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Abstract

A general approach based on discrete mapping techniques is pre-
sented to study stability of bipedal locomotion. The approach over-
comes difficulties encountered by others on the treatment of disconti-
nuities and nonlinearities associated with bipedal gait. A five-element
bipedal locomotion model with proper parametric formulation is con-
sidered to demonstrate the utility of the proposed approach. Changes
in the stability of the biped as a result of bifurcations in the four-
dimensional parameter space are investigated. The structural stability
analysis uncovered stable gait patterns that conform to the prescribed
motion. Stable non-symmetric locomotion with multiple periodicity
was also observed, a phenomenon that has never been considered be-
fore. Graphical representation of the bifurcations are presented for
direct correlation of the parameter space with the resulting walking
patterns.

The bipedal model includes some idealizations such as neglecting
the dynamics of the feet and assuming rigid bodies. Some additional
simplifications were performed in the development of the controller
that regulates the motion of the biped.
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1 Introduction

Analysis of dynamics and stability of bipedal gait and development of con-
trol algorithms to regulate the motion of bipedal automata is a challenging
problem which has prompted ongoing research efforts by many investigators.

Furusho and Matsubuchi (1986) considered a five-element biped. The
equations of motion were linearized about the upright position of the biped
and proportional plus derivative feedback are used at the individual joints.
The system behavior was analyzed on a two dimensional subspace of the
phase space that represents the dominant poles of the linear system. The
stability was tested by establishing a recursive relation among successive
velocities at foot contact. Although this method was never characterized
in the article as discrete mapping, it was the first attempt in studying the
stability of bipedal gait by some type of a discrete map. But, the system
was simplified to an extent that the resulting dynamics represented a very
restricted subset of the actual behavior.

Katoh and Mori (1984) have considered a simple biped with telescopic
legs. The equations of motion were partially linearized about vertical stance,
and coupled van der Pol equations were used to prescribe the locomotion.
The model has also included the impact of the lower limbs with the walking
surface, and the article stressed the unavoidability of the impact problem
in bipedal walk. Stability of the walking motion was established by proving
convergence to the dynamics prescribed by the van der Pol equations and
few numerical examples that demonstrate limit cycles on the phase plane.

Hemami et al. authored several articles studying the upright stability
of inverted pendulums using Lyapunov’s second method. In Hemami and
Chen (1984) a two link inverted pendulum model, complete with ligament
and muscle structures was constructed. Stability of the system about op-
erating points was guaranteed by constructing feedback strategies based on
Lyapunov functions. Zheng and Hemami (1984) have considered impact ef-
fects of the biped with its environment. Disturbances resulting from the
velocity jumps as a result of impact were eliminated by using appropriate
feedback functions. The general focus of Hemami et al. is feedback stabi-
lization of inverted pendulum models that are correlated mostly with non
locomotive actions (jumping, side sway, frontal sway etc.) of man made
bipedal systems. Lyapunov’s method has been proved to be an effective tool
in developing robust controllers to regulate such actions. Its applicability to
study the stability of the overall gait still remains to be an open question.

One of the latest work addressing stability of gait has appeared in Vuko-
bratovic et al. (1990). The analysis is based on the concept of practical
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stability which is introduced by the authors. The definition identifies three
regions in the state space. The system is said to be stable if for all state
trajectories starting from a subspace XI reach a subspace XF within a time
interval τs while remaining in a subspace X t. As implied by the term prac-
tical, this is not a formal definition that conforms to the general notion of
stability as it understood in the area of nonlinear dynamics. In general, one
can identify invariant solutions where the state is trapped in a periodic orbit
but deviates from it when perturbed along the unstable manifold. Yet, ac-
cording to the pactical stability definition these solutions should be identified
as stable. Based on the definition of practical stability a two stage control
methodology is developed. In the first stage, the control algorithm guarantees
the realization of the nominal motion in the absence of disturbances. Then a
decentralized control scheme is built assuming no dynamic coupling between
the joints and is incorporated into the existing controller. Finally additional
control loops are applied to take into account the nonlinear coupling effects
among various joints. The control strategy is applied to a nine d.o.f. bipedal
model, and numerical simulation is performed to demonstrate the effective-
ness of the proposed schemes. The approach is novel since the equations
of motion are kept in nonlinear forms, actuator models are included and a
complicated example is worked out. Yet, the question arises whether such
sophistication in control strategy is needed at all? Furthermore, the stability
analysis is convoluted with the proposed control scheme, the method serves
as a development tool rather than testing tool that can be used to study the
stability of bipedal systems in general.

