
Online adaptation of reference trajectories for

the control of walking systems

Pierre-Brice Wieber∗, Christine Chevallereauo
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Abstract

A simple and widely used way to make a robotic system walk without falling is
to make it track a reference trajectory in one way or another, but the stability
obtained this way may be limited and even small perturbations may lead to a
fall. We propose here a series of heuristics to improve the stability that can
be obtained from such a tracking control law, through an online adaptation of
the choice of the reference trajectory being tracked. Encouraging simulations
are obtained in the end on a simple planar biped model.

1 Introduction

When a mechanical system is walking, it has possibly many contacts with
the ground which are regularly broken and recovered in order to produce a
displacement of the whole structure. This allows to travel across obstacles
with great versatility, but at the cost of a strong instability stemming from
the fact that the dynamics of walking systems depends strongly on the forces
that can be obtained from these contacts.

Being concerned with the stability of walking systems, this publication
begins therefore in section 2 with a general model of their dynamics that
builds on a unilateral model of the contacts with the ground and allows to
specify which movements a walking system can do and which movements it
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can’t [13, 14]. The possibility to avoid to fall can be modelled then as a
viability and invariance property.

A simple and widely used way to obtain such invariance properties is to
make a walking system track a reference trajectory in one way or another [2,
3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], but the invariance obtained this way
may be limited and even small perturbations may lead to a fall. How to
improve the capacity for a walking system to avoid to fall has therefore been
the main goal of most of the researches done in the field of walking systems,
and especially in the field of biped walking systems since this stability issue
is particularly problematic for them.

Since the problem is the availability of contact forces, it has been pro-
posed to deal more properly with them by lowering the needs of the trajectory
tracking, tracking for example trajectories with only some parts of the sys-
tem [10, 12] or allowing some deviations from the reference trajectories when
forced to do so [4, 6, 10]. It has been proposed also to adapt the reference tra-
jectory being tracked to the availability of contact forces, but most of such
propositions so far don’t clearly define when and how such an adaptation
should occur, relying on parameters that need to set with no clear relation
to the global stability of the system [8, 15]. A more radical approach is even
to completely generate online the reference trajectories [2], but in a way, all
of these approaches blur the effects of tracking reference trajectories, leading
to an uncertain result as to really improving the capacity to avoid to fall.

Building on the analysis of section 2, we propose here, in section 3, a
series of heuristics for the online adaptation of the reference trajectory being
tracked which builds on a well delimited set of reference trajectories and a
strict tracking which continuously keeps an eye on the available forces [14].
We show then in section 4 how to apply these heuristics to a simple planar
biped model, leading to encouraging numerical experiments in section 5.

2 The dynamics and stability of walking sys-

tems

2.1 Structure of the dynamics

Whatever the walking system being considered, planar or three-dimensional,
with any number of legs with or without feet, its dynamics can be classically

2



written as a set of Euler-Lagrange equations:

M(q) q̈ + N(q, q̇) q̇ + G(q) = T (q) u + C(q)T λ (1)

where T (q) u are actuation forces and C(q)Tλ contact forces.
As for any mechanical system that is able to move around, its config-

uration vector q has to account for two different informations, the shape
of the system on one side, its position and orientation in space on the
other [6, 11, 13]. The shape of the system can be described by its joint posi-
tions, a vector q1, and its position and orientation in space can be described
by the position and orientation of a frame attached to one of its parts, lead-
ing to a vector q2 of dimension 3 for planar systems, 6 for three-dimensional
systems.

If we consider then the structure of the vector q:

q =

[

q1

q2

]

we can split the dynamics (1) to exhibit the same structure:

[

M1(q)

M2(q)

]

q̈ +

[

N1(q, q̇)

N2(q, q̇)

]

q̇ +

[

G1(q)

G2(q)

]

=

[

T1(q)

0

]

u +

[

C1(q)
T

C2(q)
T

]

λ (2)

where the actuation forces don’t appear in the lower part [6, 11, 13]:

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ (3)

2.2 Contact forces

It appears then that for a walking system to realize a movement q(t), equation
(3) must be satisfied with appropriate contact forces. But the physics of
contact is such that these forces have limitations: in the general case (no
gluing, especially), contacting solids can push one another but they can’t
pull one another (what is referred to as the unilaterality of contacts), and
friction between them is limited [6, 7, 9, 13]. This can be expressed as a
vector inequality on the amplitudes λ of the contact forces:

A(λ) ≤ 0 (4)
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Considering this restriction of contact forces together with the lower part
of the dynamics (3), a necessary condition for a walking system to realize a
movement q(t) is that there exist contact forces λ(t) such that:

{

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ

A(λ) ≤ 0
(5)

Note that this condition can be shown to be a complete generalization of
more usual criteria such as the Center of Pressure or the Zero Moment Point
criteria [14].

