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Abstract

We study the path planning problem, without obstacles, for closed
kinematic chains with n links connected by spherical joints in space
or revolute joints in the plane. The configuration space of such
systems is a real algebraic variety whose structure is fully deter-
mined using techniques from algebraic geometry and differential
topology. This structure is then exploited to design a complete path
planning algorithm that produces a sequence of compliant moves,
each of which monotonically increases the number of links in their
goal configurations. The average running time of this algorithm
is proportional to n3. While less efficient than the O(n) algorithm
of Lenhart and Whitesides, our algorithm produces paths that are
considerably smoother. More importantly, our analysis serves as a
demonstration of how to apply advanced mathematical techniques
to path planning problems.

Theoretically, our results can be extended to produce collision-
free paths, paths avoiding both link–obstacle and link–link colli-
sions. An approach to such an extension is sketched in Section 4.5,
but the details are beyond the scope of this paper. Practically, link–
obstacle collision avoidance will impact the complexity of our al-
gorithm, forcing us to allow only small numbers of obstacles with
“nice” geometry, such as spheres. Link–link collision avoidance
appears to be considerably more complex. Despite these concerns,
the global structural information obtained in this paper is funda-
mental to closed kinematic chains with spherical joints and can
easily be incorporated into probabilistic planning algorithms that
plan collision-free motions. This is also described in Section 4.5.
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1. Introduction

Given a robot in a workspace with obstacles and start and
goal configurations, qS and qG, the “generalized movers’ prob-
lem” is to construct a continuous collision-free path for the
robot connecting qS and qG. In its full generality with multiple
robots and arbitrary link and obstacle geometries, this prob-
lem is extremely challenging. The most efficient, complete
algorithm for solving the general problem is the roadmap al-
gorithm of Canny (1988) which operates in the space of all
configurations of the system, C-space, denoted by C. In C,
points represent specific robot poses and (continuous) curves
represent robot motions. Canny’s roadmap algorithm assumes
polyhedral bodies and takes as input a formula describing the
collision-free portion of configuration space, Cf ree. It pro-
duces a one-dimensional skeleton, Rf ree (a roadmap), with
two properties that lead to algorithmic completeness: (1) for
each component of Cf ree, Rf ree has exactly one component;
and (2) a path connecting any point in a component of Cf ree to
the corresponding component of Rf ree can always be gener-
ated. The algorithm runs in single exponential time, with the
exponent equal to the number of degrees of freedom. Because
the potential number of components in Cf ree is exponential in
the dimension of C, the complexity of the roadmap algorithm
is worst-case optimal (Canny 2002).

The complexity and implementation difficulties of com-
plete motion planning algorithms for the generalized movers’
problem (Canny 1988; Schwartz, Hopcroft, and Sharir 1987)
have fueled two major thrusts in motion planning research
over the past 20 years: the search for sub-classes of the gener-
alized movers’ problem for which complete polynomial-time
algorithms exist, and approximate methods which trade com-
pleteness for average-case efficiency; discussions of many
exact and approximate methods can be found in Latombe’s
text (Latombe 1991). Other than roadmap methods, the main
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class of complete planning methods are known as cell de-
composition methods. In these methods, Cf ree is decomposed
into a set of non-overlapping cells and their connectivity is
represented by a graph. After identifying the cells contain-
ing qS and qG, a graph search is performed to obtain a se-
quence of cells connecting qS and qG; the union of the cells in
this sequence forms a “channel”. The last step is to extract a
continuous path through the channel. The problem with cell
decomposition methods is that, for the generalized movers’
problem, there are no polynomial-time decomposition algo-
rithms. To the best of our knowledge, Collins’ algorithm is
the best option available, but it is doubly exponential in the
dimension of the ambient C-space (Schwartz, Hopcroft, and
Sharir 1987). Polynomial-time algorithms for simplified prob-
lems have been developed—for example, motion planning for
a “ladder” (a line segment) moving in space among polyhe-
dral obstacles (Schwartz, Hopcroft, and Sharir 1987)—but the
work in this area dwindled as successful probabilistic methods
began to appear.

Probabilistic roadmap methods (PRMs), beginning pri-
marily with the work of Overmars and Svestka (1994),
Kavraki and Latombe (1994) and Kavraki et al. (1996), have
taken center stage for about the last 10 years. Roughly speak-
ing, PRMs use random search to construct a probabilistic
roadmap, Rf ree, as a graph whose nodes and arcs represent
free configurations and collision-free paths linking them. If
enough random samples are generated, the components of the
graph will be in one-to-one correspondence with the compo-
nents of Cf ree and it will be “easy” to connect arbitrary start
and goal configurations to the graph. Despite their incomplete-
ness, PRMs have become popular because they are easy to im-
plement and they have successfully solved many problems in
very high-dimensional C-spaces. They have also been adapted
to problems with various types of physical constraints. For
example, PRMs have been applied to problems with continu-
ously deformable bodies (Kavraki, Lamiraux, and Holleman
1998), problems with significant dynamic effects (LaValle and
Kuffner 2001),1 problems involving mechanisms with loops
(Han and Amato 2000; LaValle, Yakey, and Kavraki 1999),
and problems of dexterous manipulation, where the kinematic
loop topology varies and further complications arise from con-
tact and friction constraints (Farahat, Stiller, and Trinkle 1995;
Trinkle, Farahat, and Stiller 1995; Trinkle and Hunter 1991).

While the successes of PRM methods are clear, we should
expect that, as these methods are pushed into domains with
complicated constraints, such as those with kinematic loops,
it will become increasingly difficult to construct randomized
roadmaps. For example, in the case of dexterous manipula-
tion, plans are composed of path segments restricted to strata
of differing dimensions (caused by varying numbers of con-
tact constraints). The application of PRMs would require us
to generate roadmaps in each stratum and then to connect

1. Note that C-space is replaced by state space for dynamic problems.

them (Cherif and Gupta 1999; Son 1996; Trinkle et al. 1993).
In general, the number of strata will be exponential in the di-
mension of the ambient C-space. Given this, we should expect
the amount of random sampling required for building a good
probabilistic roadmap to be exponential in the dimension of
C-space.

The approach taken in this paper represents a return to the
first research thrust discussed above: the search for complete,
polynomial-time algorithms for a sub-class of the generalized
movers’ problem. We study the problem of planning recon-
figurations of spatial kinematic closed chains with spherical
joints and their planar analogs. Our problem is further re-
stricted by neglecting collisions with obstacles and with other
links (although we discuss how these could be handled in
Section 4.5). While admittedly, our class of problems is too
simple to be directly applicable to most tasks of practical
interest in robotics, our approach sheds some new light on
exact approaches to path planning problems. The approach
is based on a complete understanding of the singular sets of
certain maps, which is achieved via techniques of modern
mathematics, some of which were not previously available.
What makes this class of path planning problems difficult even
though collisions are ignored is the complexity of the valid
portion of C-space, Ckin,2 which is a real algebraic variety
of co-dimension three (for spatial closed chains) or two (for
planar closed chains) that is not necessarily parametrizable.

Beyond the scope of this paper, we have found that our
methods can be applied to more complex problems, including
the collision-free motion planning problem for closed chains
(in the presence of obstacles and joint limits), and to spatial
kinematic chains with revolute joints that represent proteins.
In the latter case, we have found that stable secondary struc-
tures in proteins, known as “beta-sheets” and “alpha-helices,”
correspond to singular sets of degrees 1 and 2, respectively.
Moreover, we cannot fully understand how proteins fold with-
out the analysis done for the special case of planar closed
chains that we discuss later. This is partly because many pro-
teins develop planar substructures and pass through their crit-
ical points as they fold, but also because some of the singular
sets, while not planar, have the same structure as these spaces
of planar configurations.

