
Planning human walk in virtual environments

J. Pettré, T. Siméon, J.P. Laumond

LAAS/CNRS,
7, avenue du Colonel Roche, 31077 Toulouse Cedex 04 - France

{jpettre,nic,jpl}@laas.fr

Abstract

This paper presents a method for animating human char-

acters, especially dedicated to walk planning problems.

The method is integrated in a randomized motion plan-

ning scheme, including a steering method dedicated to

human walk. This steering method integrates a char-

acter motion controller assuming realistic animations.

The navigation of the character through a virtual envi-

ronment is modeled as a composition of Bézier curves.

The controller is based on motion capture data editing

techniques. This approach satisfies some essential com-

puter graphics criteria: a realistic result, a low response

time, a collision-free motion in possibly constrained 3D

environments. The approach has been implemented and

successfully demonstrated on several examples.

1 Introduction

Animating human characters has become a very ac-
tive research field since cinematographic and enter-
tainment industries have demonstrated the greatness
of the application field. Many animation techniques
recently developed allow to reduce production time
and to improve the realism [1]. Animating auto-
matically virtual actors raises problems due to the
complexity of the kinematic structure of the models
and to the complexity of the real human behaviors.
On one hand, realistic human motion controllers ex-
ist in computer animation literature[1, 2]. On the
other hand, robotics has developed efficient algo-
rithms over complex and constrained motion plan-
ning problems[3, 4]. Our contribution is to take ad-
vantage from both sides. We propose a solution for
planning human walk through virtual environments,
taking advantage of randomized motion planning al-
gorithms, combined to a character motion controller
based on motion capture editing techniques.

Walking virtual actors Through the character
animation problem [1], walking is crucial for navi-
gating in a virtual world. Synthesizing walk anima-
tions is traditionally approached by three techniques:

kinematics (forward and inverse), dynamics and mo-
tion data based.
The kinematic approach is commonly dedicated to
hand made animations, eventually assisted by spe-
cific interpolation techniques in order to generate
transition positions. Inverse kinematics reduce the
time for positioning the body, as the animator acts
on the end effectors only. It also can be used as
an animation filter in order to solve kinematic con-
straints violation [5]. A dynamic approach is de-
scribed in [6]. Respecting the physical laws intrin-
sically increases the realism of the animation but a
high computation power is needed. Motion capture
data based techniques are presented in [7, 8, 9]. The
data are fixed recorded motion sequences warranting
realism[10]. Moreover, re-targeting is possible to ani-
mate different trajectories thanks to motion blending
and warping. Motion blending [11] consists in inter-
polating parameters of several motions in order to
produce new motions, whereas motion warping [7]
consists in modifying a single motion in order to fit
to a new trajectory. See [9, 2, 12] for a more detailed
state of the art.

Path planning Motion planning algorithms are
well-developed in the robotics literature [3]. Robot
motion planning is concerned by: synthesizing a col-
lision free motion in constrained environments, con-
trolling systems with respect to the kinematic con-
straints [4] and by the achievement of complex tasks.
Randomized motion planning is an efficient solution
taking into account these constraints: a description
is given in [13, 14].

Human motion planners Closing together mo-
tion planning algorithms issued from robotics and
human character animation has been approached
in [15, 16]. Applications to humanoid robots
control are also presented in [17, 18] with stability
constraints. In [15], Kuffner splits the problem
into two succesive tasks: path planning and path
following. In this solution, a dynamic environment

is considered. A path is planned for the bounding
cylinder of the character and a controller is used
to synthesize an animation along this path. A
collision invalidates the path and the whole process
is started again. In [16], Raulo also considers
dynamic environments. During the planning phase,
a simplified representation of the environment is
used. Then using a complete representation of
the environment, the “Virtual Robot” tracks the
planned trajectory, while information is gathered.
The information allows to choose a strategy for
modifying the animation and solving the possible
collisions.
Our strategy differs by integrating the human mo-
tion control in the main loop of the path planning
algorithm. This allows us to consider an animated
path while testing its validity, without using some
simplified bounding shapes (e.g a cylinder) for
ensuring the collision avoidance.
Consequently, our contribution consists in synthe-
sizing a steering method dedicated to the character
animation and integrated in a randomized planner
scheme. The architecture of the steering method
can support several motion sub-controllers that
act successively. The potential of the randomized
motion planner algorithms on highly constrained
problems benefits to our solution, respecting some
low computing times.

