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Abstract 

H, control theory for nonlinear systems has been 
developed, which is based on the concept of the en- 
ergy dissipation. A nonlinear H, controller using 
the energy dissipation is designed in the sense of La- 
gain attenuation from a disturbance to performance 
and it is essential to find the solution of the Hamil- 
ton Jacobi (HJ) equation (or inequality) for applica- 
tion However, it is dificult to obtain its solution in 
general. In this paper, the robot dynamics is trans- 
formed to a afine form to express the HJ inequality 
as a more tractable form, i.e., a nonlinear matrix in- 
equality (NLMI), and its approximated solution is ob- 
tained from the fact that the terms in matrices which 
describe robot manipulator can be bounded. 

1 Introduction 

H, controllers in linear systems can be obtained 
in the state space by solving Riccati equation [l], [2]. 
Another approach to H, control in linear systems is a 
Linear Matrix Inequality (LMI) technique, where the 
solution is obtained by efficient convex optimization 
algorithms [lo]. 

Recently H, control problem for nonlinear systems 
has attracted attention of many researchers. Although 
the H, control theory in nonlinear systems has been 
derived by the Lz-gain analysis based on the concept 
of the energy dissipation [3], [5], its applications are 
not easy due to the solvability of the Hamilton Jacobi 
(HJ) equation or inequality. The HJ equation (or in- 
equality) is a first-order partial differential equation 
(or inequality) and it is difficult to obtain its solution 
in general. H, control problem in nonlinear systems 
reduces to the existence of solution of HJ equation (or 
inequality). Van der Schaft suggested the successive 
approximated solution of the HJ equation [3]. Based 
on this method, Hu designed a nonlinear H, con- 
troller for the inverted pendulum system [7]. Using 

modified Lyapunov function including a mixed term 
in link positions and velocities, Astolfi designed a ro- 
bust PD controller for robot manipulator, whose gain 
was obtained by solving the associated HJ inequal- 
ity [4]. As another application to robot manipulator, 
there was Hamiltonian optimization method using the 
fact that the approximated solution of HJ equation at 
equilibrium point is equal to the solution of the Riccati 
equation [6]. 

In this paper, the robot dynamics is transformed to 
the alline nonlinear system about states and input and 
the associated HJ inequality is derived in the form of 
a more tractable NLMI. The approximated solution of 
the NLMI can be obtained from the fact that the terms 
in matrices which describe the robot manipulator are 
bounded by trigonometric functions. If the matrices 
forming the NLMI is bounded, then we only need to 
solve the finite number of LMIs. For a two-degree-of- 
freedom planar manipulator with mass uncertainty, a 
H, controller is designed and the robustness is shown 
through simulation. 

This paper is organized as follow. In section II, 
we review the concept of the energy dissipation and 
an important theorem concerning the nonlinear H, 
control problem, which are used in section III. In sec- 
tion III, the nonlinear system is represented in the 
form of affine nonlinear system about the state and in- 
puts and the associated HJ inequality is transformed 
to the more tractable NLMI. In section IV, the dy- 
namics of the robot manipulator is transformed to the 
affine form using modified error vector for tracking and 
a possible method-is proposed to obtain the approxi- 
mated solution to the NLMI. In section V, simulations 
are performed to confirm the robust performances of 
the proposed controller for robot manipulator under 
parameter uncertainty. In section VI, the conclusion 
is presented. 
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2 Nonlinear State Feedback H, Con- 
trol 

2.1 Energy Dissipative System 

Consider a nonlinear system 

i = f(x,w) 
Z = q&w), 0) 

where x is the state, w and z are the input and the out- 
put. With y > 0, the system is said to be y-dissipative 
if there exists a nonnegative energy storage function 
E with E(x(0)) = 0 such that for all w and T 

J oT II~IIQ - 72 J’ o 11412~~ 5 -Ebm). (2) 

When y = 1, the inequality implies that the input 
energy is greater than or equal to the output energy, 
i.e., some energy is dissipated. The energy dissipation 
means that the Lz-gain of the system is less than or 
equal to y. Obviously, the system is y-dissipative if 
there exists a nonnegative function E such that the 
energy Hamiltonian function defined by 

H = ~~z~~2 - y2~~w~~2 + z (3) 

is nonpositive for all x and w in the domain of interest. 