2.3 Impacts

Note also that when a part of a walking system lands on the ground, a
sharp change of velocity may happen, an impact which can be modeled as
an instantaneous event, especially in the case of purely rigid bodies [9, 13].
This way, an instantaneous version of the Euler-Lagrange equations:

M(q)
[

q̇+ − q̇−
]

= C(q)TΛ (6)

relates the velocity of the system before and after the impact, q̇− and q̇+, to
impulsive contact forces C(q)T Λ.

2.4 Avoiding to fall, a viability condition

Condition (5) shows that a walking system’s ability to control its movements,
and especially to keep its balance, is bound to the availability of appropri-
ate contact forces: falling is a permanent threat then, and a threat for the
integrity of both the walking system and its environment. Avoiding to fall
should therefore be considered as an essential condition for walking systems,
to be taken care of before any other goal.

Now, if we consider the set F of positions where the system is considered
as having fallen (where a part of the system other than the feet is in contact
with the ground, for example), avoiding to fall means avoiding to be in a
position q ∈ F . A viability condition [1, 13] naturally comes out then:

Definition : A state (q, q̇) is considered as viable if and only if the system is
able to realize a movement q(t) starting from this state that never gets inside
the set F .
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Figure 1: The viability kernel gathers all the states from which it is possible
to avoid to fall, equilibrium points and cyclic movements among others. The
states outside this kernel are those from which a fall cannot be avoided.

A state (q, q̇) is therefore either viable and the system is able to avoid to
fall from it, or non-viable and the system cannot avoid to fall from it. This
way, if we consider the viability kernel, union of all viable states (figure 1),
avoiding to fall means always staying inside this kernel, what should be
considered then as the primary goal for every control law of walking systems.

This concept of viability appears to be very general: it applies to any
type of locomotion, any structure of robot as long as falling is considered as
an event that should be avoided. It is unfortunately of poor practical use
since the complexity of the dynamics of walking systems is such that it is
generally computationally impossible to verify whether a state is viable or
not.

Numerous viable states can be sorted out though, equilibrium points,
cyclic movements or trajectories leading to one of these, so that viability still
seems to be an interesting concept to refer to in the analysis and design of
control laws, as we will see in the next section.
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Figure 2: Tracking a reference trajectory, here a static position, may lead to
a fall if the system is outside the corresponding largest invariant set, because
of a perturbation for example (upper part). But in such a case, the system
might be able to track another trajectory, here a step forward, which would
allow to avoid to fall (lower part).

3 Tracking reference trajectories

3.1 Adapting the choice of the reference trajectories

A simple and widely used way to make a walking system avoid to fall is to
make it track a reference trajectory, in one way or another [2, 3, 4, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15]. Indeed, if a trajectory and a neighbourhood of it lie
inside the viability kernel, it may be tracked with a stable control law, what
may allow to avoid to fall.

But whatever the trajectory and the control law, such a tracking will allow
to avoid to fall only in a subset of the viability kernel, the largest invariant set
for this tracking inside the viability kernel (usually a time-dependant set).
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This means that if the system is put in a state outside this invariant set,
because of a perturbation for example, the tracking will lead to a fall (upper
part of figure 2). But in such a case, the state of the system might still be
inside the viability kernel, so that there might still be a possibility to avoid
to fall.

For example, we may know another reference trajectory for which the
state of the system is inside the corresponding largest invariant set, so that
tracking this other trajectory would allow to avoid to fall (lower part of
figure 2). A possibility then to improve the stability of walking systems
could be to adapt the choice of the trajectory being tracked to the actual
state of the system. But the problem then is to know when a trajectory can
be safely tracked and when not: estimating the extent of the largest invariant
set of a trajectory tracking may not be impossible [14], but it is out of reach
today.

Our proposition then is to consider stiff enough tracking control laws:
requiring strong accelerations if a deviation from the reference trajectories
occurs, they may satisfy condition (5) only in small neighbourhoods around
them, but in these neighbourhoods, we may trust their ability to stay close
enough to the trajectories to avoid that a fall happens. This way, the choice
of the reference trajectory to track will be the choice of a trajectory for which
such a stiff tracking control law satisfies condition (5).