In section 2, the model of the human charac-
ter is introduced. Section 3 describes the first level
of the steering method, while the core is detailed in
section 4. Section 5 describes the integration and
the implementation of the method in a randomized
motion planner architecture.

2 Model and Motion Data

Lower Torso
Upper Torso

L Collar Bone
L Up Arm

L Low Arm
L Hand

R Collar Bone
R Up Arm

R Low Arm
R Hand

Neck
Head

L Thigh
L Low Leg

L Foot
R Thigh

R Foot
R Low

Figure 1: Character’s model

Our virtual actor is modeled as a classic opened kine-
matic structure with 57 degrees of freedom (dof)
detailed on figure 1. “Lower Torso” is the root of
the kinematic structure. Position and orientation

of the root gives us the situation of the character,
noted [x, y, z, θ, φ, ψ]. The whole configuration of
the character is then given by its situation attached
to the angular values of each dof, and is denoted
[x, y, z, θ, φ, ψ, q1, ..., qn]. Motion capture data de-
pend on the model and represent the evolution of
the configuration through the time, in several cases:
walks, turns, runs, etc.

3 Trajectory of the root

Bezier curve control points

Root trajectoryInitial situation & orientation

Final situation & orientation

P1

P0

P2

P3

Figure 2: Example of a trajectory

The problem of the trajectory of the root (of the
kinematic structure of the model) concerns only the
evolution of the parameters [x, y, θ] and is the first
level of our steering method. Inputs of this func-
tionality are two configurations of the virtual actor’s
free configuration space (Cfree). The local human
navigation is modeled as a third degree Bézier curve
(see figure 2). As a result, the global path issued
from the whole planning method is a composition of
Bézier curves respecting C1 continuity constraint,
i.e. a B-Spline. The coordinates of the control
points P0 and P3 are directly given by the inputs:
xini, yini, xfin and yfin. P1 and P2 are computed
with respect to θini, θfin and a configurable distance
D (which depends on the size of the character and
on the distance between P0 and P3):

P1x = xini +Dcos(θini)
P1y = yini +Dsin(θini)
P2x = xfin −Dcos(θfin)
P2y = yfin −Dsin(θfin)

(1)

The evolution of the parameters [x, y, θ] is given by
some cartesian parametric equations:

x(t) =
∑n
i=0

n!
i!(n−i) t

i(1− t)n−iPix
y(t) =

∑n
i=0

n!
i!(n−i) t

i(1− t)n−iPiy
θ(t) = arctan(y′(t)/x′(t))

(2)

with n = 3, 0 ≤ t ≤ 1 the parameter of the Bézier
curve, and Pix the x coordinate for the control point
number i, and so on. Other values are needed: arc
length, tangential and rotation speeds. These can be
analytically derived from equation 2.

4 Animation Module

MODIFIED ANIMATION BUFFER

SELECT SPECIFIC ANIMATION

M
O

T
IO

N
 C

A
P

T
U

R
E

 F
IL

E

M
O

T
IO

N
 C

A
P

T
U

R
E

 F
IL

E

M
O

T
IO

N
 C

A
P

T
U

R
E

 F
IL

E

M
O

T
IO

N
 C

A
P

T
U

R
E

 F
IL

E

MOTION LIBRARY

ANIMATION BUFFER

FINAL ANIMATION

SAMPLING

 ROOT’S TRAJECTORY

APPLY SUB−CONTROLLER

Figure 3: Animation Module Structure

The animation module is composed of two elements:
a motion library and a set of specific sub-controllers.
The successive application of the sub-controllers
compose our human motion controller. The principle
of the module is to sample the previously computed
trajectory for the root. The animation buffer stores
the samples. The content of the motion library is
scanned, and with respect to the type of the motion
data found, some specific sub-controllers are applied.
The process is described on figure 3. The animation
module is designed to be easily upgraded by adding
new sub-controllers.

