outputs.

Very briefly, just before we do that, to set the port pins as outputs we need to
change two registers called TRISA and TRISB. These control the input/output
state of all the individual pins. Each of the 8 bits in these registers corresponds
to the 8 bits of the port pins. Therefore bit 0 in TRISA controls the RA0 pin, bit 7
in TRISB controls the RB7 pin etc.

Each bit that has a logic 1 value means the corresponding port pin is an Input.
Each bit that has a logic 0 value means the corresponding port pin is an Output.

That’s simple - 0 = Output, 1 = Input.

The PICs RAM memory is arranged in Pages or sometimes called Banks. Each
page has 128 bytes of RAM and some special purpose registers. The RAM is
there for us to store data in, and the other registers are there to change the way
the chip operates and also to allow the code to access each of the RAM pages.

The PORT and TRIS registers are part of the RAM address space although they
are some of the special purpose registers. These can be read and written to just
like a normal RAM address. Another special register is called the STATUS
register. It can be used to determine the result of mathematical operations and
also to tell the processor which RAM bank is active. The bit in the STATUS
register that does this is called the RP0 bit which is actually bit 5.

When the RP0 bit is logic 0, the processor can access RAM page 0.
When the RP0 bit is logic 1, the processor can access RAM page 1.
PORTA and PORTB are addressed in RAM Page 0.
TRISA and TRISB are addressed in RAM Page 1.

Therefore, if we want to modify the TRIS registers to set the PORT pins as
outputs we first must make sure the RP0 bit = 1. This next instruction does that.

 bsf STATUS,RP0 ; set RP0 for RAM page 1

DIY K160 Project - Page 32

Now we can change the TRIS registers to make all pins outputs.

 clrf TRISA ; all PortA = outputs

Normally we would do the same with PORTB, but in this project board, RB6 and
RB7 are used for programming purposes and must be left as INPUTS while the
PIC is being used to run your projects.

Please, while using this project board always make sure this value is used in the
TRISB register.

 movlw b'11000000'
 movwf TRISB ; all PortB = outputs except RB6 and RB7

Notice the binary values and how they make it easy to see what pins are inputs
and outputs.

Now that we have set the TRIS registers we can return to RAM Page 0.

 bcf STATUS,RP0 ; set RP0 for RAM page 0

The PIC16F627 has special comparator circuits internally connected to some
PORTA pins when power is first applied. We do not need to use these so the next
code lines disable them.

 movlw 0x07 ; disable comparators
 movwf CMCON

Please don’t get confused by things like this. Look through the 16F627 data
sheet and verify that the addresses that we assigned to the registers etc. are
what is written there. Also check out what CMCON, STATUS and other registers
do. Pretty soon you will become familiar with the way it works.

For example CMCON is defined here as address 0x1F.

CMCON equ 0x1F

Check that out in the data sheet.

Now, the next part of the flowchart shows that we turn the LED on. Therefore we
set RA0 to logic 1. If you remember the binary numbers, that just means write 1
to PORTA and we can do it like this to see that we are setting RA0 to 1.

MainLoop movlw b'00000001' ; RA0 = 1
 movwf PORTA

This is also the start of our code loop which is why the MainLoop label is there.

DIY K160 Project - Page 33

The next thing we do is create a 1/2 second delay.

To make a simple delay, we need to make the processor waste the time required
for the delay and an easy way to do this is to subtract 1 from a RAM register until
it equals 0. It takes the PIC a certain amount of time to do this, but the trick is to
find out how much time.

The processor used in this project runs with a clock speed of 4MHz. That is 4
million clock cycles per second.

The PIC needs 4 of these cycles to process most instructions, which means they
execute at a rate of 1 million per second. These are called Instruction Cycles.

This means that 1 instruction cycle = 4 clock cycles.

Some instructions, like GOTO and CALL, use 2 instruction cycles to complete.

For our purposes, all we have to do is figure out how many instruction cycles we
need to waste to create a 500mS delay. Each basic instruction cycle with a clock
speed of 4MHz takes 1 micro second to execute, so we need 500,000 of them to
make our delay.

Let’s create a small loop that simply decrements a RAM register until it equals
0x00.

 clrf DelayL ; clear DelayL to 0
WaitHere decfsz DelayL,f ; subtract 1 from DelayL
 goto WaitHere ; if not 0, goto WaitHere

Inside the 16F627, there are a lot of general purpose RAM registers that we can
use for whatever we need. The first of these registers starts at RAM address
32dec, or 0x20. We need to use one of these to create the delay code loop
above and we have called it DelayL. As you now know, we can define the label
like this so that we can use it in our program.