3.2 About reference trajectories

A trajectory can be seen as a set of positions qd(t) indexed with time t.
But on top of that, we will consider a set of parameters p to describe each
possible reference trajectory, for example the step lengths, heights or any
other possible variation of the walking patterns, so that to each value of these
parameters corresponds a reference trajectory qd(t, p) and reciprocally. This
way, a change in the choice of the reference trajectory is perfetcly reflected as
a variation of these parameters p: for example, instantaneous switches from
one reference trajectory to another gives rise to a piecewise constant function
p(t).

But because of the second order dynamics (1), such instantaneous switches
will most probably give rise to transient behaviours of the trajectory track-
ing. We will prefer here to take care of such transient behaviours directly
in the choice of the reference trajectory: we will consider only continuous
variations of the parameters p(t).
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More precisely, the second order dynamics will imply that the param-
eters p(t) be twice differentiable with respect to time, and that on top of
being twice differentiable with respect to time (except at impact times), the
reference trajectories qd(t, p) be also twice differentiable with respect to the
parameters p. Of course, this requires that a continuous and twice differen-
tiable set of reference trajectories be at disposal (section 5.1).

Now, any twice differentiable function p(t) can give rise to a trajectory
qd(t, p(t)) that can be usefully tracked, but which may probably not preserve
any specific properties of the original trajectories, those with constant pa-
rameters p. Examples of such properties not preserved can be the energy
optimality of the movements or the fact that the velocity q̇d(t, p(t)) may not
respect the impact law (6) when ṗ(t) 6= 0, inducing a flaw in the trajec-
tory tracking at impact times. Such transient behaviours, when ṗ(t) 6= 0
and p̈(t) 6= 0, should therefore be used thriftily, only when they are strictly
necessary to avoid to fall.

We will also be interested in replacing the time t by a virtual time τ(t),
since such a time scaling has prooved to be an efficient way to adapt reference
trajectories to the dynamical constraints of a system [3]. This way, the
parametrization of the reference trajectories qd(τ(t), p(t)) is such that this
τ(t) can be directly included in the parameters p(t): the parametrization of
the reference trajectories will therefore appear to be simply qd(p(t)).

4 Application to a simple biped model

4.1 A simple biped model

Let’s consider now a 7 link planar biped robot for which, following the pre-
sentation of section 2.1, the configuration vector q is structured as: q1 for
the joint positions, q2 for the position and orientation of a frame attached
to the foot on the ground (figure 4). In order to keep this model simple, we
consider that both feet are always parallel to the ground, and that an impact
occurs when the foot in the air lands on the ground (section 2.3), in such a
way that it stays in contact with the ground and the foot previously on the
ground takes off immediately: the two feet switch their roles instantly, and
we change the model accordingly.

This way, the robot is always in a single support phase except at impact
times and we define the contact forces in this case as the tangential force, the
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q =

[

q1

q2

]

Figure 3: Structure of the configuration vector q of the 7 link planar biped
robot: q1 for the joint positions, q2 for the position and orientation of a frame
attached to the foot on the ground.

normal force and the momentum acting under the support foot. C1(q) ap-
pears then to be a null matrix, C2(q) an invertible matrix and the inequality
(4) a linear inequality:

A(λ) = A λ − a ≤ 0

stating that the tangential and normal force lie inside the friction cone and
that the Centre of Pressure of the contact forces lies within the boundaries
of the contact points [14]. We consider also that all the joints are actuated
with T1(q) an identity matrix so that the dynamics (2) of the system appears
to be in fact:

M1(q) q̈ + N1(q, q̇) q̇ + G1(q) = u

M2(q) q̈ + N2(q, q̇) q̇ + G2(q) = C2(q)
T λ

On top of that, the shape and the mechanical behaviour of the ground, and
the way we will design the control law in sections 4.2 and 4.3 are such that
the foot on the ground will always be considered as motionless on a horizontal
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ground: q2 will be a constant ⇔ q̇2 = q̈2 = 0. A reduced model is therefore
straightforward, with only q1 to describe the configuration of the system:

M ′

1(q1) q̈1 + N ′

1(q1, q̇1) q̇1 + G′

1(q1) = u (7)

C−T
2

[

M ′

2(q1) q̈1 + N ′

2(q1, q̇1) q̇1 + G′

2(q1)
]

= λ (8)

A λ ≤ a (9)

(C2(q) is a constant matrix in this case). Some bounds on the actuation
forces are also considered:

B u ≤ b (10)

so that combining the dynamics (7)-(8) with the inequalities (9)-(10), a joint
movement q1(t) with a motionless foot on the ground can be realised if and
only if it complies with the inequality:

[

B 0

0 A C−T
2

]

[

M ′(q1) q̈1 + N ′(q1, q̇1) q̇1 + G′(q1)
]

≤

[

b

a

]

(11)

which is the specific version of condition (5) for this system.