1.1. Related Work on Closed Kinematic Chains

In this section, we discuss in more detail the connections our
work has to existing research for systems with closed kine-
matic chains. There are three primary categories: exact path
planning, probabilistic motion planning, and mechanism sin-
gularity analysis. Note that the terminology “motion plan-
ning” generally implies that collisions are avoided. We use
the term “path planning” to imply that collisions are ignored.

2. The subscript “kin” indicates that the valid configurations must satisfy the
kinematic constraint of loop closure.
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1.1.1. Exact Motion Planning

In the early 1990s Lenhart and Whitesides (1994) and Iarocci
(1994) studied the problem addressed in this paper with the
same assumptions. They proved several global results for the
valid configuration space Ckin of closed chains, which al-
lowed them to develop a complete path planning algorithm
that used O(n) “line-tracking” moves. Given qS , qG, and the
link lengths, O(n) line-tracking moves were used to construct
a path to transform the closed chain fromqS into a triangle. The
same was done for qG. Then O(n) line-tracking moves were
used to transform one triangle into the other. The main prob-
lems with this algorithm are that the paths produced contain
a large number of slope discontinuities (one for each “basic”
move; line-tracking moves can be composed of several basic
moves) and that every plan contains an intermediate triangu-
lar configuration even when qS and qG are quite “near” each
other.

In this paper, we use additional global properties of Ckin

to design a planning algorithm that also uses at most n − 2
accordion moves with one velocity discontinuity per move.
In addition, we exploit the global structure of Ckin in a spe-
cial planar case that allows us to complete a path in progress
with a single linear interpolation. As a result, our paths are
smoother that those produced by the algorithm of Lenhart and
Whitesides (1994). On the other hand, their algorithm is more
efficient, because each line-tracking move can be computed
in constant time, whereas in our implementation the compu-
tation time of accordion moves is proportional to m2, where
m is the number of links in the current accordion.

1.1.2. Probabilistic Motion Planning

Recently, there have been two efforts to plan collision-free
motions for systems with kinematic loops and fixed topol-
ogy, both adopting the PRM paradigm (Han and Amato
2000; LaValle, Yakey, and Kavraki 1999). The approach taken
by LaValle, Yakey, and Kavraki (1999) targeted more gen-
eral systems: systems with constraints expressed as algebraic
equations (not limited to kinematic constraints). Because of
its generality, the method was somewhat inefficient. Points
in a probabilistic roadmap Rkin were found by first choos-
ing random points in the ambient C-space and then applying
an iterative scheme to reduce the residuals of the constraints
(hopefully to zero). The configuration found by each success-
ful minimization was tested for collisions before inserting
it into the roadmap. Planning queries were processed in the
usual way. Planar test problems with up to eight links and two
loops were computed in several hours.

Han and Amato (2000) specialized the method of LaValle,
Yakey, and Kavraki for problems in which the constraint equa-
tions enforced kinematic loop closure, and they implemented
it for floating spatial mechanisms. Considerable improvement
was obtained by breaking the kinematic loops to allow closed-
form inverse kinematic solutions to replace the iterative so-

lution approach used by LaValle, Yakey, and Kavraki. An
additional improvement was obtained by applying the PRM
idea hierarchically. With one link fixed in space, a proba-
bilistic roadmap, Rkin, of the chain’s valid configurations was
generated without concern for collisions. Then, since the link
fixed during the generation of Rkin was really allowed to be
positioned and oriented freely in the motion planning prob-
lem of interest, copies of Rkin were randomly placed in SE(3)
(the special Euclidean group). Nodes and arcs of the copies
of Rkin generating collisions were eliminated. Finally, a ran-
domized planner for rigid bodies was used to try to connect
corresponding nodes in the copies of Rkin to complete the full
roadmap. Han and Amato solved planning problems for planar
and spatial linkages with 7–9 links and workspace obstacles.
Roadmap construction required less than 1 min of cpu time.

As a final comment on PRMs, because of the complexity
of the valid subset of C-space, we should expect roadmap con-
struction times for generalized movers’ problems to increase
exponentially with the dimension of the ambient C-space and
the degrees of the polynomials representing the constraints.
As suggested by Han and Amato, advantages gained by us-
ing “more deliberate” methods, such as incorporating closed-
form inverse kinematic solutions and the approach presented
here, will become increasingly important.

1.1.3. Mechanism Singularity Analysis

As indicated above, our approach relies on an understanding
of the global structure of the singular sets of certain maps. Ap-
proximately 20 years ago, researchers studying the design of
spatial mechanisms recognized the importance of various sin-
gular sets and developed methods for finding points in them;
see, for example, Baker (1978), Derby (1980) and Sugimoto,
Duffy, and Hunt (1982). Their basic approach was to obtain
the Jacobian of the loop closure equations as a function of
the kinematic parameters and the joint variables. Then var-
ious design questions were answered by the numerical so-
lution of appropriate equations derived from the Jacobian.
More specifically, Baker (1978) found limiting positions of
links, and Derby (1980) found the maximum reach of an open
spatial chain. Sugimoto, Duffy, and Hunt (1982) found “sta-
tionary” configurations (a generalization of Baker’s limiting
positions) and “uncertainty” configurations by monitoring all
seven (6 × 6) minors of the Jacobian as a driving link was
incrementally moved.

The distinguishing common thread in this previous work—
and this line of research continues today; see, for example,
Carricato and Parenti-Castelli (2002) and Downing, Samuel,
and Hunt (2002)—is the use of numerical methods to find in-
dividual singular points of co-rank one.3 This approach is in

3. Given aC∞ mapf : M −→ N of differentiable manifolds, a pointm ∈ M

is singular if and only if the Jacobian of f at m does not have full rank. In this
case, the co-rank of the singular point is the number dim(N)−dim(Im(JJJ )),
where JJJ is the Jacobian, dim(N) is the dimension of the manifold N , and
Im(J ) is the image of J .
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striking contrast to ours, in which we obtain the entire singular
set and characterize it globally. The closest the previous work
comes to this is to iteratively obtain many singular points for
a one-degree-of-freedom mechanism in an attempt to approx-
imate the singular set. However, such an approach cannot be
used to determine the properties and full global structure that
is needed in our approach.

The mechanism work most closely related to our work was
carried out by Ting (1989), Ting and Liu (1991) and Alizade
and Sandor (1985). They focused on the problem of discov-
ering “fully rotatable” links within a mechanism. While the
connection to singularity analysis may not be immediately
clear, the existence of “fully rotatable” links implies important
global structure and is determined by proving that conditions
used to define “special” and “uncertainty” configurations can-
not be satisfied. In their work, Alizade and Sandor focused
on two particular classes of one-degree-of-freedom spatial
mechanisms. Their method ultimately relied on the numeri-
cal solution of equations derived from singularity conditions,
and thus could not be used to provide the complete global
topological properties of C-space that we seek. However, by
restricting his attention to planar closed chains with revolute
joints, Ting was able to derive closed-form rules for rotata-
bility for three classes of closed chains (one degenerate). As
will be seen later, we use some of Ting’s results, in addition
to our newer results, to design our path planning algorithm
for planar closed chains.