Bipedal locomotion systems are highly nonlinear, thus a thorough sta-
bility analysis necessitates the inclusion of nonlinear effects. Such analysis
should bring a formal definition to the stability of gait and provide mecha-
nisms that can be used to capture the complicated facets of the nonlinear
behavior. Stability analyses based on Lyapunov’s second method are ad-hoc,
primarily because of the difficulties associated with constructing Lyapunov
functions that are applicable to a general class of systems.

In the present article we adopt a different approach to the study and
control of bipedal systems. First, we introduce a methodology to define
and analyze the stability of bipedal locomotion in general. Then, we will
synthesize a five element, bipedal system based on the objective functions
of Part I. The system includes a controller that tracks desired trajectories
during the continuous phases of the step cycle (between successive ground
contacts). Finally, we perform a parametric analysis, to correlate the four-
dimensional parameter space with the stability and dynamics of the overall
gait. Graphical representation of a subset of possible motions in the four
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dimensional parameter space are presented to evaluate the preformance of
the controller and determine its limitations.

2 Stability analysis

In this article, the approach to the stability analysis takes into account two
generally excepted facts about bipedal locomotion. The motion is discontin-
uous because of the impact of the limbs with the walking surface, Hurmuzlu
and Moskowitz (1986), Katoh and Mori (1984) and Zheng (1989). The dy-
namics is highly nonlinear and linearization about vertical stance should be
avoided, Hurmuzlu and Moskowitz (1987) and Vukobratovic (1990).

Given the two facts that have been presented above we propose to ap-
ply discrete mapping techniques to study the stability of bipedal locomo-
tion. This approach has been applied previously to study of the dynamics
of bouncing ball (Guckenheimer and Holmes, 1985) and to the study of vi-
bration dampers (Holmes and Shaw, 1983 and Shaw and Shaw, 1989). The
approach eliminates the discontinuity problems, allows the application of the
analytical tools developed to study nonlinear dynamical systems, and brings
a formal definition to the stability of bipedal locomotion.

The method is based on the construction of a first return map by consid-
ering the intersection of periodic orbits with an n-1 dimensional cross section
in the n dimensional state space. There is one complication that will arise in
the application of this method to bipedal locomotion. Namely, different set
of kinematic constraints govern the dynamics of various modes of motion.
Removal and addition of constraints in locomotion systems has been studied
before by Hemami and Wyman (1979). They describe the problem as a two
point boundary value problem where such changes may lead to changes in the
dimensions of the state space required to describe the dynamics. Due to the
basic nature of discrete maps, the events that occur outside the cross section
are ignored. The situation can be resolved by taking two alterative actions.
In the first case a mapping can be constructed in the highest dimensional
state space that represents all possible motions of the biped. When the biped
exhibits a mode of motion which occurs in a lower dimensional subspace, ex-
tra dimensions will be automatically included in the invariant subspace. Yet,
his approach will complicate the analysis and it may not be always possible
to characterize the exact nature of the motion. An alternate approach will be
to construct several maps that represent different types motion, and attach
various conditions that reflect the particular type of motion. We will adopt
the second approach in this article. Accordingly, for no slip walking, without
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the double support phase, a mapping Pnsls is obtained as a relation between
the state x immediately after the contact event of a locomotion step and a
similar state ensuing the next contact. This map describes the behavior of
the intersections of phase trajectories with a Poincaré section Σnsls that can
be defined as

Σnsls = {(x, ẋ) ∈ <n | xT (x) > 0, yT (x) = 0 | ẏ+
T (x) > 0,

∣∣∣∣∣ F̂rx

F̂ry

∣∣∣∣∣ < µ,

∣∣∣∣∣Frx

Fry

∣∣∣∣∣ < µ, Fry > 0}, (1)

where xT and yT are the x and y coordinates of the tip of the swing limb
respectively. The first two conditions in Eq.(1) establish the Poincaré section
(the cross section is taken immediately after foot contact during forward
walking). Whereas, the attached four conditions denote no double support
phase, no slip impact, no slippage of pivot during the single support phase
and no detachment of pivot during the single support phase respectively. For
example, to construct a map representing no slip running, the last condition
will be removed to allow pivot detachments as they normally occur during
running. We will not elaborate on all possible maps that may exist for
bipedal locomotion, but we note that the approach can address a variety of
possible motions by construction of maps with the appropriate set of attached
conditions.