DelayL equ 0x20 ; delay register LOW byte

The CLRF DelayL instruction makes the contents of RAM register DelayL
equal to zero, and gives us a known value to start from.

The DECFSZ DelayL,f instruction means to decrement the contents of
DelayL by 1 and if it now equals 0 then skip over the next instruction.

Notice the ,f that follows DelayL. This is called a Destination Designator. If the
letter f is used, then the result of the operation is placed back into the register
specified in the instruction. If the letter w is used then the result of the operation
is placed into the W register.

DIY K160 Project - Page 34

It works like this...

Sequence of events for DECFSZ DelayL,f

W Register = 0xA0
DelayL = 0x00
Value is read into the Arithmetic Logic Unit (ALU) = 0x00
Value in ALU is then decremented by 1 = 0xFF
DelayL = 0xFF
W Register = 0xA0

Sequence of events for DECFSZ DelayL,w

W Register = 0xA0
DelayL = 0x00
Value is read into the Arithmetic Logic Unit (ALU) = 0x00
Value in ALU is then decremented by 1 = 0xFF
DelayL = 0x00
W Register = 0xFF

There are quite a few instructions that use ,f or ,w after the instruction to
specify where the result goes.

The assembler doesn’t care if you omit to use ,f after an instruction, as it will
assume that you want the result placed back into the specified register.

The assembler will generate a warning message like this, but you can ignore it
as long as you know your code is correct.

Message[305]: Using default destination of 1 (file).

f and w are labels as well, but the assembler knows what they are.

Notice the 1 value. As with all labels used with an assembler, they must have a
value assigned to them. f and w are labels as well, but we don’t need to worry
about them as they are automatically assigned a value by the assembler.

 f assembler assigns value 1
 w assembler assigns value 0

So how does this value fit inside an instruction. Remember the MOVWF
instruction?

 MOVWF = 00 0000 1fff ffff

DIY K160 Project - Page 35

Can you see the bit that equals 1? This is the destination bit which forms part of
this instruction. The processor checks this bit during execution and if it is 1,
sends the result back the specified RAM address. MOVWF always sends the
result back to the specified RAM address, that is why this bit is always 1.

Instructions like this next one are a little different. DelayL = RAM address 0x20.

 DECFSZ DelayL,w

The binary code for this instruction is 00 1011 0001 0100, and the d bit = 0.

 DECFSZ DelayL,f or DECFSZ DelayL

The binary code for this instruction is 00 1011 1001 0100, and the d bit = 1.

In future we will not use ,f when we want the result of an instruction placed back
into the specified RAM address. Now we can move back to the code listing.

When this code block executes, DelayL will be set to 0x00. Then it will be
decremented by one and it will have a value of 0xFF. This new value is not equal
to 0x00, so the next code line is not skipped. Therefore the instruction Goto
WaitHere is executed and the processor loops back to the code line with the
label WaitHere. DelayL is decremented again, and eventually it will equal
0x00 after this code has completed 256 loops. When this happens, the
instruction goto WaitHere will be skipped thus breaking the loop and ending
the delay.

The DECFSZ instruction takes one instruction cycle to complete unless the result
of the decrement equals 0x00. It will then take two instruction cycles. A GOTO
instruction always takes two instruction cycles to complete.

If any instruction changes the value of the Program Counter then 2 instruction
cycles will be used.

If you do the math, it will take around 768 instruction cycles to complete this
routine. This is quite a bit shorter than the 500,000 we need and if we were to
use the delay routine as it is, the LED would flash on and off so fast, we would
not see it.

What we need to do is use this same delay routine enough times so that 500mS
is wasted and we can accomplish this by using what is called a Nested Loop.

Nested loops are just code loops within code loops and to create one we use
another RAM register to control how many times the existing delay code
executes. If this is still not enough for the delay we need, then we will have to
use more nested loops and more RAM registers.

DIY K160 Project - Page 36

In fact, for a delay of 500mS we need to use 3 RAM registers when the chip is
executing instructions at a rate of 1 million per second.

Let’s define these registers so we can use them.