1.2. Summary of Our Approach

We begin with a closed kinematic chain with spherical joints
(revolute for planar closed chains). One link, the base link,
is fixed in the workspace. We wish to determine the detailed
structure of the valid portion of C-space, Ckin. This problem
has resisted analysis for a very long time. However, if we
break the kinematic loop by disconnecting a joint at one end
of the base link, we form an open chain based at the other
end of the base link. The C-space of this open chain is a
product of special orthogonal groups SO(3)n−1 and the end-
point of the open chain is free to map anywhere it can (inside
the annular workspace of the open chain). However, because
we do not consider collisions in our analysis, the shapes of
the links (and also their orientations about the line segments
connecting the joints) is not relevant. Thus the essence of the
mechanism’s kinematics is represented more concisely as a
product of spheres (S2)n−1, and this then serves as the basis
of our analysis.4

Since the relevant C-space of an open chain is the prod-
uct of spheres, we can focus on the end-point map, f :
(S2)n−1 −→ �3, (f sends each configuration of the open
chain to the image of the end-point of the final link) of this

4. In Section 4.5 we indicate some of the steps that are needed to go from the
model used here to models that would be needed to consider obstacles and
self-intersections of the links. The extension of the results is direct, involving
lifting paths in a product of S2 to paths in a product of SO(3).

C-space to construct Ckin of the original closed chain. This
is obtained as f −1(e), with e being the point at the end of
the base link where the joint was disconnected to break the
chain. In order to determine f −1(e) we use techniques from
algebraic geometry and differential topology to determine the
inverse images of all the points p in the image, Im(f ) (not
just e), f −1(p), as p runs over all points f (q), q ∈ (S2)n−1.
Thus we find the desired C-space f −1(e) as a special case. We
denote the image space as V, and note that it is either a closed
ball or a closed annulus.5

In detail, first we determine the singular points of f , which
are not thought of as isolated points, but rather as points mak-
ing up an intrinsic algebraic sub-variety of (S2)n−1. In the
special case considered here, these singular sets turn out to be
2n−2 disjoint spheres S2 ⊂ (S2)n−1. Moreover, f maps these
singular spheres onto concentric spheres in Im(f ) centered
at the base of the open chain, the specific radii of these image
spheres depending on the explicit lengths of the links. This is
actually a special case of a very general and important result
in mathematics, the Morse–Sard theorem that states, for C∞

maps, that the image of the singular set always has measure 0
in the image manifold; see Guillemin and Pollack (1974). In
our situation, where we are dealing with an algebraic map of
algebraic varieties, the singular set is an algebraic sub-variety
and the image is, consequently, an algebraic sub-variety of V
of dimension at most one less than the dimension of V.

The image of the singular set decomposes V into connected
regions, in the case here, open annuli centered at the base of the
open chain. Since (S2)n−1 is compact, the map f , restricted to
the inverse image of each open region is a fibration with fiber a
closed, compact manifold of dimension 2n−5; see Guillemin
and Pollack (1974). Consequently, the inverse images for any
two points in one of these regions are diffeomorphic. Thus
the problem reduces to two basic steps: first, find the inverse
image in one of these regions; and, second, understand how the
image changes when we pass through the image of a singular
point.

When the singular set is generic, the map f restricted to
the singular set is a local diffeomorphism and standard meth-
ods of differential topology and algebraic geometry allow the
determination of the way in which the global structure of the
space f −1(p) changes as we pass through the image of the
singular points. Among the critical things we learn is how
the number and structure of the connected components in the
inverse image changes. Indeed the component set provides
the solution to the existence problem: a path from configu-
ration qS to configuration qG exists if and only if qS and qG

are in the same path component in f −1(p). Further informa-
tion about the global structure of f −1(p) gives information on
how to construct efficient paths consisting of long geodesic
segments.

5. The analysis can be extended to include prismatic joints (with finite travel),
but when we do this, the C-space of the open chain is a product of spheres
and intervals.



Trinkle and Milgram / Closed Kinematic Chains with Spherical Joints 777

It is worth noting that, while in this paper we only consider
the end-point map into �3, V could be chosen to be a subset of
�3 × S2 if the orientation of the last link is constrained. Also,
the techniques described above are still available to handle
the analysis in this case.

2. Problem Formulation

Let M denote a closed kinematic chain with n links connected
by spherical joints in Euclidean space, �N , with N = 2 or
N = 3. When N = 3, M represents a spatial n-bar mecha-
nism with spherical joints. In Figure 1, the joints, in positions

ji; 1, . . . , n;, are represented by spheres and the links by
cylinders connecting them. The vector along link i from joint
i to joint i+1 will be denoted by 
li; i = 2, . . . , n; 
l1 = 
j1− 
jn
with lengths, ||
li || = li;, are the distances between the cen-
ters of the joints and are assumed to be strictly positive and
constant. Without loss of generality, we also assume that the
first (or base) link is fixed to lie on the x-axis with its initial
end at the origin. Each link’s orientation is specified by two
angles, φi measured in the xy-plane and ψi measured from
the z-axis, as shown in Figure 2. A configuration q of M
is specified by the orientations of all the unfixed links (i.e.,
q = [ψ2, φ2, . . . , ψn, φn]). Thus the space Ckin of all valid
configurations of M is contained in the ambient C-space, C,
the product of n − 1 spheres, (S2)(n−1).

When N = 2, M represents a planar n-bar mechanism
with revolute joints (see Figure 3). In this case, ψi = π

2
for all

i, and so a configuration is represented as an (n − 1)-tuple,
q = [φ2, . . . , φn] and the C-space of M is contained in the
product of n − 1 circles, (S1)(n−1).

For M to form a closed loop as required, the lengths and
angles must satisfy the following constraint:

F(q) =
n∑

i=1

li


 sin(ψi) cos(φi)

sin(ψi) sin(φi)

cos(ψi)


 = 0. (1)

Equation (1) restricts the C-space of M to a real algebraic
variety, Ckin (not necessarily a manifold6), embedded in C.
Our problem can now be stated as follows.

Path Planning Problem: Given start and goal configurations,
qS ∈ Ckin and qG ∈ Ckin, find a continuous path τ : [0, 1] −→
Ckin such that τ(0) = qS and τ(1) = qG.

As a preview of our results, Figure 4 shows start and goal
configurations for two six-link planar closed chains with the
same base link lengths (bold and horizontal), but with slightly
different lengths for the other links. While not intuitively obvi-
ous, only one of these two problems has a solution, which our
algorithm (implemented in Matlab on a 650 MHz Pentium III
PC) found in less than 0.1 cpu seconds. This same algorithm

6. By m-dimensional manifold, we mean a topological space of dimension
m that is locally Euclidean.

j2

j7

Fig. 1. Spatial seven-link closed chain with spherical joints.
Link 1 is fixed on the x-axis.

Fig. 2. Link orientation measured in spherical coordinates.

has been successful in solving motion planning problems for
planar closed chains with up to 10,000 links (in a few seconds)
for one class of planar closed chains (Ting’s “Class I” (Ting
1989; Ting and Liu 1991)), but only up to 500 links (in 16 h)
for the other class (Ting’s “Class II”).

3. Properties of the Closure Variety, Ckin

In our discussion of configuration spaces, it is convenient to
introduce the following notation:

• ∅ is the empty set;

• L is the sum of the link lengths (i.e., L = ∑n

i=1 li); and

• λi is the length of the ith longest link.
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l

l2l3

l4

1

ϕ2

ϕ3

ϕ4

ϕ1 = 0

x

y

Fig. 3. Four-link planar closed chain.

Fig. 4. Start and goal configurations of two six-link closed
chains with slightly different link lengths. For one, no
connecting path exists.

3.1. Ckin for M with Two or Three Links

A closed chain cannot be formed with fewer than two links.
For the numbers of links, n = 2 and n = 3, we can determine
Ckin by inspection:

• for n = 2, Ckin

=
{

a single point if λ1 = λ2 = L

2

∅ if λ1 �= λ2

• for n = 3, Ckin

=




S1 if λ1 < L

2

for M in �3

two isolated points if λ1 < L

2

for M in �2

a single point if λ1 = L

2

∅ if λ1 > L

2

.