The discrete map obtained by the procedure described above can be writ-
ten in the following general form

ξi = P(ξi−1) (2)

where ξ is the n-1 dimensional state vector, and the subscripts denote the ith

and i − 1st return values respectively.
Periodic motions of the biped correspond to the fixed points of P where

ξ∗ = Pk(ξ∗). (3)

where Pk is the kth iterate. Stability of Pk reflects the stability of the corre-
sponding flow. The fixed point ξ∗ is said to be stable when the eigenvalues
νi, of the linearized map,

δξi = DPk(ξ∗) δξi−1 (4)

have moduli less that one.
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This method has several advantages. First, the stability of gait now
agrees with the formal stability definition accepted in nonlinear mechanics.
Eigenvalues of the linearized map (Floquet Multipliers) provide quantitative
measures of the stability of bipedal gait. Finally, to apply the analysis to
locomotion one only requires the kinematic data that represent all the rele-
vant degrees of freedom. No specific knowledge of the internal structure of
the system is needed.

In general, the exact form of P cannot be obtained in closed form. For
example, if the system under investigation is a numerical model of a man
made machine, the equations of motion will be solved numerically to com-
pute the fixed points of the map from kinematic data. Then stability of each
fixed point will be investigated by computing the Jacobian using numerical
techniques. This procedure will be demonstrated for the five-element bipedal
model in the ensuing sections. Whereas, if the system in consideration is an
experimental prototype, kinematic data will be obtained by measurement
and various types of perturbations will be used to investigate the stability.
The method can also be applied to the human system. Yet, the complex-
ity of the human locomotor brings about many challenging questions. The
number measurements required to capture the dynamic behavior, the exter-
nal perturbation methods that have to be employed to measure stability are
important open questions that are beyond the scope of the present article.

3 Application to the Five-Element Bipedal

System

During its motion the biped is subject to repeated disturbances caused by
the contact of the lower limbs with the ground surface. Perturbations result-
ing from the contact event are not directly controllable because the actuators
cannot generate impulsive moments to compensate for the effect of contact
forces that arise during impact. All the previous work addressing the control
of gait are based on some type of trajectory tracking during the continuous
phases of locomotion. In some cases, the effect of impulsive forces are ne-
glected altogether to avoid the complications that may arise due to repeated
disturbances. In others, specific results are presented that correspond to a
very limited choice of parameter values where superior convergence rates can
be readily achieved. Yet, the question of the effect of increasing tracking
errors on the overall locomotion picture is a rarely addressed issue. Does the
motion looses its stability altogether, or some other type of anomalous gait
may emerge during which stability is still conserved? For example, the loco-
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motion of an amputee may be stable, yet it may not conform to any accepted
notion of normal locomotion. Study of anomalous motions is important, and
may lead to better understanding of human gait abnormalities. One may
create simplified biped models and attempt to induce specific types of abnor-
malities to better understand the dynamics of the more realistic cases. This
study does not address the human gait in any sense. But, it demonstrates
the complexity of the motion of a system which is substantially simpler than
the human being.

The control strategy in the present work is based on trajectory tracking
during the forward swing motion only. The controller proposed below is a
computed torque algorithm that is based on full state feedback and assumes
perfect knowledge of the system parameters. Controllers of this form are
practically limited because of the latter requirement. Yet, the subsequent
analysis demonstrates the dynamic behavior for a “best scenario controller”.
With this added advantage, we will demonstrate below that the biped ex-
hibits very complicated dynamic behavior. The system may generate stable
gait patterns that are entirely different than the ones prescribed by the ob-
jective functions.