4.2 A trajectory tracking control law

For this biped robot, we will consider cyclic reference trajectories, with in-
stantaneous double support phases because of the impacts. In order to exploit
the strategy of online adaptation proposed in section 3, we will consider a
set of trajectories with step lengths varying continuously between 0.3 and
0.65 m (we will see in section 5.1 how such a set can be obtained), and a time
scaling will be applied. Two parameters will be considered then, the step
length p1 and the virtual time p2.

These reference trajectories will be tracked with a computed torque con-
trol law, a feedback linearization:

u = M ′

1(q1) v + N ′

1(q1, q̇1) q̇1 + G′

1(q1) (12)

the result of which on the dynamics (7) is to obtain q̈1 = v, that we combine
with a PD control law:

v = q̈1d(p(t)) + K(q1 − q1d(p(t))) + Λ(q̇1 − q̇1d(p(t)))
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Following the proposition of section 3.2, we consider only twice differentiable
variations of the parameters p(t) so that the velocity q̇1d and the acceleration
q̈1d of the reference trajectory can be related directly to the derivatives of
these parameters:

q̇1d(p(t)) = J(p(t)) ṗ(t)

q̈1d(p(t)) = J(p(t)) p̈(t) + n(p(t), ṗ(t))

with J(p) =
d

dp
q1d(p) and n(p, ṗ) =

(

d

dt
J(p)

)

ṗ. This way, the PD control

law appears as:

v = J(p(t)) p̈(t) + n(p(t), ṗ(t)) + K(q1 − q1d(p(t))) + Λ(q̇1 − J(p(t)) ṗ(t))

or, with a shortened notation:

v = J p̈ + n + K(q1 − q1d) + Λ(q̇1 − Jṗ) (13)

4.3 An online adaptation of the reference trajectories

In order to improve the capacity for the robot to avoid to fall, following the
analysis of section 3.1, the choice of the reference trajectory to track should
be made according to the state of the system. More precisely, the choice
should be made of a trajectory for which the control law (12)-(13) complies
with the inequality (11), satisfying therefore the inequality (with a shortened
notation):

[

B 0

0 A C−T
2

]

[

M ′

(

J p̈ +n+K(q1−q1d)+Λ(q̇1−Jṗ)
)

+N ′q̇1+G′

]

≤

[

b

a

]

(14)

Taking care of choosing a reference trajectory which complies with this in-
equality, we would like now to have the robot stay as close as possible to an
optimal motion, a 1 m.s−1 walk obtained with p1(t) = 0.462 and ṗ2(t) = 1
(see section 5.1 and figure 4), following it if possible and getting back to it
if driven away by a perturbation. Such a behaviour can be obtained with a
PD regulation of the walking parameters:

p̈× =

[

k1(p1 − 0.462) + k2 ṗ1

k3(ṗ2 − 1)

]

(15)
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but having to comply with the inequality (14), we rather need to consider
the following evolution law:

p̈ = arg min
π

‖π − p̈×‖

s.t. the inequality (14) is satisfied.

(16)

Indeed, trying to stay as close as possible to the optimal motion, this evo-
lution law explicitely selects a reference trajectory for which the control law
(12)-(13) complies with the inequality (11) (note that we regulate the pace
of the steps ṗ2 without synchronization between the virtual time p2 and the
real time t).

General Remark : In a way, tracking a single reference trajectory qd(t)
imposes an unnecessary and unproductive reduction of the walking behaviour:
the two-step control law that we propose here, (12)-(13) together with (15)-
(16), can be seen therefore as a way to widen this walking behaviour to a set
qd(p) with dim(p) > 1, giving back some freedom of movement to the walking
system to help it cope with the dynamical constraints (11) and adapt to its
environment. Indeed, a single tracking control such as (12)-(13) mobilizes all
the actuators of the system to control the positions and velocities of each of its
articulations, leaving no simple possibility to deal then with such constraints.
The term p̈ that appears in (13) is used then in our scheme as a new input
to the control law (12)-(13) which is used in (15)-(16) to deal explicitly with
such constraints, and once this is done, to deal with more specific goals if it
is possible.