For the case with n = 3, a distinction was made between the
spatial and planar cases. When λ1 is less than L

2
, the links

can form a triangle. In the spatial case, l1 is fixed on the x-
axis, but the other two links can rotate about it. Thus Ckin is a
circle embedded in the ambient C-space, C. In the planar case,
one can assemble the triangle in two ways; “elbow-up” and
“elbow-down,” and once assembled, no motion is possible.
Thus Ckin is two isolated points in C.

3.2. Ckin for M with More than Three Links

When the number of links, n, is greater than three, it has been
shown independently by Ting (1989), Ting and Liu (1991)
and Lenhart and Whitesides (1994) that the properties of Ckin

are strongly dependent on the number of “long links.” We use
the refined definition of “long links” found in Kapovich and
Millson (1995):

DEFINITION 1. A subset LL of the links is referred to as the
“long links” if and only if the sum of the lengths of every pair
of distinct links in LL are strictly greater than L

2
.

Note that LL is not unique, so the number of long links is
defined as the maximum cardinality of all possible LL. For
example, given lengths [0.255, 0.252, 0.247, 0.246], there are
three possible sets of long links, each of cardinality 2, so this
set has two long links. However, when there are three long
links, LL is unique and consists of the three longest links. We
can draw the following conclusions from Definition 1:

1. There can be no more than three long links. Given the
definition of long links, four long links would have
lengths summing to a value strictly greater than L,
which is a contradiction.

2. Ckin is empty if and only if there is one long link. If
λ1 > L

2
, then the other links would not be able to reach

from one end of the longest link to the other. Thus, loop
closure equation (1) could not be satisfied. The “only if”
direction is proved in Kapovich and Millson (1995) by
a relatively direct (but non-obvious) induction, starting
from the case where there are only two links.

The following less obvious theorem was proved in different
ways by Lenhart and Whitesides (1994) and Kapovich and
Millson (1996):

THEOREM 1. (Lenhart and Whitesides (1994) and Kapovich
and Millson (1996)). For M in �3, if Ckin is non-empty, then
Ckin has only one component.

This result is important, because it answers the path exis-
tence question. If the longest link lengthλ1 is less than or equal
to L

2
, then a continuous path exists between any two points in

Ckin. Interestingly (as indicated by the example shown in Fig-
ure 4) this result does not apply to M in �2. This issue is
discussed in the next section.
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Our main theoretical results for closed chains, Theorem 2,
give more detail about the structure of Ckin. These results
were derived using techniques from differential topology and
algebraic geometry, and were first presented and proved in
Milgram and Trinkle (2002). Denoting the interval by I , we
have:

THEOREM 2. (Milgram and Trinkle (2002)). For M in �2 or
�3 with given lengths, l1, . . . , ln, then:

(a) Except for a finite number of base lengths, l1, Ckin is a
closed compact manifold:

of dimension n − 3 for M in �2

of dimension 2n − 5 for M in �3.

(b) Whenever Ckin is a manifold, it is the boundary of a
manifold W with a boundary,7 which is given as the
union of sub-manifolds of the form:

(S1)s × I (n−s−2) for M in �2

(S2)s × (I 2)(n−s−2) for M in �3,

where the values that s may take are determined by the
link lengths.

(c) The intersection of any two such products is again of the
form (S2)r × (I 2)n−r−2. In detail, these various (S1)s ×
I (n−s−2) glue together in completely explicit ways that
depend on the lengths of the links; technically they glue
via “standard plumbing” (Milnor 1967).

The “finite number of base lengths” referred to in Theo-
rem 3a are critical base lengths of the closed chain. At these
lengths, the topology of Ckin undergoes significant structural
changes. These lengths correspond to the singular configu-
rations of the end-point map of the open chain of links 2
through n (used as described in Section 1.2 to construct Ckin).
The 2(n−2) critical lengths are given as follows:

l∗1,j = |
n∑

i=2

σili | (2)

where each σi = ±1. When the length of the base link is
equal to one of the critical lengths, then all the links of M
can be colinear. For example, if lengths {l2, l3, l4} are given
as {1, 2, 3}, then the critical lengths of the base link would
be l∗1 = {0, 2, 4, 6}. Choosing l1 = 4 would yield a critical
four-link closed chain admitting the singular configuration,
φ1 = φ2 = 0 and φ3 = φ4 = π , with all links lying on the x-
axis. Ckin would be a figure eight, which is not representable as
a union of products of circles and intervals glued via standard
plumbing.

7. An m-dimensional manifold with a boundary is smooth everywhere except
along a boundary of dimension m − 1 which is an (m − 1)-dimensional
manifold.

Fig. 5. Manifold W with boundary representing Ckin

parametrized by l1.

To illustrate Theorem 3b, consider the four-bar shown in
Figure 8. As drawn, with l1 less than l2 + l3 − l4, s is equal to
1 and Ckin is two circles8 and W is homeomorphic to I × S1

and can be drawn as the two-dimensional surface shown in
Figure 5. If l1 were lengthened to satisfy l2 + l3 − l4 < l1 <

l2 + l3 + l4, then s would equal zero and W would become
homeomorphic to a disk, I 2.

3.3. Special Results for M in the Plane

For M in �2, Ckin may have more than one component. This
fact can be viewed as a result of the additional restriction
placed on the motions of the links. However, what may be
surprising is that when Ckin is not empty, it may have one or
two components; no other number is possible.

The possibility of an extra component makes planning
more difficult in the planar case, but only slightly so, because
of the following two theorems. The first theorem can be used
to determine the number of components of Ckin.

THEOREM 3. (Ting and Liu (1991) and Lenhart and White-
sides (1994)). For M in �2, Ckin has two components if and
only if |LL| = 3, otherwise Ckin has only one component.

Theorem 3 implies that the number of components can be
computed in O(n) time. If there are two components, then we
must determine if qS and qG are in the same component. This
can be done in O(1) time, as we need only to compute the sign
of the cross product of the vectors along the two longest links
for both qS and qG (Trinkle and Milgram 2001). If and only if
the signs are the same, qS and qG are in the same component.

The second theorem gives the structure of Ckin when there
are two components.

8. Why Ckin is two circles and how we compute s is discussed in Section 3.4.
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Fig. 6. A pair of configurations in different components of
Ckin.

THEOREM 4. (Kapovich and Millson (1995)). For M in �2,
when Ckin has two components, each component is a torus
(S1)n−3.

The implication of the toroidal structure is that when M
has three long links, each of the other links, the short links,
can rotate through a full circle regardless of the orientations
of the other short links, while the long links maintain loop
closure (Figure 6 shows a typical closed chain with two com-
ponents). This result also means that each component of Ckin

can be covered by a single chart parametrized by the angles
of the short links. Moreover, if qS and qG are in the same com-
ponent, then any path connecting the start and goal angles of
the short links is valid. In our path planning algorithm (dis-
cussed in Section 4), the procedure TwoComponentMove()
follows a geodesic on (S1)n−3 between the start and goal an-
gles of the short links. This amounts to linear interpolation,
which requires (O(n − 3)) time, and is the reason we were
able to generate paths for 10,000-link closed chains in several
seconds in Matlab.

3.4. Construction of Ckin

The discussion of the construction of Ckin in this section fol-
lows the general approach described in Section 1.2. While the
method is valid in �3, it is most clearly described through
planar examples. We work with planar four-link and five-link
closed chains to allow graphical illustration.