2.2 Nonlinear H, Control Problem 

Consider a nonlinear system expressed by 

i = f(x) + g1(x)w + g2(x)u 

z = h(x) + d(x)u, hTd = 0, dTd > 0, (4) 

where x E R”, u E Rm, and w E R” are the state, the 
control input, and disturbances, respectively. z E R” 
represents the performance of the system. 

To find a nonlinear state-feedback H, control is 
to find a stabilizing state-feedback control input such 
that the closed-loop system has a La-gain equal to or 
less than y in the input-to-output sense. This problem 
can be solved from the concept of energy dissipation. 

A theorem concerning the solution of nonlinear H, 
control problem described above is introduced without 
its proof in following theorem [3]. 

Theorem 1 Given y > 0, suppose there exists a C1 
positive definite function E(x) with E(0) = 0 satisfy- 
ing HJ inequality 

E,f - fEz g2 [dTd] -’ g: - -$g;gl 
> 

1. E,T + Zh h 5 0 

(5) 

where E, = dET/dx, then the system (4) has the La- 
gain 5 y as well as the closed-loop stability with con- 
trol input of 

u = - [d’d]-1 g,TE,T. (6) 

The above theorem shows that to construct a nonlin- 
ear H, controller, it is essential to find the solution 
of the associated HJ inequality derived from input- 
output energy dissipation. If a solution exists, then it 
will guarantee the stability as well as the disturbance 
attenuation in the Ls-gain sense. However, the HJ in- 
equality is a first order partial differential inequality 
and, in general, it is difficult to find its solution. 

3 State Feedback H, Controller in 
Affine Nonlinear System 

In this section, it is shown that the associated HJ 
inequality can be transformed to a NLMI if the non- 
linear system is described in suitable form and the 
solution of NLMI can be obtained easily from the fact 
that the matrices forming it are bounded. 

Suppose that the nonlinear system can be described 
in the form 

j: = F(z)x + GI (x)w + G2(x)u 

z = H(x)x + D(x)u, HTD = 0, DTD > 0, (7) 

where F(x), Gi(x), Gz(x), H(x) and D(x) are Co 
matrix-valued functions of suitable dimensions. If the 
nonlinear system can be transformed to Eq. (7), the 
derived HJ inequality is more tractable than Eq. (5). 

The design of H, controller for the nonlinear sys- 
tem in the affine form is summarized in the following 
theorem. 

Theorem 2 Given y > 0, suppose there exists a Co 

matrix-valued function P satisfying 

PT(x)F(x) + FT(x)P(x) 

+ -$PT(~)G&)GT(~)P(x) + HT(x)H(x) 

- PT(x)G2(x) [D~(x)D(z)]-~ . GYP 5 0 

(8) 

and there exists a non-negative function E(x) 2 0 such 
that dE/dx = 2xTPT. Then the control input satis- 
fying La-gain 5 y is 

u = - [DAD]-’ G:P(~)~. (9) 
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Proof: Take E(z) as defined in the statement, 
then 

i3X 

= 2xTPT (Fx + Glw + G2u) 

= xT (PTF + FTP) x + 2xTPTG1w + 2xTPTGzu 

= y211w112 - 11~11~ + sT(PTF + FTP)a: 

+2xTPTGlw + 2xTPTG2u - y21]wl12 -I- ~~z~~2 

= y2~~w~~2 - ~~z~~2 + xT (PTF + FTP) x 

1 

I/ 

2 

+,xTPTGIGTPx - y2 
Y 

is not finite dimensional. However, if the matrices 
forming the NLMI are bounded, then we only need to 
solve a finite number of LMIs [8]. 

4 H, Control for Robot Manipulator 

4.1 Dynamic Equation in Affine Form 

Consider the dynamics of a n-link robot manipula- 
tor of 

M(q)4 + V (q, 4) 4 + G(q) = r, (10) 

where q E R” is the joint position , M(q) E R”‘” 

+2xTPTG2u + xTHTHx + uTDTDu is the positive definite symmetric inertia matrix, 

+2xTHTDu 
V (q, cj) E R”‘” represents the centripetal and corio- 
lis torque, and G(q) E Rn represents the gravitational 

= y2]]w]]2 - ]]z]]~ + xT (PTF + FTP) z torque. 