5 Simulations

5.1 The set of reference trajectories

The joint trajectories that will be used in the control law (12)-(16) will be
taken between two successive impacts as 4th degree polynomials of the virtual
time p2, with coefficients being themselves 4th degree polynomials of the step
length p1:

q1d(p) =
4
∑

j=0

4
∑

k=0

(akj pk
1) p

j
2 (17)

They are obtained as follows:
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1.510 0.5

Figure 4: The 1 m.s−1 optimal walking motion with instantaneous double
support phases due to impacts is obtained with a step length of 0.462 m (feet
not shown).

• First, a walking motion with an average speed of 1 m.s−1 is obtained
by computing the duration T of the step and the coefficients of a 4th

degree polynomial describing the joint trajectory such that the energy

consumption
∫ T

0

u2 dt is minimized, satisfying the continuous dynamics

(7)-(10) and the impact law (6). In fact this trajectory is set to satisfy
an alternative version of inequality (9): the Center of Pressure is set to
stay at least 1 cm inside the boundaries of the contact points, in order
to allow a tolerance margin for the trajectory tracking. This optimal
walking motion is obtained with a step length of 0.462 m, obviously
realised in 0.462 s (figure 4), and will be considered as the preferred
motion for this system.

• Then, eight other trajectories are computed in a similar way, but for a
duration fixed at 0.462 s, and step lengths fixed between 0.3 and 0.65 m.
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0.262 0.312 0.362 0.412 0.462 0.512 0.562 0.612 0.662

−1.6

−1.4

−0.5

−1.2

0

0.5 Computed values
Preferred value  
Approximated values

−2

−1.8

−1.6

−1.5

−1

−0.5

0

p1 [m]

q1d(p1, 0.231) [rad]

q1d(p1, 0.462) [rad]

q̇1d(p1, 0.462) [rad.s−1]

q̇1d(p1, 0) [rad.s−1]

Figure 5: Result on an arbitrary joint of the 4th degree polynomials of p1

interpolating the positions at the middle of the steps (p2 = 0.231), at their
end (p2 = 0.462), and the velocities at their end. The velocities at their
beginning (p2 = 0) are computed with the impact law for an extensive series
of step lengths p1, and interpolated only after.

Incidentally, we will consider now that the virtual time p2 always takes
values between 0 and 0.462.

• After that, positions at the middle of the trajectories (p2 = 0.231) and
positions and velocities at their end (p2 = 0.462) are obtained for every
step length p1 ∈ [0.3, 0.65] by interpolating with 4th degree polynomi-
als of p1 the corresponding positions and velocities taken from these
nine trajectories (figure 5). Note that this interpolation is specifically
computed to match exactly the preferred motion when p1 = 0.462.

• In order to obtain cyclic trajectories when p1 is constant, the positions
at their beginning directly reproduce the positions at their end, and the
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velocities at their beginning are computed from the velocities at their
end through the impact law (6) for an extensive series of step lengths
and interpolated only after (figure 5). Remember however that as soon
as ṗ1 6= 0, the velocity q̇d(p(t)) will probably not follow the impact law,
and the tracking will be flawed.

• In the end, the coefficients of the polynomial (17) can be exactly fit to
these positions and velocities already expressed as 4th degree polyno-
mials of p1.

Figure 5 shows that in the joint space, the 4th degree polynomials of p1

produce an efficient interpolation of the beginning, middle and end positions
and velocities. But the usual side-effect of such interpolations is an incorrect
positioning of the system in the cartesian space: we can observe especially an
incorrect height of the feet, inducing a mismatch in the impact times and, as
a result, an error in the trajectory tracking, what will be clearly observed in
sections 5.2 and 5.3. Note though that the interpolation has been computed
to match exactly the preferred motion: this trajectory being unaltered by
the interpolation process, no mismatch of the impact times will occur when
p1 = 0.462.

5.2 Perturbation of a trajectory tracking

Let’s consider this simple biped model perfectly tracking the 1 m.s−1 optimal
walk (p1 = 0.462, ṗ2 = 1) when a perturbation occurs, a horizontal force
applied on the back of the trunk for 0.025 s at the middle of a step. This
perturbation might put the system in a state outside the largest invariant set
corresponding to this trajectory tracking, so a change of reference trajectory
might be necessary to avoid to fall.