To construct Ckin, we use the end-point map f : C −→
�2 for an open chain of m links based at the point (xb, yb).
Explicitly:

f (q) =
[

xb

yb

]
+

m∑
i=1

li

[
cos(φi)

sin(φi)

]
; q ∈ (S1)m. (3)

3.4.1. Ckin for a Four-Link Closed Chain in the Plane

Consider the four-link closed chain whose fourth joint has
been removed, thus breaking the chain as shown in Figure 7.

l1

l2
l3l4

l2 l3 l4+ + = l1,4
*

l2 l3 l4+
_ l1,3

*=

l2 l3 l4+
_ l1,2

*=

l2 l3 l4
__ = l1,1

*O

p

e

Fig. 7. Three-link open chain with its three open annular
regions defined by the four singular image circles. The
structure of Ckin of the four-link closed chain formed by
fixing p in any of the annular regions is shown by the small
circles at “six o’clock” in the annuli.

The image of the end-point of the resulting open chain is the
annulus with inner and outer radii l∗1,1 and l∗1,4. It is easy to
see that the end-point map of the resulting open three-chain is
singular when its links are parallel to each other and that the
image of the singular configurations is four concentric circles.
Recall that our approach requires that we obtain Ckin when the
end-point of the open chain is fixed at a point p in any one of
the three open annular regions formed by removing the four
singular image circles (not necessarily the one containing the
original end-point location, e) and that we determine how Ckin

changes as p moves across the singular image circles.
We first show how to determine Ckin for a planar four-bar

as illustrated by Figure 8. The process is then a kind of in-
duction, i.e., we use knowledge of Ckin for three-link closed
chains (given in Section 3.1) to obtain Ckin for four-link closed
chains. Disconnecting the third joint of the four-link chain
shown in Figure 8 yields two open chains attached to either
end of the base link with end-point maps, fL and fR. The im-
ages of these maps are the circle EL and the gray annulus ER.
Clearly, the loop closure equation (1) can only be satisfied in
the intersection of the end-point maps, E = E1 ∪ E2 (drawn
as bold arcs terminated by small filled circles). Thus we ob-
tain a “parametrized” family of C-spaces for three-link closed
chains as describing the C-space of a four-link closed chain.

In detail, to construct Ckin, we use the inverse images of
the maps fL and fR. First consider fR. There are two ways
(“elbow-up” and “elbow-down”) for the open two-chain to
reach a given point 
j3 in Int(ER) (the interior of ER), so
f −1

R ( 
j3) is two distinct points in C. The singular points of fR
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Fig. 8. Four-bar with Ckin homeomorphic to two circles.

map to the boundary of the annulus and the inverse image of
each of those points is a single point in C. The map fL has no
singular points and each point in its image can be reached in
exactly one way. Now consider the reassembled closed chain
with joint 3 fixed at a point 
j3 in E1 or E2. At such a point, the
contribution to Ckin for the closed chain is the product of the
inverse images f −1

R ( 
j3) and f −1
L ( 
j3). When 
j3 is in Int(E1) or

Int(E2), the inverse image of the closed chain is two points
(the product of two points with one point) in C. For 
j3 fixed
on the boundary of E1 or E2, the product of inverse images is
one point in C.

To determine Ckin for the closed chain with 
j3 allowed
to move in E, we use Theorem 5.2 in Milgram and Trinkle
(2002). The theorem states that the inverse image of any C∞

rectifiable curve γ in the interior of a region that is disjoint
from the image of the singular points (in our case Int(ER)),
is the Cartesian product I × f −1

R (γ ) (thus the parametrized
family now can be recognized as a space). Applying this to
the closed chain, the curve Int(E1) is rectifiable, so its inverse
image is the product of two points and an interval, i.e., two
arcs (one for “elbow-up” and one for “elbow-down”) in C. To
complete Ckin, note that the inverse images at the boundary
points are single points. These points identify the ends of the
two curves, creating a closed loop. Thus the inverse image of
E1 is homeomorphic to S1. Since the same arguments apply
to E2, Ckin is homeomorphic to two copies of S1.

The preceding discussion allows us to determine Ckin for
all planar four-link closed chains graphically. For example, if
the length l1 were in the range (|l2 − l3| + l4, l2 + l3 + l4), EL

would intersect the annular region in Figure 8 in a single arc
indicating that Ckin would be a single circle. Likewise, if EL

were contained in the annulus then the inverse image would
again be two circles. The critical situations for four-link closed
chains are those for which the circle EL is tangent to one or
both of the bounding circles of the annulus. Relating these
ideas back to Figure 7, l1 in the interval (l∗1,3, l∗1,4) corresponds

to fixing the end-point of the open three-chain in the outer
annular region and thus Ckin is a single circle. Decreasing l1
to the value as shown in the original four-link closed chain
causes p to cross the second largest singular image circle, and
Ckin changes from a single circle (through a “figure eight”
when l1 = |l2 − l3| + l4) to two disjoint circles.

In summary, we have seen that if we take the based open
three-link chain with lengths l2, l3, l4, then the image of the
end-point map will be a closed disk if li < 1

2
(l2 + l3 + l4)

for i = 2, 3, 4, and otherwise it will be an annulus. More-
over, the image of the singular set will be the concentric cir-
cles with radii given by equation (2).9 Additionally, in the
outermost region, the region between l2 + l3 + l4 and the
next largest singular image circle, the inverse image of any
point under the end-point map will be a single circle, and this
is the configuration space of a closed four-link chain where
l2 + l3 + l4 > l1 > (l2 + l3 + l4)−2lmin and lmin is the minimum
of l2, l3, and l4.

3.4.2. Ckin for an n-Link Closed Chain in the Plane

We now see an easy induction breaking up an (n + 1)-link
closed chain into an (n− 1)-link open chain based at one end
of the base link, and a one-link chain based at the other end.
Using the observation that the inverse image of any point on
the largest singular image circle of radius

∑n−1
1 li consists of

a single point for each n and (n − 1)-tuple of link lengths
(l1, l2, . . . , ln−1), it now shows that the inverse image of any
point in the outermost annular region defined by:

n−1∑
1

li > ln >

n−1∑
1

li − 2lmin

is Sn−2, where lmin is the minimum of li over i = 1, . . . , n−1.
(Similar arguments work in �3 after replacing circles with
spheres and Sn−2 with S2n−5.)

Thus, we have achieved the initial steps of the method
sketched in Section 1.2 for determining the explicit structure
of Ckin. The remainder of the construction is given, as indi-
cated there, via standard techniques from differential topol-
ogy and algebraic geometry. If the end-point of link n + 1
can pass through a critical circle in �2 or a critical sphere in
�3, the inverse image changes via the attachment of a single
“handle”10 for each critical point in the inverse image of that
sphere. Physically, the change in the specification of Ckin is
simply that the number of fully rotatable links increases by

9. It is not hard to show this analytically. In general, for any based, open, serial
chain in �3 with spherical joints or in �2 with revolute joints, the image of
the singular set will be concentric spheres in �3 and circles in �2 of radii
given by equation (2) and the singular sets themselves will be configurations
where all the links are parallel.
10. A “handle” can be thought of as a thickened line segment or interval,
or more precisely, the Cartesian product of a disk and another disk. Handle
attachment is the process of identifying two points on the existing set with the
ends of the thickened line segment. For example, a basket could be formed
by attaching a handle to a disk.
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Fig. 9. An accordion move (left) and the resulting reduced
closed chain (right).

one, and using these two observations, we achieve the main
result, Theorem 2 in Section 3.2.