+LxTPTGIGTPx - y2 

2 Modified error vector s is defined as 

Y2 II 
w - LGyPx 

Y2 II s = (Q-Qd)+~(q-qd) 
+2xTPTG2u + xTHTHx + uTDTDu = 4 - {Qd - Nq - qdl, 
(HOD = 0) , 

where Qd and & are the desired position and velocity, 

When matrix D is not a square matrix, nonsingular respectively. 

matrix R satisfying DTD = RTR is defined. Then Also, by defining & = & - h(q - qd), 

& = y2(lwlj2 - ~~z~~2 -k xT (PTF + FTP) x + xTHTHa s = 4 - &. (11) 

1 

II II 

2 

+,xTPTGIGTPx - y2 
Y 

w - IGyP, 
Y2 

= ~~11~11~ - 11412 - y2 11~ - -+‘Pj2 

+xT{~T~ + FOP + -$pTGIGTp + HUH 

-PTG2(RTR)-1G;P}x + IIRu. + R-TG:Pz/12 

5 Y211wl12 - 11412 (by Eq. (8) and (9)). 

Integrating the inequality results in 

E (x(T)) - E b(O)) I Y2 s oT l1412dt - I’ l1412dt. 

Since E (x(T)) 2 0 and E (x(0)) = 0, the closed-loop 
ssytem becomes dissipative. n 

To obtain the solution to the Eq. (8) easily, it is 
transformed to a NLMI using the Schur complement 
as 

PTF + FOP + HUH + +P~G~GTP PTG2 
GTP I 

< o 
DTD - ’ 

Solving the above NLMI yields convex optimization 
problem. Unlike the linear case, this convex problem 

If the elements of vector s approach to zeros as t + co, 
so does the tracking error of each joint. 

Using the modified error vector, we can transform 
the robot dynamics to a affine form. 

Proposition 1. Using Eq. (11) and a suitable choice 
of control input 7, Eq. (10) can be transformed to 

2 = F (q, 0) x + GI (q)w + G2 (du (12) 

where 5 = (si,... > A, F (q,d = -M-Yq)V (4, i), 
GI = M-l(q), and G2 = M-‘(q). 

Proof: To transform Eq. (10) to Eq. (12) the following 
control input is proposed. 

r = k(q)& + p (Q, 0) & + G(Q) + W (13) 

where Q(q), P (q, 4) and G:(q) are estimates of M(q), 

V (q, cj), and G(q), respetively. 
Substituting Eq. (13) into Eq. (lo), 

M(q)i + V (Q, 4) s = i@(q)& + V (4,$4r + G(4) + ‘u. 
(14) 

where the model estimate errors are 

G(q) = k(4) - M(4), 

WI, Q) = Q(Q, 4) - V(q, 4), 

G(q) = G(q) - G(q). 
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Define a disturbance vector as 

w = j%Q)ii, + vij(q, i)& + G(Q), 

then Eq. (14) becomes 

have a common nonsingular matrix solution Q for all 
i E {1,2,... , L}, then Q is also a solution to Eq. (17) 
and the stabilizing control input is determined as 

IM(Q)S = -v (4,4) s + w + ‘1L. (15) 
u= - (o%)-’ G;Q-‘s. 

Multiplying the inverse of M(q) to both sides of 
This approach provides a tractable method to get con- 

Eq. (15), we can obtain Eq. (12). W 
stant solutions to NLMI, which can be used to design 
the control input. However, this approach generally 
leads to conservative results if the prescribed bound is 

4.2 The Solution to HJ Inequality using 
LMI 

large. This can be seen in simulation results. 

5 Simulation 

To derive the HJ inequality for the robot manipula- 
tor dynamics transformed to affine form, each matrix 
term of Eq. (12) is substituted into Eq. (8). Then 

(&YT) -I V - VT (P-‘MT) --I + HTH 

+$ (BY-T) -l (VWT) -l 

- (A@-T)-l (DTD)_l (P+VT) 5 0. 

