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Abstract 
 
Foot placement is a key determinant for the stabilization 
of walking speed and lateral motion of a biped.  
However, there is no closed form expression for the foot 
placement parameters in term of the walking speed or 
other gait parameters.  A simple and intuitive control 
algorithm (called “Turkey Walking”) based on Virtual 
Model Control (VMC) was successfully applied to planar 
bipedal walking.  However, it has deficiencies that 
pertain to the foot placement problem.  I propose 
augmenting the algorithm with reinforcement learning 
(RL) algorithms to overcome the deficiencies.  No 
dynamic model is required for the overall control 
architecture.  The RL algorithms are used to learn the 
leg swing parameters, whereas the “Turkey Walking” 
(TW) algorithm generates the desired joints’ torque 
based on the gaits’ parameters.  The control architecture 
is first tested on planar bipeds.  After that, it is extended 
to a 3D biped.  The research emphasizes on establishing 
the detailed structure of the architecture and illustrating 
the generality of the approach by simulation analysis. 
 
1 Background 

It is a great challenge for scientists and engineers to 
build a bipedal robot that can have the similar agility or 
mobility of a human counterpart.  The complexity of 
bipedal robot control is due to the nonlinear dynamics, 
unknown environment interaction and limited torque at 
the stance ankle.   

Pratt, et al. (1997) have proposed a simple and low 
computation algorithm called Turkey Walking (TW) for 
planar bipedal walking which is based on Virtual Model 
Control (VMC).  One distinct feature of this algorithm is 
that no dynamic equations are used to control the robot.  
Together with a simple finite state machine, the 
algorithm was successfully implemented to control a 
planar biped for steady walking task on level ground in 
real-time.  Chew (1998) has extended the algorithm for 
rough terrain locomotion.   

However, there are two main deficiencies of the Turkey 
Walking algorithm.  Firstly, the walking speed is 
controlled or modulated only during the double support 
phase.  This mode of speed control is effective only if the 
double support phase has a significant duty factor.  To 

have a significant duty factor, the swing leg needs to 
move quickly to the next touchdown position.  This 
demands high bandwidth and maximum torque output of 
the actuators.  Hence, for a given actuator bandwidth and 
maximum torque output, the biped’s walking speed will 
not be able to reach the upper bound, which is achievable 
by a biped that walks without requiring any double 
support phase for speed control. 

To achieve a stable gait in the sagittal plane without 
using the double support phase control, swing leg control 
becomes critical.  Since bipedal locomotion has the 
inherent property of having unpowered d.o.f. in the 
single support phase (Vukobratovich, et al. 1990) which 
cause the bipedal system to have restricted controllability 
in the phase, we are not able to command the joints of the 
bipedal robot to track any prescribed trajectory as in the 
manipulator control.  Thus, it is difficult to generate a 
swing leg trajectory or strategy that results in stable 
walking cycle.   

The approach to solve the problem is usually by 
indirect approaches.  For example, one may resort to 
intuition based on simple models.  A common approach 
is to assume an inverted pendulum model and plan the 
swing leg trajectory independently.  However, this model 
does not consider the coupling effect between the motion 
of the main body and the swing leg dynamics.  The 
coupling effect increases when the walking speed is 
increased (especially if the legs are massive).  Therefore, 
such an approach is not applicable for a wide range of 
walking speed. 

The second deficiency is that since the Turkey Walking 
algorithm was designed for a planar biped, it only 
provides the sagittal plane motion control solution.  It did 
not deal with lateral balancing problem that is faced by a 
general three-dimensional biped.  Thus, the Turkey 
Walking algorithm is insufficient to enable three-
dimensional bipedal walking.  

Although the Turkey Walking algorithm has these 
deficiencies, it has nice properties like simplicity and low 
computation.  It is thus critical to supplement the 
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algorithm with other methodologies that can compensate 
for these deficiencies.  In fact, the deficiencies can be 
lumped into a single problem: “How to perform foot 
placement or swing leg task so as to achieve stable 
walking?”  That is, if we can find an approach to perform 
the swing leg task so as to achieve stable locomotion, the 
deficiencies can be removed.  This motivates me to study 
the issue of the foot placement or the swing leg control 
task and to find a methodology that solves the problem.  I 
wish to augment the Turkey Walking algorithm with the 
methodology for the foot placement task.  The overall 
control architecture should be general enough to apply to 
a wide range of bipedal robots that have similar structure 
but different inertia parameters. 