4. A Complete Path Planning Algorithm

Given the start and goal configurations, qS and qG, and the link
lengths, l1, . . . , ln, our algorithm works as follows. The sub-
set of links that are in their goal orientations is fixed (initially
this set is empty). A subset of the moveable links is chosen
as controlled links. The controlled links are then moved into
their goal orientations, while the other movable links comply
to maintain the loop closure constraint (1). Figure 9 shows a
situation in which there are six fixed links (drawn with short
dashes) treated as one (labeled l1 and drawn bold), one con-
trolled link (labeled l7), and five compliant links. As the con-
trolled link is driven to its goal orientation (drawn with long
bold dashes), the compliant links behave much like an accor-
dion, and so we call such a move an accordion move. After
the accordion move, the controlled links are added to the set
of fixed links, thereby strictly increasing the number of links
that have achieved their goal orientations and strictly reduc-
ing the number of movable links. Our planning algorithm is
simply a sequence of accordion moves that ends when no
movable links remain. We emphasize that this algorithm is
complete, because an accordion move always exists and can
be computed whenever one or more links are not in their goal
orientations.

4.1. Accordion Moves

Given current and goal configurations, q and qG, of a closed
chain, the construction of an accordion move involves three
basic steps:

(1) the identification of a suitable set of controlled links;

(2) the generation of a path of controlled links that trans-
forms them into their goal orientations; and

(3) the generation of a path of the accordion that complies
with the motion of the controlled links such that the loop
closure constraint is satisfied throughout the motion.

Of course, these paths should be as smooth and efficient as
possible.

4.1.1. Selecting Controlled Links and Generating Their Paths

Part (c) of Theorem 2 provides an excellent way to choose
the controlled subset of movable links and to generate a path
for it. Recall that Ckin is built out of regions, each having the
form (S2)s × I 2n−2s−3. This structure directly suggests a parti-
tioning of the movable links into the controlled and accordion
subsets. The s links responsible for creating (S2)s can ro-
tate freely with the assurance that the loop closure constraint
can be satisfied by the remaining movable links, which are
responsible for creating I 2n−2s−3. Therefore, we may choose
an arbitrary continuous path of the controlled links on (S2)s ,
such as a geodesic. The advantage of this approach is that
each accordion move can transform a large number of links
into their goal orientations simultaneously. However, in gen-
eral, the computational cost of obtaining the full description
of Ckin (and thus determining which s links are fully rotatable)
for each closed chain in the sequence of accordion moves is
exponential in the number of movable links.

If we cannot afford to compute the full description of Ckin,
we can choose controlled links based upon the minimum and
maximum length functions of an open chain. Let L denote a
subset of the movable links and let D denote the length of this
subset considered as an open chain (i.e., the distance between
the end-points of the chain). Given the configuration q and
the subset, the length of the open chain is

D(L, qL ) = ||
∑

i ∈ L


li ||, (4)

where we recall that 
li is the vector along link i whose length
is denoted by li = ||
li ||. The maximum length of the chain
represented by this subset is simply the sum of the link lengths

M(L) = max
qL

(D(L, qL )) =
∑

i ∈ L

li , (5)

while the minimum is

m(L) = min
qL

(D(L, qL )) = max(0, {2li − M(L) | i ∈ L}),
(6)

which is 0 unless there is a link in L having length greater
than 1

2
M(L).

Let us denote three index sets of the links, LA, LF , and
LC , which define the accordion, fixed, and controlled links,



Trinkle and Milgram / Closed Kinematic Chains with Spherical Joints 783

respectively, and their corresponding partitions of the config-
uration q, denoted by qA, qF , and qC . We now view the closed
chain as two open chains: one composed of the fixed and con-
trolled links, and the other composed of the compliant links
(the accordion). Treating the set of fixed links as a single link,
we can search the space of possible index sets to find LC of
maximal cardinality such that:

m(LA) ≤ |m(LC) − D(LF , qG)|
≤ M(LC) + D(LF , qG) ≤ M(LA).

(7)

If a nonempty LC is found satisfying equation (7), then all
links in LC can be rotated freely while the other links comply
to maintain loop closure. However, due to the combinatorial
nature of the problem of finding LC of maximal cardinality,
it may be more practical to use heuristics to identify sets of
large, but suboptimal cardinality.

Finally, it is possible that the maximum cardinality of LC

found as described above is zero, therefore we suggest a sim-
ple alternative for selecting the set of controlled links. Be-
cause the current and goal configurations are always in the
same component of Ckin, it must be possible to move any sin-
gle link into its goal orientation. In �3, the current and goal
orientations of the controlled link define a great circle on the
sphere representing the C-space of the controlled link (when
disconnected from the accordion). The structure of Ckin guar-
antees that the controlled link can follow at least one of the
two arcs of the great circle connecting the current and goal
configurations of the controlled link. We simply compare the
length requirements dictated by the two great circles with
the extreme lengths of the accordion to decide which arc to
traverse.

4.1.2. Generation of Compliant Accordion Motions

Given a path transforming the controlled links into their goal
orientations, we must compute a smooth complying motion
of the accordion. The problem of finding such a motion
will be decomposed into two simpler problems. Let qA de-
note the orientations of the fixed and controlled links (i.e.,
qA = (qC, qF )). The two problems are as follows. First, given
known configurations qC and qF of the controlled and fixed
links, determine a configuration qA of the accordion such
that D(LA, qA) = D(LA, qA). Second, given qA such that
D(LA, qA) = D(LA, qA) is satisfied, determine a rigid ro-
tation, RRR, of the accordion such that the loop closure con-
straint (1) is satisfied.

Let us begin with the observation that if we are given a sub-
set, L, of the links, their configurations, qL, and an arbitrary
orthogonal transformation RRR, then the following holds:

D(L, qL) = ||RRR
∑

j ∈ L


lj || = ||
∑

j ∈ L

RRR
lj ||. (8)

Fig. 10. Accordion move with one controlled link and three
accordion links.

As an example, if we are in the plane and the orientation of 
lj
is φj and RRR represents a rotation through an angle θ , then the
orientation ofRRR
lj is θ+φj . The equation simply indicates that
the entire open chain defined by the subset L can be rotated
freely as a rigid unit without changing the length of the chain.

Assume now that the subset of interest, LA, identifies a
given accordion and that the configuration qA of the fixed and
controlled links is given. Furthermore, assume that the length,
D(LA, qA), of the chain of fixed and controlled links is within
the range of possible accordion lengths (i.e., there exists some
qA such that D(LA, qA) = D(LA, qA)) and that such a value
of qA has been obtained. As indicated above, the loop closure
constraint will generally not be satisfied by qA, but a rotation
RRR ∈ SO(3) always exists such that loop closure is achieved.

These length-matching and rotation steps can be performed
so that if the chain of controlled and fixed link moves along a
C∞ path, qA(t) : t −→ [0, 1] coordinated by t and the accor-
dion moves along another C∞ path qA(t) : t −→ [0, 1] such
that for each t the respective lengths are equal, then we can
find a C∞ map of the unit interval RRR(t) : [0, 1] −→ SO(3)
so that the closure condition is satisfied everywhere along the
path. Figure 10 shows the result of our planar implementation
of a smooth accordion move (broken into 20 steps) with one
controlled link and three accordion links.

The remaining unexplained piece of our planning algo-
rithm is a method for generating a path of the accordion that
changes its length from its current value D(LA, qA). To do
this we use the gradient vector field associated with the ac-
cordion’s length function D(LA, qA) and we follow the flow
lines from the current configuration to the desired length. This
approach has the desirable property that the relative motions
of the links in the accordion are minimized (as illustrated in
Figure 10). However, gradient following can fail only if the
flow line converges to an intermediate critical point. Fortu-
nately there are only two types of critical points and both can
be handled (as required for completeness).