4.1 Motion Library

The motion library is a container for motion capture
files. Each motion capture file is pre-processed: fil-
tered (in the case of walk cycles) and characterized
as explained in the next paragraph. The motion li-
brary contains different walk cycles, and other action
descriptions: movements, postures, etc.

X

Y

APPROX LINE

MOTION CAPTURE DATA
X,Y ERRORS

Figure 4: Computing (x,y) errors around the com-
puted linear approximation

Preparing Walk Cycles. The walk sub-
controller is based on motion capture blending
([8, 7, 9]). This method needs a preparation of
motion data which have to be cyclic, with the same
structure and parameterization.
The user is in charge of selecting some approxima-
tively cyclic sequences into motion capture files, and
of adding a description (see section 4.1).
The next phases of the preparation are automatically
done during the planner’s initialization phase. Most

parameters of a motion capture are cyclic in the
case of the walk. Only the situation’s parameters
are problematical as they are highly non-cyclic.
We propose a filtering method in order to solve
this problem. In the case of straight walks, the
parameters of the position x(t), y(t), z(t), given by
the motion capture data, are approximated by a
line whose analytical expression is given by a linear
less squares fitting technique, defining x̃(t), ỹ(t), z̃(t)
and average orientations. In the case of turning
walks, the approximation shape is a circular arc.
Some parameters derived from the approximation
are kept: average tangential and rotation speeds.
Situation data [x, y, z, θ, φ, ψ] are computed as errors
around the approximation previously done. Errors
are computed by εx = x(t)− x̃(t), etc. This compu-
tation is illustrated on figure 4 over both (x(t), y(t))
parameters. The set of parameters defining a motion
is now denoted [εx, εy, εz, εθ, εφ, εψ, q1, ..., qn] and is
almost cyclic. Fourier expansions are computed over
these parameters, and a low-band filter is applied
[11] in order to make sequences cyclic. Conse-
quently, a set of parameters (αk, βk) characterizes
each motion style. The evolution of a configuration
parameter qi can be computed using equation 3.

qi(t) = α0 +
n∑
i=1

αicos(2πti) + βisin(2πti) (3)

where 0 ≤ t ≤ 1.

Characterizing Files. Adding a description to
the motion data is crucial. As the previously de-
scribed filtering method differs from a motion type
to another, the user has to mention some character-
istics. First, motion data are not limited to walk se-
quences; they can correspond to specific postures or
movements. Also, some data do not concern all char-
acter’s dof (eg. an arm-only movement description).
The two following characteristics must be given:
- Animation type: for example walk (with sub-

characteristic: straight or not), movement, pos-
ture, blocking task (the character must stop to ex-
ecute the movement) etc.

- Animation chronological validity: the motion con-
troller needs to know when the motion data must
be taken into account. Walk cycles are generally
always valid. But we could imagine that run cy-
cles are valid only when the character is far from
obstacles. Also, movement and postures are gen-
erally valid at a given period: at starts or ends of
paths, etc.

4.2 Motion Controller

Sub-controllers. A sub-controller is an applica-
tion rule dedicated to a data file type. The inputs

are the motion data, the validity periods and the
animation buffer. The output is the modified ani-
mation buffer. The set of all sub-controllers present
in the animation module constitutes our character’s
motion controller. The set of sub-controllers are ap-
plied successively with respect to the content of the
animation library.

X

Y

t

LS

RS

t

ROOT’S TRAJECTORY DATA

ROTATION SPEED PROFILE

LINEAR SPEED PROFILE

ROOT’S TRAJECTORY

Figure 5: Characteristics of the trajectory

INITIAL MOTION DATA (3 FILES)

MOTION BLENDING WEIGHTS

MOTION DATA EDITING

MOTION BLENDING RESULT

Figure 6: Motion blending steps

Walk controller The walk sub-controller syn-
thesizes a walk animation around the previously
computed trajectory of the root. Each frame of the