Foot placement is a key determinant for the 
stabilization of walking speed and lateral motion of a 
biped.  However, there is no closed form expression for 
the foot placement parameters in term of the walking 
speed or other gait parameters.  This is because of the 
unpowered d.o.f. and the fact that the stance leg’s foot is 
not bolted on the ground  (compared with traditional 
manipulators).   

Since there is no analytical solution for the foot 
placement task, I propose using learning methodology for 
it.  Model-free reinforcement learning (RL) algorithms 
(Kaelbling, Littman and Moore, 1996) will be used.  The 
robot is expected to learn the swing leg task for stable 
walking without a dynamic model of the system or the 
environment.  Other subtasks like height and body 
posture control can be achieved by using the Turkey 
Walking algorithm.  This results in a control architecture 
for bipedal walking which I call “TW-RL”.   

There are two advantages of this architecture.  Firstly, 
the learning time is expected to be shorter than those  
learning approaches that learn all the joints’ trajectories 
from scratch.  This is because the scope of learning is 
small and less complex if the learning algorithms just 
focus on a subtask.  Furthermore, I can utilize the 
previous research results of the Turkey Walking 
algorithm and thus not invent the wheel.  In summary, 
the robot should only need to learn whatever tasks that 
really require learning.   

Such an architecture should not require any existing 
data to prime the algorithm.  Thus, it eradicates the 
process of data adaptation.  The robot can learn the foot 
placement behaviors by trial-and-error without using the 
dynamic model.  Thus, the architecture is general and the 
resulting algorithm should be applicable to another 
bipedal robot having the same d.o.f. but different mass 
distributions, length parameters, actuator power etc..   

The architecture is also general in that it allows a 
programmer to freely choose the strategy for control, for 
example, the swing leg strategy.  Then, the learning 
algorithms learn the appropriate parameters for the foot 
placement so as to achieve overall stable walking. 

Since the algorithm should eventually be applied to a 
physical robot, it should be able to run in real-time.  
Furthermore, the number of trials needed for the robot to 
learn to walk successfully should be low.  Therefore, 
computation requirement and rate of learning are two key 
considerations for the implementations. 

The architecture is applied to simulated bipedal robots 
that are constrained to move in the sagittal plane.  I will 
illustrate and discuss several ways of implementing the 
architecture for steady walking.  Then, I will extend it to 
a 3D bipedal robot.  

 

2 Related Work 
In biomechanics research, Redfern and Schumann 

(1994) analyzed the swing trajectory of the foot with 
respect to the pelvis during the walking gait.  They also 
proposed a model of foot placement control for stable 
base support of human locomotion.  Experimental data 
were collected to test the model during walking trials of 
different speeds.  Townsend (1985) found that lateral 
stability of human walking is maintained through foot 
placement based on conditions at each new step.  The 
body center of mass trajectory can be controlled by foot 
placement alone.  Beckett and Chang (1968) investigated 
the behavior of the leg in the swing phase during normal 
walking.  They also studied the energy consumption of 
the walking and concluded that there is a natural gait at 
which a person can walk with minimum effort. 

The researches listed above were carried out for human 
beings.  It is not clear whether the model derived for 
human walking can be generally applied to other bipeds 
or used for the control of a bipedal robot.  One reason is 
that a bipedal robot usually has different mass 
distribution and length parameters from humans.  They 
also have different actuators system.   

Raibert and Wimberly (1984) applied tabular control of 
balance to a planar hopping monoped.  A tabular 
relationship between the lift-off and touchdown states 
was first obtained by simulating the monoped from 
different initial conditions.  The foot placement location 
that minimized a performance index could be found by 
one-dimensional search through the tabulated data.  One 
drawback of this approach is that the tabular relationship 
was done in simulation.  It is unclear whether the 
information obtained could be applied to the physical 
system. 
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Kajita and Tani (1995) derived a massless leg model 
for a planar biped that followed linear motion.  From the 
model, the touchdown condition of the swing foot could 
be determined based on an energy parameter.  