The first type is a nondegenerate saddle point. At these
points the links of the accordion are colinear and the length of
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the accordion is nonzero. Since the length of the accordion is
independent of the orientation of the first link, we can fix this
link’s orientation during gradient following and then notice
that there is a finite number of nondegenerate saddle points
on a known lattice, which must be avoided. This is done by
checking proximity to such points while stepping along the
flow line. If the current configuration comes too close to a
saddle, first a second-order correction process is used to mod-
ify the vector field in this neighborhood of the saddle, forcing
the path away from the saddle without changing the length of
the accordion. This adjustment can fail in one very special,
but detectable, case. In this case, we use a linear move of the
type used by Lenhart and Whitesides (1994) to get beyond
the saddle point. In either case, once past the saddle point,
our algorithm returns to following the gradient vector field.
Note that, since we pass through critical points, our algorithm
cannot get stuck at them.

The second type of critical point to avoid is degenerate in
the sense that the gradient is not well defined. Fortunately,
such points only occur when the length of the accordion is
zero (which again is easy to detect). If the motion of the con-
trolled links require that the length of the accordion passes
through zero, then the accordion motion is broken into inter-
vals that are monotonic in length and the accordion motion for
each interval is computed separately. Any zero length points
will occur on the boundary of one or more of these intervals.
Thus a path containing zero length points will be computed
from both sides of those points, yielding a continuous path. It
is worth mentioning that this non-differentiable motion part
of our algorithm never had to be activated in any of our tests.
However, it must be handled to achieve algorithmic complete-
ness. (But in the program, as it currently exists, we have only
put in the hooks for this part, not the actual code.)

The final step, once the accordion move has been speci-
fied, is to modify it by multiplying by a continuous family
of rotations so as to obtain the actual complying motion of
the accordion. In the two-dimensional case, where the pro-
gram has been implemented, this is easy. It involves simply
multiplying by a rotation through an angle θ , where θ is eas-
ily determined and is C∞ along the part of the path where
the length is non-zero, and continuous where it is zero, after
perhaps reparametrizing the path (see Figure 10 again). The
process in �3 is similar, but somewhat more complex involv-
ing path lifting in the fibration S1 → SO(3) −→ S2 and a
smoothing reparametrization of the path near the points where
the length is zero.

4.2. Special Considerations for M in �2

The basic algorithm is the same in both the planar and spatial
cases: accordion moves and chain reductions (accomplished
by assigning the set of controlled links from the most recent
accordion move to the set of fixed links LF ) are executed.
However, in the planar case, the algorithm must be modified

to handle the situation in which a reduction causes the current
and goal configurations to be in different components of Ckin

of the current closed chain. The flow chart shown in Figure 11
shows our algorithm for the planar case, where i is the current
number of links in the chain (with all fixed links counted as
one) and C is the number of controlled links used in the most
recent accordion move. The procedures InversionMove() and
TwoComponentMove() execute special accordion moves that
are discussed next.

A two-component move is used whenever Ckin has two
components and the current and goal configurations are in the
same one. The results of Theorem 4 provide all the detailed
structure of Ckin needed to compute a final move to the goal. In
this case, one of the three long links is treated as fixed, while
the other two constitute the accordion. The remaining links
are the controlled links, which are moved along a geodesic in
(S1)i−3 to their goal locations. It is guaranteed that the long
links can comply to maintain loop closure. Recall that in gen-
eral, determining the set of fully rotatable links requires time
exponential in the number of movable links. However, in the
planar case, all that is required is to find the three longest links
in the current closed chain, which can be done in O(i) time.
Choosing and constructing a geodesic can also be done in
O(i) time, since we need only to find the direction of shortest
rotation to the goal for each link and then to perform linear
interpolation from the current to goal angles of these links.

The other special accordion move used in the planar case
is called an inversion move. This is needed when the linkage
reduction following an accordion move leads to Ckin of the re-
duced closed chain with two components and with the current
and goal configurations in different components. The picture
on the left-hand side of Figure 12 shows the situation where
links 6 and 9 have just been the fixed and controlled links in an
accordion move. After replacing them with a single link (la-
beled λ3), the current and goal configurations are in different
components. The objective of an inversion move is to move
the closed chain from an “elbow-up” to an “elbow-down” con-
figuration. This is accomplished by temporarily reactivating
the joint between the links just fused (links 6 and 9 in the fig-
ure) while controlling the relative angle of the other two long
links (those labeled λ1 and λ2 in the figure). After an inversion
move, the reactivated joint is again fixed, and now the current
and goal configurations are in the same component of Ckin.
A two-component move completes the plan. Note that during
every move leading to this sort of problem, the links with
lengths λ1 and λ2 exist as individual links, and so an inversion
move is always possible to correct the problem.

4.3. Average Complexity

The most computationally intensive part of our planning al-
gorithm is the standard accordion move. This procedure uses
an iterative Newton-type algorithm for tracking flow lines of
the accordion length function. Each iteration computes the
gradient, which requires O(|LA|2) time. In order to provide a
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Fig. 11. Path planning flow chart for M in �2, where i is the number of links in the current chain with all fixed links counted
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Fig. 12. An inversion move (left to right) reconfiguring a closed chain from “elbow-up” to “elbow-down.”

good guess for Newton iterations, our implementation breaks
each accordion move into O(1) small steps and uses the con-
figuration obtained at the end of each sub-move as the starting
point for the next. As a result, the number of Newton itera-
tions is small and, in our experience, has been independent of
the number of links in the accordion.

Since, in our implementation, the main loop is executed
O(n) times, and accordion moves require O(|LA|2) time,
we expect to see complexity proportional to n3 or worse
(depending on the convergence behavior of the gradient flow
algorithm). Figure 13 shows the average planning times (cir-
cles) for a closed chain with various numbers of links. Each
of the 27 circles represents 100 randomly generated prob-
lems for which solutions existed. The link lengths and n− 3
of their orientations were chosen at random. The base link
angle was fixed at zero and the other two unspecified link an-
gles were determined by solving the loop closure equation.
An average of n − 5 accordion moves were used for each
problem. Notice that the average computation time appears
to be strongly cubic, which indicates that, on average, the

number of Newton iterations per step within each accordion
move was constant.

4.4. Comparison with a Local Planner

Our algorithm was compared to a simple algorithm that used
only local geometric information. The local algorithm can
be thought of as a simple potential field method or propor-
tional controller applied to an open kinematic chain. Imagine
breaking the linkage at the left end of the base link, yielding
an open chain with n−1 revolute joints based on the right side
of the fixed base link. Corrections to the current configuration
are generated by comparing it with the goal configuration as
follows: [

JJJ

βIII

]
dφ =

[
xxxdesired − xxxcurrent

φgoal − φcurrent

]
. (9)

Here JJJ is the Jacobian of the end-point map of the (n − 1)-
joint open chain, III is the identity matrix,xxxdesired is the location
of the left end of the base link, xxxcurrent is the current location
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Fig. 13. CPU times to compute motion plans for linkages
with 4 to 100 links.

(numerically) of the left end of the base link, φgoal is goal con-
figuration, of the linkage, φcurrent is the current configuration
of the linkage, and β is a scalar weight that determines the
relative importance of maintaining the loop closure constraint
and attracting the mechanism to its goal configuration.

A number of tests were run to verify the correctness of
our algorithm and to compare its performance with the local
algorithm just described. For linkages with from 4 to 500
links, the link lengths and the start and goal configurations
were chosen at random. Therefore, planning problems with
connected and disconnected C-spaces were attempted. Since
our algorithm is complete it has solved all problems, so Table 1
only contains the results of the local algorithm.