3.1 Control law

Equations of motion of the biped during the forward swing phase can be
written as:

ẋ = f(x) + b(x)u (5)

Here x = {x1, . . . , x10}T , is the 10-dimensional state vector, u = {u1, . . . , u5}T

is the 5-dimensional control, f and b are vector fields. Also, the dot indicates
differentiation with respect to time. The constraint relations that we seek to
prescribe during the motion can be written as,

Sω(x) = 0, ω ∈ <4 (6)

where Sω = {S1, . . . , S5}T is the constraint function and depends on ω =
{Vp, Hm, SL, σ}, the vector of locomotion parameters as described in Part I.
We drop ω from our notation for simplicity and let,

¨̃S := C1S̈ + C2Ṡ + C3 = 0 (7)

where C1 , C2 and C3 are 5 x 5 matrices containing the design parameters
that will be explained below. If Si is a holonomic constraint (ex. S1 ), then
ith row of C1 is set to ei , whereas if the constraint is non-holonomic (ex.
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S2), then the ith row of C1 is set to 0 and the ith row of C2 is set to ei where
e1 = {1, 0, . . . , 0}, e2 = {0, 1, . . . , 0} , etc. The matrices C2 and C3 are
diagonal and contain parameters that can be chosen such that the solution
set of S̃ is asymptotically stable about the origin (i.e. Si → 0 as t→0).

We use Eqs. (10), (11), (16), (17) and (19) of Part I to write S̃ in the
form

S̃ = G(x)ẋ + H(x) (8)

where G and H are 5x5 vector valued functions. Using Eq. (5) to eliminate
ẋ from Eq. (8), solving for the control vector ũ and dropping x to simplify
the notation yields

ũ = −(Gb)−1(Gf + H) (9)

Equation (9) represents a nonlinear feedback law which expresses the
controls in terms of the ten state variables.

3.2 Symbolic derivation of Pnsls

The control algorithm presented above allows us to prescribe a hierarchical
approach to the constraint space by appropriate selection of the approach
parameters in the matrices C2 and C3 of Eq. (7). However, in the present
study we adopt a uniform approach and choose the matrices C1 , C2 and C3

as follows
C1 = diag{1, 0, 1, 1, 1} (10)

C2 = diag{α, 1, α, α, α} (11)

C3 = diag{β, λ1, β, β, β} (12)

where,

λ1,2 = −α

2
±

√
β2

4
− αβ and β > 4α > 0 (13)

Now Equation (7) can be solved for S.
First we obtain the expressions of the angular displacements and velocities

at t > t0 in terms of the locomotion parameters, initial time t0 and initial
values of the angular displacements and velocities . We use Eqs. (11), (12),
(17), (18) and (20) of Part I and their time derivatives to obtain

φ2(t) = σ + S4(t) (14)

φ1(t) = −φ2(t)

2
+ arcsin


∫ t

t0
S2(t) dt + η1(t)

cos φ2(t)
2


 (15)
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φ3(t) = S1(t) − φ1(t) − φ2(t) (16)

φ5(t) =


 2 arccos

√
η2
2(t)+η2

3 (t)

4
for φ5(t0) > 0

−2 arccos
√

η2
2(t)+η2

3 (t)

4
for φ5(t0) < 0

(17)

φ4(t) = S1(t) − φ5(t)

2
− arctan

[
η2(t)

η3(t)

]
(18)

where

η1(t) = −Vp(t − t0)

−sin S1(t) − sin S1(t0) − sin φ1(t0) − sin [φ1(t0) + φ2(t0)]

2
(19)

η2(t) = 2S5(t) − sin φ1(t) − sin [φ1(t) + φ2(t)] − 2 sin S1(t) (20)

η3(t) = 2S3(t) + 8
Hm

S2
L

+ Hm

+ {S5(t) − sin φ1(t) − sin [φ1(t) − φ2(t)] − sin S1(t)}2 (21)

φ̇1(t) = −S1(t) + Vp + Ṡ1(t) cos S1(t) + Ṡ4(t) cos [φ1(t) + φ2(t)]

cos φ1(t) + cos [φ1(t) + φ2(t)]
(22)

φ̇2(t) = Ṡ4(t) (23)

φ̇3(t) = Ṡ1(t) − φ̇2(t) (24)

φ̇4(t) =
−2γ1(t)

sin
[

φ5(t)
2

] (25)

φ̇5(t) =
−2γ2(t)

sin
[

φ5(t)
2

] (26)

We simplified the notation by leaving the terms Si(t), Ṡi(t) and
∫ t
t0

S2(t)
unevaluated in the above equations. We also did not present the expres-
sions for γ1(t) and γ1(t). These expressions are excessively long and the
calculations to derive these velocities are relatively straightforward. We used
kinematic relations and Ṡi(t), which linearly depend on these velocities to
obtain the final expressions.