PROJECTION OF MOTION DATA OVER ROOT’S TRAJECTORY

Figure 7: Synthesized motion projection

animation buffer is scanned. Given the frame’s char-
acteristics (tangential and rotation speeds (v, ω)),
the controller computes a locally valid set of pa-
rameter (αb, βb), thanks to the examples contained
in the animation library and a motion blending
technique. Then, a configuration is extracted from
these parameters and projected on the situation of
the character for the actual frame.
The algorithm of the controller is schematically
illustrated on figure 6. For readability reasons,
we illustrate the process over the parameters [x, y]
only. On figure 5, the parameters characterizing the
trajectory of the root are given (see section 3 for
equations). Figure 6 shows the initial motion data
at the top (errors around approximated trajectory),
and their evolution. The final projection over the
trajectory is illustrated on figure 7.
Generating a motion cycle with some desired
tangential and rotation speeds (vf , ωf) is done by
blending some examples of motion. Three motion
cycles with the closest average speeds (denoted
(ω1, v1), (ω2, v2), (ω3, v3)) are selected in the ani-
mation library. The weights a, b, c of each motion
respectively defined with (α1, β1), (α2, β2) and
(α3, β3) can be computed by solving this linear
system.  av1 + bv2 + cv3 = vf

aω1 + bω2 + cω3 = ωf
a+ b+ c = 1

Finally, the desired motion parameters (αb, βb) are
computed: {

αb = aα1 + bα2 + cα3

βb = aβ1 + bβ2 + cβ3
(4)

A final step consists in finding the moment in the
synthesized motion cycle to be used, in order to ob-
tain a continuous motion all along the local path.
The problem is solved by considering the distance
between the two frames (the actual one and the pre-
vious one), the configuration of the character for the
previous frame and the local tangential speed. Once
calculated, an inverse Fourier transform is applied
to determine all the value of each parameter of the
configuration. Finally, the errors concerning the pa-
rameters [x, y, θ] are projected over the trajectory

and angular values of the other degrees of freedom
are copied. The result is illustrated on figure 7.

Other Sub-controllers The animation module
architecture is designed to integrate other sub-
controllers. For example:

- A partial configuration evolution can be described
in a motion capture data: arm-only movements
for example. When the chronological validity (de-
fined in subsection 4.1) is verified, contained mo-
tion data replace the animation buffer data on the
concerned degrees of freedom.

- Another sub-controller allows to call the motion
planner (with another steering method such as a
linear one) in order to generate a transition be-
tween two configurations. This is how postures
in the motion library are taken into account, and
how a sequence of postures can be executed by the
character.

Figure 8: Example of animation: a/ b/ Inputs, c/
Path, d/ Start Walk e/ Walk Control. f/ Macarena

Evolution of the Animation. The evolution of
the animation buffer, between each sub-controller ap-
plication, is illustrated on figure 8. In this example,
a sequence is first introduced at the beginning of the

animation buffer: a walk start. Then, walk cycles
are applied on the remaining part of the trajectory,
processed by the walk controller. A transition is syn-
thesized between the “start walk” sequence and the
result of the walk controller. A linear interpolation
between those two sources allows to smooth the re-
sult.
At last, some successive postures are executed by the
character, which correspond to the macarena’s dance
steps. This is why at the bottom of the figure 8 the
skeleton is moving its arms.

5 Walk planning

The steering method described in the two previous
sections has been implemented within Move3D [19].
Move3D is a motion planning platform that inte-
grates several randomized algorithms. Main com-
ponents of such algorithms are:

- a steering method to compute admissible paths,

- a collision checker which is used both to select the
nodes of the roadmap and to check whether an
admissible path is collision-free or not.

- a roadmap builder in order to generate or extend
the roadmap,

- a roadmap explorer in order to solve specific prob-
lems (which eventually calls the roadmap builder).

The global planner included into Move3D uses the
visibility PRM technique [20] in order to reduce the
size of the roadmap that captures the connectivity
of the configuration space. Figure 9 shows an exam-
ple of a collision free walk automatically computed
by our planner. Considering the whole kinematic
structure and the description of the environment in
three dimensions allows us to find solutions in con-
strained environments. Figure 9 illustrates this po-
tential, with a resulting trajectory close to the fur-
niture (note that the skeleton’s arm pass above the
piano’s stool). This result could not be obtained with
a bounding cylinder around the human model.