In Table 1, for each number of links considered (leftmost
column), 100 random problems were generated. The second
column shows the number of problems for which solutions
existed and the last column shows the number of problems

Table 1
numLinks numExist numLocal

4 48 31
5 83 36
6 96 44
8 100 55
10 100 81
12 100 85
16 100 95
20 100 98

> 20 100 100

solved by the local method. Notice that as the number of links
increased, the success rate of the local path planner increased.
For problems with over 20 links, the local method solved
every problem we generated, but it is guaranteed that the local
method (and all other purely local methods) will fail for certain
problems even when solutions exists for large numbers of
links.

Figure 14 shows a problem drawn from our test set. While
the local method generated a smooth motion, it failed to con-
nect the start and goal configurations. Figure 15 shows the
individual joint angle trajectories NOT achieving their goals
(the circles on the right-hand side of the plot).

On the other hand, the complete algorithm found a solution
with three accordion moves (see Figure 16). The slope discon-
tinuities at the 20- and 40-step points indicate the ends of the
accordion moves. (The jump discontinuity at the seventh step
is a plotting artifact caused by wrap-around from −π to π .)
We can also see which links were used to drive the linkage,
since driving trajectories appear as linear segments. The link
whose angle started at about 1.2 and moved to about 3.1 by

Fig. 14. Planning problem with solution not found by the
local algorithm.
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Fig. 15. Faulty trajectory found by the local algorithm.
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Fig. 16. Trajectory found by our algorithm.

step 20, drove the first accordion move. Since it was fused to
the base link from then on, the remainder of its trajectory is
horizontal.

4.5. Avoiding Obstacle–Link and Link–Link Collisions

The final step in developing a motion planner for closed chains
would be to include modifications to ensure collision-free mo-
tions; both link–obstacle and link–link collisions (which in-
clude joint limits as a special case) should be avoided. Two
possible ways to achieve this functionality are: (1) to extend
our method to determine the structure of Ckin,f ree (i.e., the
collision-free portion of Ckin); and (2) to combine our method
with existing probabilistic roadmap methods.

The second option is easiest. Recall that when applying
the PRM methodology, we choose points at random in Ckin

and then attempt to connect these points with a “local” plan-
ner to build the randomized roadmap, Rkin. In this case, the
“local” planner is any planner that is believed to be capable
of finding a path between path-connected configurations; “lo-
cal” does not imply that the planner should use only local
geometric information such as that discussed in Section 4.4.
Instead, we could use the planner developed in this paper, or
that developed by Lenhart and Whitesides (1994). Using one
of these planners would reduce the amount of sampling of
Ckin, since the planner will always succeed in connecting can-
didate pairs of configurations that are in fact path-connected.
Once a connecting path has been obtained, then we must test
for collisions along the path, and only accept the path if it
is deemed collision-free. If a collision occurs along the path,
then the pair of configurations under consideration could be
labeled as not connected, or we could attempt to modify the
path to eliminate the collision(s).

Now consider the first option: the extension of our global
technique. For various reasons, the extension to avoid link–
link collisions appears to be much more difficult than that
of avoiding link–obstacle collisions. In both cases, however,
there are common features that should be understood. The
basic idea is that we begin with the well-understood C-space,
Ckin, studied here and remove from it the C-space of all col-
lisions, Ckin,bad . What remains is the collision-free portion,
Ckin,f ree. Fortunately, Ckin,bad can be obtained using an ap-
proach similar to that used to obtain Ckin. For example, sup-
pose there is a point obstacle in the workspace of a closed
chain with links modeled as line segments (note, however,
that the approach is not limited to point obstacles and one-
dimensional links). We would obtain the closed set of invalid
configurations as a union of C-spaces corresponding to each
link constrained to be in contact with the obstacle. The C-
space for a given constrained link can be found using the
techniques employed in this paper, because requiring contact
with the point obstacle effectively partitions the closed chain
into two smaller closed chains whose C-spaces we know how
to construct. The C-space of the chain constrained to contact
the obstacle is the product of the C-spaces of the two smaller
chains. The invalid configurations corresponding to link–link
collisions could be found similarly, but with two links con-
strained to intersect rather than a link and an obstacle. Then
the key issue is to identify the path components in

Ckin,f ree = Ckin − Ckin,bad .

In general this is extremely difficult. However, when the orig-
inal Ckin is non-singular we can take advantage of homology
theory to provide an effective method for determining the path
components. We assume Ckin is non-singular in what follows.

For any space with a finite number of path components
we have that the zero-dimensional singular homology group,
H0(X; �) = �n where n is the number of components. More-
over, if Y is a closed manifold without boundary of dimension
m and Z ⊂ Y is a closed subspace in Y then we can apply
Alexander–Poincaré duality which gives the result:

H0(Y − Z; �) ∼= Hm(Y,Z; �)

where Hm(Y,Z; �) is the ordinary singular coholonomy of a
pair. On the other hand, there is an exact sequence:

Hm−1(Y ; �) → Hm−1(Z; �) → Hm(Y,Z; �) → � → 0

that allows us to calculate Hm(Y,Z,�) once we understand
the group Hm−1(Z; �), since we already understand the group
Hm−1(Y ; �) from Theorem 2. Moreover, when Z is a reason-
able space—a real algebraic variety, for example—then it has
the homotopy type of a complex of dimension m − 1, so we
need to determine the top-dimensional cohomology group of
the complex Z.
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There are algorithms for doing this that build inductively
on Theorem 2 (see the work of Vassiliev (1992) for some in-
formation on how this works) but they are computationally
expensive and have not yet been entirely worked out for the
case at hand where we believe that a significant amount of
simplification of Vassiliev’s general approach may be possi-
ble. In this case, Vassiliev’s approach works as follows. When
dealing with simple obstructions, for example a single point 
X
in the workspace, then the space Ckin,bad consists of the union
of varieties Vi , where Vi is the set of configurations so that a
point somewhere on link i touches 
X. The variety Vi can be
determined using the same techniques that gave Theorem 2.
But to determine Ckin,bad and the relevant homology group,
we also need to know the intersection Vi1 ∩ . . . ∩ Vir .

5. Conclusion

The planning problem discussed here appears at the outset to
be a simple path planning problem with holonomic constraints
(Latombe 1991). However, such planning problems are not
easily solved without knowledge of the global structure of the
C-space of the system. In this paper, we used techniques from
algebraic geometry and differential topology to determine the
global structure of the C-spaces of all n-link closed chains
with spherical joints (and n-link closed chains with revolute
joints in the plane). Then we demonstrated the application of
this knowledge to the design of a complete path planning al-
gorithm. An interesting point is that, in many motion planning
problems, the path existence and construction problems have
the same difficulty. However, for the problem studied here,
path existence is easier to determine than path construction.

The extension of our method to avoid collision, while theo-
retically possible, will face practical limitations as the number
of links and obstacles increases, but these numbers are not yet
known. On the other hand, our algorithm can serve quite well
as a “local” planner in PRMs, in which candidate motions are
generated and then tested for collisions. In such a scheme,
there are actually two other motion generation methods that
we might include: a local method such as that discussed in
Section 4.4 and the global method of Lenhart and White-
sides (1994). The local method could be called first (since
it produces the smoothest paths), and then if it fails, either
the method presented here or the algorithm of Lenhart and
Whitesides (1994) could be called.

In future work, we plan to extend the methods used here
to problems in which it is important to avoid collisions,
such as many occurring manufacturing and protein-folding
applications.
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