Equations (25) and (26) reflect singular positions at φ5 = 0,±π. These
singularities correspond to the fully collapsed and extended swing knee con-
figurations respectively.
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The y coordinate of the swing limb can be written as

yT (t) = S3(t) +
1

2
{cos φ1(t) + cos [φ1(t) + φ2(t)]

− cos [−S1(t) + φ4(t)] − cos [−S1(t) + φ4(t) + φ5(t)]} (27)

Equation (27) depends on the values of the angular positions at t = t0 and
the time t. At contact

yT (tc) = 0 (28)

Equation (28) depends on tc only, yet the exact solution requires the usage of
numerical techniques. Once calculated, tc can be substituted into Eqs. (14)
through (26) to compute the remainder of the unknown quantities. Finally,
we substitute the angular positions and velocities at the instant of contact in
Eqs. (2) and (3) of Part I to incorporate the impact and switching to obtain
the mapping from the initial state to the state immediately after contact.

4 Numerical Simulation and Analysis of Pnsls

The overall behavior is governed by the union of two solution sets (equation
of motion during the single support phase and the impact and switching
equations). We now focus on the interaction of these solution sets and the
possible outcomes of this interaction. Numerical analysis is carried out by
selecting the control parameters such that λ1 = −6 and λ2 = −7 to assure
higher rates of convergence for trajectory tracking.

4.1 Fixed Points of Pnsls

The constrained motion possesses a singular point at φ5 = 0. This singularity
forms a hyperplane which bisects the state space into two disjoint supspaces;
the positive subspace where φ5 > 0 and the negative subspace where φ5 <
0. Trajectories that start from either subspace do not cross to the other.
Solution curves of the prescribed motion Mc also include two portions M+

c

and M−
c located on either side of hyperplane representing φ5 = 0. The

swing limb is bent forwards during the forward motion when the solution
conforms with M+

c , or it is bent backwards when it conforms with M−
c . The

condition of the swing knee during each step depends on the direction of
the knee flexion at the onset of the particular step (φ+

5 ). When the system
encounters the contact, the switching causes the exchange of the stance and
swing knee angles. Accordingly, the state of the stance knee at the end of
a particular step (φ−

2 ) also affects the condition of the swing knee during
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the ensuing step. Yet, the kinematic constraints fix the stance knee at a
bias of σ, which is chosen as a positive constant. Therefore, the motion
that conforms to the kinematic constraints corresponds to M+

c . However,
when the motion deviates from the constraints for various reasons, we may
expect the trajectories to crisscross from one subspace to the other as a
result of switching. As we will see below, a special class of periodic motions
which exhibit crisscrossing of state trajectories are indeed observed in certain
parameter regimes. Here, solutions ξ∗ of Eq. (3) are classified under two
general categories:

1. Type I Cycles

-2.5

-1.5 -1.0 -0.5 0.5 1.0 1.50.0

(a)
φ5

-10.0
-7.5

-5.0
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5.0
7.5

10.0

-1.5 -1.0 -0.5 0.5 1.0 1.50.0

0.0

(c)

.
φ5
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.
φ5

(b)

-7.5
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-10.0
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2.5

5.0
7.5

10.0

0.0

-7.5

Figure 1: Type I and Type II attractors for Vp = 1.4m/s, Hm = 0.05m,
SL = 0.82m and σ = 0.1 radians.