6 Conclusion

We have presented a human walk planning method
associating randomized motion planning and motion
capture editing techniques. The first results ob-
tained are promising. Several developments could
improve realism, computing time, and application
field. We are interested in investigating reactive
planning methods to deal with dynamic environ-
ments. The character controller is also in permanent
evolution. Also, we want to develop new sub con-
trollers, especially for environment, objects or char-
acters interaction problems.

Figure 9: A complete walk planning through a living
room (3 different points of view: a/ b/ c/)

Acknowledgment

Thanks to F. Forges from Ex-Machina who gave us
the motion capture data used in our implementa-
tion.

References

[1] Rae Earnshaw, Nadia Magnetat-Thalmann, Demetri
Terzopoulos, and Daniel Thalmann. Computer ani-
mation for virtual humans. IEEE Computer Graphics
and Applications, pages 20–23, September/October
1998.

[2] Franck Multon, Laure France, Marie-Paule Cani, and
Gilles Debunne. Computer animation of human walk-
ing: a survey. The Journal of Visualization and Com-
puter Animation, 10:39–54, 1999. Published under
the name Marie-Paule Cani-Gascuel.

[3] Jean-Claude Latombe. Robot Motion Planning.
Boston: Kluwer Academic Publishers, Boston, 1991.

[4] Jean Paul Laumond. Robot motion planning and con-
trol. Springer-Verlag, 1993.

[5] R. Boulic, M. Thalmann, and D. Thalmann. A global
human walking model with real-time kinematic per-

sonification. In The visual computer, pages 344–358,
1990.

[6] P. Faloutsos, M. van de Panne, and D. Terzopou-
los. Composable controllers for physics-based char-
acter animation. In Proc. ACM SIGGRAPH 2001
Conference, Los Angeles, CA, 2001.

[7] A. Witkin and Z. Popovic. Motion warping. In Proc.
SIGGRAPH’95, 1995.

[8] A. Bruderlin and L. Williams. Motion signal process-
ing. In Proc. SIGGRAPH’95, 1995.

[9] Charles F. Rose. Verbs and Adverbs : Multidimen-
sionnal motion interpolation using radial basis func-
tions. PhD thesis, Princeton University, June 1999.

[10] Bobby Bodenheimer, Chuck Rose, Seth Rosenthal,
and John Pella. The process of motion capture: Deal-
ing with the data. Computer Animation and Simula-
tion ’97, Eurographics, pages 3–18, 1997.

[11] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier prin-
ciples for emotion-based human figure animation. In
Proc. od SIGGRAPH’95, 1995.

[12] Shih kai Chung. Interactively Responsive Animation
of Human Walking in Virtual Environments. PhD
thesis, George Washington University, May 2000.

[13] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces.
Technical Report CS-TR-94-1519, 1994.

[14] L. Kavraki and J. Latombe. Randomized preprocess-
ing of configuration space for fast path planning. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp.
2138-2145, 1994., 1994.

[15] James J. Kuffner Jr. Goal-directed navigation for an-
imated characters using real-time path planning and
control. In CAPTECH, pages 171–186, 1998.

[16] D. Raulo, J.M. Ahuactzin, and C. Laugier. Con-
trolling virtual autonomous entities in dynamic en-
vironments using an appropriate sense-plan-control
paradigm. In Proc. of the 2000 IEEE/RS. Interna-
tional Conference on Intelligent Robots and Systems,
2000.

[17] James Kuffner, Satoshi Kagami, Masayuki Inaba, and
Hirochika Inoue. Graphical simulation and high-level
control of humanoid robots. Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’00),
2000.

[18] James Kuffner, Masayuki Inaba, and Hirochika Inoue.
Automating object manipulation tasks for humanoid
robots. Proc. of 1st Int. Conf on Robotics and Mecha-
tronics (ROBOMEC’00), pages 2P2–79–103, 2000.

[19] T. Siméon, JP. Laumond, and F. Lamiraux. Move3d:
a generic platform for motion planning. In 4th Inter-
nation Symposium on Assembly and Task Planning,
Japan., 2001.

[20] T. Siméon, J.P. Laumond, and C. Nissoux. Visibility
based probabilistic roadmaps for motion planning. In
Advanced Robotics Journal 14(6), 2000.