A nonlinear Hm controller is designed for two- 
degree-of-freedom planar robot manipulator with un- 
certainty in its mass. Simulations were performed to 
evaluate the proposed H, controller. The objective 
of the simulation is to show the enhancement of ro- 
bustness to parameter uncertainty. The system model 
matrices forming LMIs are determined by the bound 
of parameter uncertainty and the property of trigono- 

Premultiplying and postmultiplying the inequality by 
metric functions. The set of dynamic parameter is 

positive definite matrices MPeT and P-l MT respec- 
summarized in Table 5. Simulations are performed 

tively, then the HJ inequality becomes 
for two cases according to the size of mass bound. As 
an extreme disturbance, the mass of link 2 is assumed 

-VQMT - MQTVT + MQTHTHQMT to vary by 50% at 2 second. The LMIs for the con- 

+$I- (o%)_’ 5 0, (16) 
trol gain matrix are solved using an efficient convex 
optimization algorithm in Matlab toolbox. It should 
be noted that the easiness of controller tuning can be 

where Q = P-l. Using the Schur complement, obtained since the solution of LMIs, if any, is found 
Eq. (16) can be described as a NLMI easily by an optimization algorithm. 

[ 

-VQMT - MQTVT + +I - (DTD)-l MQTHT 1 
The joints of manipulator are commanded to trace 

HQMT -I 
trajectories shown in Fig. 1 with some initial errors. 
The initial errors of the joints are 17.19” and 22.91’, 

(:7;* 

respectively. The estimates of the manipulator model 
matrices in Eq. (13) are assumed to be &’ = 0 and P = 

The matrices M(q) and V (q, 4) is the nonlinear func- 
tion of q and Q in Eq. (17). However, those matrices 

0. The estimate of the gravity torque G is determined 
from the equation in the dynamics using the estimates 
of mass rizr=1.8 and %s=O.8. 

include trigonometric functions and can be bounded 
when each joint velocity ranges between two deter- 

The performance level can be determined by pa- 

mined extremal values. Using this fact, we suppose 
rameter y and weighting matrix H and the control 

that the matrices forming the above NLMI vary in 
input energy can be adjusted by using matrix D. In 

some bounded sets of the space of matrices, i.e., 
the simulation, matrix H and matrix D are selected 
as 

[M(q), V(q, ti), H, Dl E COW% %> H> %E(~,s,... ,L)), 5 0 0 0 T 

where Ce denotes the convex hull. H= 0500 [ 1 [ 0 0 1 0 T 
TD=ooo2 . I 

Therefore, if 

-ViQj@ - MiQTViT + 5 - (DTD)-l MiQTHT 

I 

The value of y is selected as 7 such that the solution 

H&MT -I 
of given LMIs is feasible. 

The position error and torque are shown in Fig. 2 N 
5 0 Fig. 5, respectively. The error in each case is similar. 

However, when the bound of mass uncertainty is large, 
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Table 1: Manipulator parameters used in the simula- 
tion 

] Real Length I Real Mass I Bound of Mass I 

Link1 

Link2 

Case 1 Case 2 

0.5 m 2 kg [1.5,2.5] [0.5,1.5] 

0.3 m lkn ro.5.41 10.2.31 

the control torque increases in initial state. This shows 
that the large prescribed bound leads to a conservative 
result. 

As long as the described control input is within fea- 
sible range, the proposed controller shows satisfactory 
robustness performance even under the large parame- 
ter uncertainty. 

6 Conclusion 

’ . . . . . 

P - :’ 

Figure 1: Desired trajectory of joints. 

We proposed a robust controller for a tracking and 
disturbance attenuation of robotic manipulator. The 
error of parameter estimates is considered as a dis- 
turbance and the robustness to model uncertainty is 
achieved in the sense of Lz-gain attenuation from the 
disturbance to performance measure. The associated 
HJ inequality is transformed to NLMI and its approxi- 
mated solution is obtained from the fact that the terms 
in matrices which describe robot manipulator can be 
bounded by trigonometric functions. The application 
of the proposed controller is simple since the control 
gain matrix can be obtained easily by an efficient con- 
vex optimization algorithm. The proposed controller 
is applied to a two-degree-of freedom planar manipu- 
lator and its computer simulation shows that the con- 
troller sustains its performance under the uncertainty 
of mass. 

Figure 2: Position error in Case 1. 
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