Benbrahim and Franklin (1997) applied reinforcement 
learning algorithms for a biped to achieve dynamic 
walking.  They adopted a “melting pot” and modular 
approach in which a central controller used the 
experience of other peripheral controllers to learn an 
average control policy.  The central controller was pre-
trained to provide nominal trajectories to the joints.  One 
disadvantage of the approach was that nominal 
trajectories of the joints were required before any 
learning began. 

Miller (1994) designed a learning system for a biped 
that was capable of learning the balance for side-to-side 
and front-to-back motion.  Neural network learning 
provided accurate and smooth feedforward control to the 
joints. 

 

3 Target Systems 
Two bipeds are considered in this research.  One is a 

headless and armless planar bipedal robot called Spring 
Flamingo (Figure 1).  It is constrained to move in the 
sagittal plane.  The legs are much lighter than the body.  
Each leg has three actuated rotary joints.  The joints axes 
are perpendicular to the sagittal plane.  It has a  total 
weight of about 14 kg. 

  (a)   (b) 

Figure 1.  7-Link 6 dof planarbiped – Spring Flamingo 

 

The other robot is an unconstrained bipedal robot called 
M2 (Figure 2).  It is also headless and armless.  Each leg 
has six active d.o.f. of which three d.o.f. is available at 
the hip (yaw, roll, pitch), one at the knee (pitch) and two 

at the ankle joint (pitch, roll).  It has a total weight of 
about 23 kg. 

In both systems, the joint actuators are Series Elastic 
Actuators (Pratt and Williamson, 1995).  The actuators 
are force or torque controlled.  The inputs to the actuators 
are the desired force or torque, generated by the walking 
algorithm, for individual joints. 

 

Figure 2.  Three dimensional biped:  M2 (Picture 
courtesy from Danial Perluska) 

 

4 Approach 
For normal walking, we assume that the dynamics in 

the sagittal and the frontal plane are decoupled.  Based 
on this assumption, we consider the motion control in 
both planes separately.  

 For the sagittal plane, the bipedal walking task can be 
decomposed into three subtasks.  They are the height 
control of the body, the pitch control of the body, and the 
horizontal velocity of the body.  It is easy to achieve the 
first two subtasks using the Turkey Walking algorithm 
(Section 4.1) without the need of learning.   

As for the horizontal velocity regulation, I propose 
using the foot placement approach instead of using the 
double support phase as in Pratt, et al. (1997).  Since 
there is no analytical solution for the foot placement in 
terms of walking speed or the gait parameters, I apply a 
reinforcement learning algorithm (Section 4.2) to learn 
the task.  The behavior of the swing leg can be 
determined binseveral ways.  For example, we could 
specify the swing foot trajectory in the spatial coordinates 
before each swing task.  However, the resulting solution 
space is too huge to apply general learning.  To obtain a 
well-posed learning problem, we could narrow the scope 
of learning by fixing the shape of the swing foot 
trajectory and learning only the scalar parameters of the 
swing leg.  For example, the biped can learn the end-
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position of the swing foot relative to the hip and/or the 
swing time for successful walking. 

For the frontal plane, I use rotational a virtual spring-
damper component to control the body posture, and a 
reinforcement learning algorithm learns the lateral 
behavior of the swing leg.  The aim is to prevent the 
biped from falling in the frontal plane. 

The resulting control architecture (called “TW-RL”) is 
summarized in Figure 3.  The biped has no prior idea or 
nominal model for foot placement behavior.  The 
learning agents select appropriate swing leg parameters, 
for example, step length, swing time etc. and evaluate 
them accordingly.   

4.1 Turkey Walking algorithm  
The Turkey Walking algorithm is constructed using a 

control language called Virtual Model Control (VMC) 
(Pratt, 1995; Pratt et al., 1997).  In VMC, we use virtual 
components to generate joints’ torque (or force) 
commands.  The torque generated at the joints creates the 
same effect that the virtual components would have 
created, had they existed, thereby creating the illusion 
that the virtual components are connected to the real 
robot.  Examples of virtual components include simple 
springs, dampers, masses, etc.. 