DelayL equ 0x20 ; delay register LOW byte
DelayM equ 0x21 ; delay register MID byte
DelayH equ 0x22 ; delay register HIGH byte

Now we can construct a delay routine using these RAM locations with 3 nested
loops.

 clrf DelayL ; clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
WaitHere decfsz DelayL ; subtract 1 from DelayL
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayM ; subtract 1 from DelayM
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayH ; subtract 1 from DelayH
 goto WaitHere ; if not 0, goto WaitHere

In this routine DelayL will get decremented until it equals 0x00 as mentioned
before. Then DelayM gets decremented, because the
first goto WaitHere instruction gets skipped. DelayM
will now equal 0xFF, so the processor executes the
second goto WaitHere and starts decrementing
DelayL again.

This double loop will continue until DelayM equals
0x00 and then the second goto WaitHere instruction
is skipped. DelayH is then decremented and it will
equal 0x02.

The third goto WaitHere will execute because
DelayH does not equal 0x00 yet. This triple loop will
continue until DelayH equals 0x00 which causes the
third goto WaitHere instruction to be skipped and
then the 500mS delay is complete.

This routine does not cause an exact delay of 500mS
but it is close enough for our purposes.

The next task is to place this delay routine into the code
we have so far.

If you remember the original flow chart, we have to turn
the LED on, wait, turn the LED off, wait etc etc.

DIY K160 Project - Page 37

Notice that there are two time we need to wait. In those instances, we need to
insert all that delay code above. Imagine if we had to have 100 delays. That
would soon eat up all our available code space. An easier way to do the delay, is
to create what is called a Subroutine.

A subroutine is a piece of code that is used many times by different parts of your
program. We create these because it becomes wasteful to have the same code
copied many times as you need it.

To use a subroutine, we use the instruction CALL followed by a label name. This
tells the processor to remember where it is now and jump to the part of memory
where the subroutine is located. After the subroutine is completed we use the
RETURN instruction to tell the processor to jump back and continue on from
where it was before it jumped to the subroutine.

This is how we can turn the delay code into a subroutine.

Delay500 clrf DelayL ; clear DelayL to 0
 clrf DelayM ; clear DelayM to 0
 movlw 3h ; set DelayH to 3
 movwf DelayH
WaitHere decfsz DelayL ; subtract 1 from DelayL
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayM ; subtract 1 from DelayM
 goto WaitHere ; if not 0, goto WaitHere
 decfsz DelayH ; subtract 1 from DelayH
 goto WaitHere ; if not 0, goto WaitHere
 return

As you can see the subroutine is exactly the same as the original code. The only
difference is a Label called Delay500 which defines the name of the subroutine,
and the RETURN instruction placed at the end. Now each time we need to use a
500mS delay anywhere in our code all we have to do is use this code line.

 call Delay500 ; execute a 500mS delay

The delay subroutine will save us 9 code lines each new time we need a delay. If
you can find ways to make your code more compact you may find that it
operates much more efficiently and you can fit more code into the chip.
Lets now complete the first section of the loop...

MainLoop movlw b'00000001'
 movwf PORTA
 call Delay500 ; execute a 500mS delay

Can you figure out the next section which is to turn off the LED and wait. I’m sure
you can.

Perhaps you could write your idea down on the blank section of this page before
you move on.

DIY K160 Project - Page 38

Just make RA0 = logic 0.

 movlw b'00000000'
 movwf PORTA
 call Delay500 ; execute a 500mS delay

Now we just tell the processor to jump back to the start of the code loop which
will make it continue forever.

 goto MainLoop ; do this loop forever

Immediately after this instruction you can place the Delay500 subroutine code
and the program is complete.

If you now look at the flash.asm code listing in MPLAB you should be able to
see how it works.

To simulate it just type [ALT F10] and OK.

Now step through the code. You can also single step the code faster by pressing
F7.

I’ll bet you get bored waiting for the Delay500 subroutine to complete. MPLAB
will take forever to run this code section because it is so much slower than the
real PIC. We know the delay subroutine works, so to speed things up so we can
check the code flow, change this line...

Delay500 clrf DelayL ; clear DelayL to 0

...to this...

Delay500 return ; clrf DelayL ; clear DelayL to 0

This has the affect of returning from the subroutine as soon as it is called. The
assembler will ignore everything after the first semicolon.

To simulate it again, just type [ALT F10] and OK, and start stepping.

Open up the StopWatch by clicking on Windows -> StopWatch.

You will be able to see how long each instruction takes at a 4MHz clock speed.

When you are satisfied that the code operates as normal change the Delay500
code line back to the original state.

Delay500 clrf DelayL ; clear DelayL to 0

Assemble it again using [ALT F10].