When no adaptation of the reference trajectory is applied, external forces
as large as 55 N can be compensated by the control law (12)-(13) before it
stops complying with the inequality (11). When the strategy that we have
proposed is applied, but adapting only the parameter p1, external forces as
large as 235 N can be compensated. When only the parameter ṗ2 is adapted,
external forces as large as 450 N can be compensated. And when both pa-
rameters are adapted, external forces as large as 750 N can be compensated:
this strategy clearly improves the capacity for this biped model to avoid to
fall.
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0 0.5 1 1.5 2 2.5
0

0.462

0.464

0.005

0.466

0.01

0

0

0.05

5

0.1

10

0

5

10

0

0.1

1

1.2

1.4

−0.1

t [s]

p1 [m]

CoP [m]

p̈1 [m.s−2]

ṗ1 [m.s−1]

ṗ2

‖q1−q1d(p)‖ [rad]

p̈2 [s−1]

Figure 6: Position of the Center of Pressure within the limits of the foot on
the ground, variation of the walking parameters p1 and ṗ2 and tracking error
when a 600 N external force is applied on the back of the system for 0.025 s.
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Figure 6 shows the application of our strategy when a 600 N force is
applied: a strong rise of the tracking error is induced, but the strategy reacts
immediately by increasing slightly the step length (5 mm) and mostly by
increasing its pace (40 % faster). A step later, the system has completely
come back to the original 1 m.s−1 optimal walk, and falling has been avoided.

Note that there is a sudden rise of the tracking error at the first impact
time: the tracking may be flawed because ṗ1 6= 0, inducing a velocity q̇1d

which doesn’t follow the impact law (6), but it seems to be mostly flawed
because p1 6= 0.462, inducing a mismatch in the impact times because of the
interpolation realised in section 5.1.

5.3 Avoiding a hole

Consider again this walking system tracking perfectly the 1 m.s−1 optimal
walk (p1 = 0.462, ṗ2 = 1) when a sensor such as a vision sensor suddenly
detects, at the beginning of a step, that this step should be 10 cm longer in
order to avoid a hole (p1 should be 0.562).

One strategy could be to switch instantaneously the parameter p1 to the
required value, but because of the stiff transient behaviour of the trajectory
tracking that such a switch induces, subsequent adaptations of both p1 and
ṗ2 would be required to avoid to fall.

We will prefer therefore to stick to the proposition of section 3.2 of taking
care of the transient behaviour directly in the choice of the reference trajec-
tory: we will simply switch the reference value in (15) from 0.462 to 0.562,
and we can see on figure 7 that this induces a nice exponential convergence
of the step length, with virtually no tracking error. Once again, there is a
sudden rise of the tracking error at each impact time where p1 6= 0.462, but it
is because of the mismatch in the impact times induced by the interpolation
realised in section 5.1.

This example demonstrates the possibility to integrate to the proposed
control scheme a higher-level supervisor which would drive the choice of the
reference trajectory according to informations gathered on the environment
of the walking system.
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0 0.5 1 1.5 2 2.5
0

−0.1

0.8

0.002
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0.512

0.562

0
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p̈1 [m.s−2]

ṗ1 [m.s−1]

ṗ2

‖q1−q1d(p)‖ [rad]

p̈2 [s−1]

Figure 7: Position of the Center of Pressure within the limits of the foot on
the ground, variation of the walking parameters p1 and ṗ2 and tracking error
when a hole has to be avoided at the last moment.
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6 Conclusion

We have seen that the movements of walking systems and therefore their
capacity to avoid to fall are bound to the availability of contact forces. A
classical way to deal with these available contact forces is to track reference
trajectories that have been carefully designed to deal properly with them, but
this usually offers only a limited amount of stability: even small perturbations
of the tracking may lead to a fall.

Many propositions have been made then to improve this stability, all
heuristics that keep an eye on the available contact forces and either lower
the objectives of the trajectory tracking or adapt them when required. Our
proposition here is to always fully track a trajectory that has been designed
and fixed in advance, but to continuously adapt the choice of the reference
trajectory being tracked to the available contact forces.

This general heuristic should be widely applicable to different walking
systems, planar or three-dimensional, with any number of legs with or with-
out feet, but we have chosen for the sake of simplicity to show here how it
can be applied to a simple planar biped model, with very promising simula-
tion results. To apply this heuristic more generally should barely require a
basic tracking control law for the walking system being considered, dealing
for example with multiple support phases or under-actuation, and a set of
reference trajectories that follows the few rules described in section 3. All
this is already available for example for fully three-dimensionnal humanöıd
robots [5, 10].
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