 

 

Figure 3:  TW-RL: The proposed control architecture. 

 VMC provides a low computational framework for the 
control of legged robots since it does not require the 
computation of inverse dynamics. 

Pratt (1995) constructed the Turkey Walking algorithm 
for a planar biped called “Spring Turkey” that had a 
similar structure as the planar biped as shown in Figure 
1.  In this algorithm, the height control is achieved by a 
virtual parallel spring-damper attached vertically 
between the hip and the ground.  It generates a virtual 
vertical force Fz  at the hip.  For the body pitch control, a 

virtual rotational spring-damper is applied at the hip.   
This generates a virtual torque Mα about the hip.  The 

virtual forces are then be transformed into the joints’ 
torque using a transformation matrix (Pratt, 1995) for 
postural control. 

 

4.2 Reinforcement learning (RL) 
A characteristic of reinforcement learning (RL) 

algorithms is that the learning is done with the help of a 
critic rather than a teacher (Sutton and Barto, 1998).  
This is distinct from supervised learning where a set of 
input-output data are used to train a learner.  Most of the 
time, the RL algorithms learn an intermediate function 
(called the value function) from which decisions or 
control actions are deduced.  One feature of the RL 
approach is that non-linearities due to bandwidth 
limitation, torque limitation etc. are encapsulated from 
the learning agents.   

There are many algorithms proposed for RL.  One 
popular algorithm is the Q-learning algorithm by 
Watkins (1992).  It is an off-policy and model-free RL 
algorithm.  A brief outline of the algorithm is given as 
follows. 

Let s denote the state, a denote the present action; and 
),( asQ be the state-action value function corresponding 

to s and a.  The key equation of the Q-learning algorithm 
is as follow (Sutton and Barto 1998): 

)],(),(max[),(),( 11 ttt
a

ttttt asQasQrasQasQ −++← ++ γα

where the subscript indicates the stage number, 1+tr  

denotes reward received after an action ta  is taken at t-

th stage when the system is in state ts ; α  denotes the 

step-size parameter for the update, γ denotes the discount 

rate in the computation of cumulative rewards (return).  
The equation provides an update of value estimate 

),( tt asQ based on the observed 1+tr  and the value 

estimate ),(max 1 asQ t
a

+ . 

To apply the Q-learning to continuous states and 
actions, a function approximator needs to be used to 
approximate ),( asQ  (Sutton and Barto, 1998).  In this 

research, I compare two function approximators: 1) the 
Gaussian Radial Basis Function (GRBF) network 
(Broomhead and Lowe, 1988; Poggio and Girosi, 1990) 
and 2) the Cerebellar Model Articulation Controller 
(CMAC) (Albus, 1981).  Both have nice localized 
generalization property.  Although the GRBF Network 
has localized generalization and is a universal 
approximator (Park and Sandberg, 1991), its 
implementation is computationally expensive.   On the 
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other hand, CMAC network has the advantage of having 
not only localized generalization, but also low 
computation.   

 

4.3 Research Schedule 
My research will be first carried out for the planar 

biped.  Two parameters of the swing leg task will be 
studied.  They are the swing time and the end position of 
the swing foot.  We may specify one of them and let the 
learning agent decide the other.  Or, we may let the 
learning agent decide the proper combination.  That is, 
the biped should be able to execute the swing leg task for 
steady walking by trial-and-error starting from zero 
knowledge or skill.   

If the result is successful, I will implement the frontal 
part of the architecture.  Together with the sagittal plane 
implementation, the frontal plane implementation will be 
applied to the three-dimensional (3D) biped to achieve 
steady dynamic walking. 

When the level ground steady dynamic walking for the 
3D biped is successfully implemented, difficult terrain 
locomotion, e.g. random sloped terrain, stairs etc. will 
then be considered.  The research schedule is 
summarized as in Table 1. 

Table 1:  Research Schedule 

Quarter Task 
Q4 1998 Feasibility study of the proposed control 

architecture for 2D biped. 
Q1 1999 - 
Q2 1999 

Comparison between tabular and function 
approximation approaches in reinforcement 
learning algorithms. 