TYPE I cycles are periodic solutions that include one contact per cy-
cle. Figure (1.a) represents the cross section of the phase space taken
at ω = {1.4,0.05,0.82,0.1} . Trajectories that start from an initial φ5 in
the the right hand plane where φ5 > 0, tend to negative infinity as they
approach the singularity (φ5 = 0) along M+

c . Whereas, trajectories in
the left hand plane tend to positive infinity as they approach the sin-
gularity along M−

c . The phase trajectories converge exponentially to
M+

c and M−
c for t > t0. The tendency of state trajectories approaching

the singular position is actually a natural consequence of the motion
in Mc. We have prescribed a quadratic tip trajectory accompanied by
forward motion. In the absence of the walking surface, tip of the swing
limb tracks the quadratic trajectory even for negative yT values. This
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action forces the swing knee to extend further so that the tip is kept
on the quadratic path, eventually leading to the singular configuration.
Figure (1.b) depicts the phase plane picture of the steady state behav-
ior when we incorporate the contact. The configuration depicted in the
figure, reveals a closed orbit that includes a portion of a state trajectory
accompanied by a sudden transfer. Subsequent calculation of the char-
acteristic multipliers at this limit cycle yields max [mod(νi)] = 0.08,
which denotes a strongly stable attractor. The numerical study for the
present system produces Type I cycles that are located in the posi-
tive subspace. Cycles of this class have not been encountered in the
negative subspace.

2. TYPE II(n) Cycles

We define the TYPE II(n) cycles as periodic solutions that include
n contacts per period. Figure (1.c) depicts the second cycle, which
appears when contact is incorporated. This closed orbit is formed by
portions of dynamic trajectories that are located in opposite sides of the
singular point. During the motion that corresponds to this solution, the
biped takes one step during which the swing knee is bent backwards,
followed by a step during which the knee is bent forwards.

The numerical search for this class of cycles produced closed orbits that
always include state trajectories that cross over at least once per period.
We did not encounter any TYPE II(n) that lie entirely in either the
positive or the negative subspaces.

4.2 Structural Stability of the Fixed Points of Pnsls

The focus of this section is to investigate the structural stability of the limit
cycles subject to variations in the components of the parameter vector ω.

Figure (2) depicts bifurcations of Type I cycles that take place at σ = 0.1
radians and Hm = 0.05 m when progression velocity and step length are
varied. We obtain the bifurcation diagram by plotting c1 versus φ5. We use
c1 instead of SL as one of the variables. This choice stretches the bifurcation
diagram for very small step lengths and provides better visualization of the
diagrams. Solid lines in the figure represent stable cycles while dashed lines
represent unstable cycles. For progression velocities Vp < 1.2 m/s, loci of
stable limit cycles are given by a single branch. This branch ends when it
reaches the horizontal axis where φ+

5 = 0. At this point a very complex set
of bifurcations are encountered. We will return to these bifurcations later in
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Figure 2: Bifurcation diagrams at σ = 0.1 radians and Hm = 0.05 m.

this section. When the velocity is increased, a codimension two bifurcation
occurs and the three limit cycles emerge as this branch folds creating two
saddle-node (SN) bifurcations (point D). A third SN bifurcation enters the
picture from the left, revealing existence of two more cycles for short step
lengths. As the velocity is further increased (1.21 m/s < Vp < 1.22 m/s), a
second codimension two bifurcation occurs when two of the SN bifurcations
collide and disappear, leading to a stable and an unstable branch (A). When
progession velocity is further increased the third SN bifurcation reaches zero
at Vp = 1.43 m/s (C). Furthermore, at this velocity a similar set of events
take place in reverse order for long step lengths. We observe the birth of
two SN bifurcations for 1.43 m/s < Vp < 1.44 m/s (B). Then, one of the SN
bifurcations gradually moves to the right and disappears for higher velocity
values (Vp = 1.55 m/s).

The overall picture is depicted in Fig. (3). Solid curves in the figure repre-
sent SN bifurcations, whereas dashed curves represent crossings to negative
φ+

5 values. We highlighted the two regions that correspond to the events
described in Fig. (2) and marked the five transition points of the figure ac-
cordingly. As Fig.(3) denotes TYPE I cycles are less likely to occur for
shorter step lengths, faster velocities, higher clearances and smaller stance
knee biases. Shortening the step length causes the biped to take a larger
number of forward steps to keep up with the prescribed progression velocity,
decreasing the duration of each locomotion step. This diminishes the time
available to the control algorithm for restoring the prescribed motion. In-
creasing the progression velocity has the same effect on the duration of steps.
Increasing the clearance increases the vertical velocity of the tip at contact.
Higher vertical tip velocities lead to increased perturbations and may lead
to the disappearance of TYPE I cycles.