DIY K160 Project - Page 39

Now run diyk160.exe. and press Program and select the flash.hex code to
program into the chip. Now press Run. The LED should be flashing as it did the
first time.

You will notice that there are 4 LEDs on the project board. These are connected
to pins RA0, RA1, RA6 and RA7.

Use the blank section of this page and write down how you think the code should
be changed to make all the LEDs flash.

See over the page if you are stuck.

No peeking....

DIY K160 Project - Page 41

MainLoop movlw b'11000011'
 movwf PORTA
 call Delay500 ; execute a 500mS delay

 movlw b'00000000'
 movwf PORTA
 call Delay500 ; execute a 500mS delay

Pretty simple isn’t it.

Modify the flash.asm code then try it out and see.

How can you convert this code into a single instruction??

 movlw b'00000000'
 movwf PORTA

Check out the data sheet to find out and look in the instructions section.

(Hint: the instruction is cl.. PORTA)

If you are stuck, turn the page....

DIY K160 Project - Page 41

 clrf PORTA

For some additional exercises.....

Try to make the LEDs count up in binary.
Try to make LEDs count down in binary.
Try to makes the LEDs come on one at a time moving from left to right.

There are code examples for these exercises in the installation directory for you
to look at. Try to do them yourself and use the examples if you get confused.

 binaryup.asm

 binarydn.asm

 binarylr.asm

CONFIG

The __CONFIG statement at the start of the code is used to control the
Configuration Fuse register. This is a special location that controls how the chip
operates. Things like Oscillator Type, Watch Dog Timer, Programming Mode and
other features. These are listed in the data sheets. The value used...

 __CONFIG 0x3FB8

... is a specially selected value for this project. It selects Internal 4MHz Oscillator,
LVP programming mode and no Code Protection.

Please do not alter this value as the PIC may stop operating when you run the
code. If you accidently changed the value, change it back and reassemble. After
programming again, the chip should run normally.

Be aware that this project expects the PIC to run in Low Voltage Program Mode.
If you accidently change the CONFIG value and High Voltage Program Mode is
selected you will not be able to reprogram the chip with this project. In this case
you will need a purpose designed PIC programmer to fully erase the chip before
using it again.

Cheers and happy programming.

DIY K160 Project - Page 43

PARTS LIST

Used Part Type Designators Description

SEMICONDUCTORS

1 PIC16F627 U3 PIC Processor
1 4013 U2 Dual D Flipflop
1 78L05 U1 Regulator
1 IN4004 D1 Diode
1 RA0 L2 5mm LED
1 RA1 L3 5mm LED
1 RA6 L4 5mm LED
1 RA7 L5 5mm LED
1 Active L1 5mm LED

RESISTORS all 1/4W 5%

5 1K2 R4, R5, R6, R7, R8
3 33K R1, R2, R3
1 100K R9

CAPACITORS

3 100N C2, C3, C4 MKT
1 10uF C1 Electrolytic 16V

MISCELLANEOUS

1 BLANK PCB PCB1
1 IC SOCKET 18 pin
1 IC SOCKET 14 pin
1 SERIAL CN2 Female RA DB9
1 JACK JK1 3 Pin Power Jack

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 20-Nov-2002 Sheet of
File: C:\DIYPRO~1\K160\K160.SCH Drawn By:

C1
10uF

Vin
1

G
N

D
2

Vout
3

U1
78L05

VCC

C2
100N

D1
IN4004

1
2
3

JK1
9-12VDC

1
6
2
7
3
8
4
9
5

CN1

PC

GND

C3
100N

R1
33K

R2
33K

R3
33K S

8

CLK
11

D
9

R
10

Q
13

Q
12

U2B

S
6

CLK
3

D
5

R
4

Q
1

Q
2

U2A
4013

R4
1K2

L1
ACTIVE

R5
1K2

L2
RA0

R6
1K2

L3
RA1

R7
1K2

L4
RA6

RA0
17

RA1
18

RA2
1

RA3
2

RA4
3

RB0
6

RB1
7

RB2
8

RB3
9

RB4
10

RB5
11

RB6
12

RB7
13

MCLR
4

OSC1
16

OSC2
15

G
nd

5
V

C
C

14

U3

16F627

C4
100N

R9
100K

R8
1K2

L5
RA7GND

VCC

	Index
	Board Construction
	First Run
	Flash The LED
	Define The Problem
	Writing The Software
	Number Systems
	The Assembler
	Mnemonics
	Labels
	MPLAB
	__CONFIG
	Parts List
	Schematic
	PCB Overlay
	PCB Design