Q3 1999 Comparison between Gaussian Radial Basis 
Function and CMAC as function approximator 
in reinforcement learning algorithms. 

 Finalisation on the choice of function 
approximator and begin simulation study of the 
proposed control architecture for 2D biped.  
For example, learning different parameters of 
the swing leg task.  

Q4 1999 Study of the generality of the control 
architecture by applying it to two different 
bipeds (planar). 

 Extension to 3D biped 
 Extension to slope terrain locomotion  
Q1 2000 Revise Thesis  
Q2 2000 Defend Thesis 

.  

5 Preliminary Implementation  
The TW-RL control architecture has been implemented 

for the planar biped.  In the implementation, the height 
of the biped is set and assumed to be constant during 

walking.  The following set of variables is identified to be 
the state variables: 

1. Horizontal velocity of the hip, xhipv _
+ ; 

2. Horizontal component of the coordinates of the 
swing leg’s ankle from the hip after the swing 

leg has landed, xhad _
+ ; 

3. Actual step length, stepd + . 

Superscript + indicates that a state variable is measured 
or computed momentarily after the landing of the swing 
foot.      

The shape of the swing leg trajectory and the swing 
time are fixed.  The RL algorithm has to learn the 
desired end position of the swing foot.  In this particular 
implementation, the desired position of the swing foot is 
measured from the hip.   

A simple reward function (critic) is formulated as 
follows: 




−

<<
=

failure)otherwise(                  ,1

3.10.1-for                      0 s
m

xv
r  

I also assign 1−=r , if the robot falls down.    

Q-learning algorithm with CMAC network as the 
function approximator is used in this implementation.  
The biped tries to walk until it has failed.  The learning 
is stopped when it has completed 100 seconds of 
successful walking.  Each time it fails, it restarts from 
beginning. 

In this implementation, the learning rate of the system 
can be improved tremendously when a local control is 
applied to the stance leg’s ankle to assist in regulating 
the walking speed.  The equation to generate the required 
torque aτ  at the stance leg’s ankle joint is as follow: 

)( __ xhip
d

xhipaa vvB −=τ     (2) 

where Ba is a constant gain and superscript d indicates  
desired value.  Since the stance leg is not bolted on the 
ground, the torque needs to be bounded within an upper 
and a lower limits to prevent the stance leg’s foot from 
tipping at the toe or heel. 

To show the effectiveness of the local control, a 
simulation is run in which the starting posture (legs are 
parallel to each other) and initial walking speed (0.4m/s) 
are the same for every trial.  The result is shown in 
Figure 4.  The dotted graph shows the simulation result 
corresponding to the case where the local control was 
implemented.  It reaches 100 seconds walking in less 
than 30 iterations.  The solid-line graph corresponds to 
the result of the simulation in which no local control is 
applied.  Comparing both graphs, we can deduce that 
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proper application of the local control (in this case, the 
ankle torque control of the stance leg) can speed up the 
learning rate for the walking task.  

To verify that the local control at the stance leg’s ankle 
joint can provide a consistently good learning rate, we 
have also randomized the starting posture and walking 
speed in the simulation.  Six consecutive learning results 
are shown in Figure 5.  The biped can reach 100 seconds 
of walking (without failure) within 120 trials.  The best 
result shows that it can reach the target at 12th trials. 

6 Potential Contributions 
The main contribution of this thesis is the synthesis of 

the Turkey Walking algorithm with the Reinforcement 
Learning (RL) algorithms to provide a simple but general 
and systematic way of implementing dynamic bipedal 
walking without the need for dynamics formulation and 
nominal data.  Other contributions include the usage of 
the local control to assist and speed up the learning for 
walking task.  The proposed control architecture may 
provide another framework to analyze and understand 
how bipedal creatures learn to walk. 
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Figure 4.  Local control at the stance leg’s ankle joint increases 
the learning rate.  The starting posture and initial speed is the 
same for both case.  Dotted curve corresponds to the learning 

curve with the local control at the ankle.  Solid curve is without 
the local control. 
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Figure 5.  Several learning curves of the biped in which the 
local ankle torque control is used.  In these implementations, 
the biped randomly selected the starting posture from a set of 

six postures.  The starting velocity is also random.   
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