The dashed curves that are present for low clearance values indicate that
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Figure 3: Bifurcation of TYPE I cycles.

the zero crossings occur for low clearances and short to moderate step lengths.
Zero crossings trigger a very complex pattern of bifurcations. Figure (4.a)

depicts the bifurcation diagram for the parameter values shown. A variety
of complex of bifurcations are apparent from the diagram. Periodic windows
exist where the steady state limit cycles lock into subharmonics, there are
also regions of accumulation of bifurcations.

The TYPE II(n) cycles are detected in open parameter intervals. End
points of the intervals correspond to parameter values when a certain iterate
of a cycle is located on the singularity plane. Therefore, the cycles cease to
exist at the exact end points. Furthermore, when a particular iterate of a
cycle approaches the singularity plane, a secondary cycle emerges and co-
exists with first cycle until the iterate moves on the singularity plane. The
mapping exhibits this hysteretic behavior at every bifurcation point. Ac-
cordingly, the parameter range consists of open subintervals of TYPE II(n)

cycles with overlapping portions.
The details of the first crossing is depicted in Fig. (4.b). As the TYPE I

branch approaches the crossing point we observe the birth of a TYPE II(10)

cycle at Cr1. The two cycles coexist between Cr1 and Cr2. When the eighth
iterate of the period ten cycle approaches the crossing point a second period
ten cycle emerges at Cr2. The former cycle disappears when its eighth iterate
becomes singular at Cr3. Finally, the period one cycle disappears at Cr4.

Figure (5) depicts the phase plane picture in the Cr1-Cr2 interval. The
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Figure 4: Zero crossing bifurcations.

darker state trajectory in the figure corresponds to the period one cycle.
When a trajectory starts from an initial condition sufficiently close to the
TYPE I cycle, it is captured by this cycle. Yet, if an initial condition is not
located in the vicinity of the TYPE I cycle, impact and switching transfers
the trajectory to the negative half plane. Following a single loop in the
negative half-plane the trajectory crosses back. Then it starts to descend
toward the TYPE I cycle. But, the trajectory crosses to the negative half
plain again before it is completely captured by the period one cycle. This
leads to the first period ten cycle shown if Fig. (4.b). In the parameter
interval (Cr2-Cr3) three cycles coexist. A new TYPE II(10) cycle with two
loops in the negative half-plane emerges. This bifurcation takes place when
the destination of the loop in the negative half-plane does not cross back to
the positive half-plane leading to two successive iterates in the negative half
plane (see Fig. (4.b)).

The complexity of the motion for other parameter values are apparent
from the bifurcation diagram. We will not elaborate on all of the aspects of
the dynamic structure in this article for the sake of brevity.

5 Discussion and Conclusions

The first objective of the present article is to develop a general methodology
to study the stability of bipedal locomotion without any specific assumptions
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about the internal structure of the biped. The second goal is to demonstrate
the utility of the proposed methodology by using it to study the structural
stability of a bipedal locomotion model with a proper parametric formulation.

We have proposed a discrete mapping technique that addresses the non-
linear and discontinuous nature of bipedal gait. The proposed approach
brings a formal definition to the stability of gait and enables the utilization
of the analytical tools of nonlinear dynamics to analyze the motion of a
general class of bipedal locomotion systems.

The method was applied to perform study the bifurcations of a five-
element bipedal locomotion model in the four-dimensional parameter space.
The model was constructed by using the objective functions of Part I in
conjunction with a computed torque control algorithm. The analysis demon-
strated the existence of variety of gait patterns that can be radically different
from the ones intended by the objective functions. The discrete mapping
technique was successfully used in capturing many aspects of the motion
that would have been impossible with the previous approaches that have
been followed by other researchers in the bipedal locomotion area.

The bipedal model used in this study includes some idealizations such as
neglecting the dynamics of the feet and assuming rigid bodies. Furthermore,
the computed torque algorithm assumes perfect knowledge of system param-
eters and some practical issues such as the actuator dynamics and limitations
of actuator torques were not considered. We believe however, the model has
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successfully served to establish the main results intended by the article. More
practical models equiped with realistic controllers are currently under study
and will be the subject of forthcoming publications.
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