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Abstract. The development process to achieve walking motion with a
recently constructed humanoid robot is discussed. The desired motion is
based on the solution of an optimal control problem whose constraints
depend upon the high-dimensional nonlinear multibody system dynam-
ics of the 17 DoF humanoid and physical contact constraints with the
environment. On-line control strategies are developed to track the pre-
calculated trajectories. Experimental walking results with the humanoid
robot are presented.

1 Introduction

Many efforts to achieve autonomous biped locomotion may be divided into two
main approaches: gait trajectories are computed online according to the ac-
tual intention and perception data of the robot [15, 17, 24, 26], or a large set of
trajectories is computed offline [1, 2, 11, 25] and the robot selects one of these
precalculated trajectories depending upon its situation [18].

Suitable gait trajectories for a biped robot are subject to numerous physi-
cal constraints, and the gait is additionally required to fulfill some “aesthetic”
criteria [12], e.g. smoothness, energy efficiency and effectiveness. Recursive op-
timization techniques provide a means for updating the gait trajectories in the
absence of a closed-form solution. Such computations are still difficult to execute



on-line with current computing capacity, though on-line finite horizon methods
are in development. This work, however, is based on the offline generation of
gait trajectories.

A precise modeling of the robot kinematics and dynamics is particularly cru-
cial for the development of dynamically stable trajectories. An accurate modeling
of legged locomotion systems must rely on high-dimensional nonlinear multi-
body system (MBS) dynamics subject to constraints. Additional complex tasks
include the generation, optimization and control of stable motions for such sys-
tems. High-level modeling and simulation tools can be vital in the development
of autonomous biped locomotion and can also assist in the selection and inte-
gration of hardware and software.

The intrinsic disadvantage of relying upon precalculated trajectories is the
difficulty of accomplishing alternative motions for which trajectories are not
available. Thus, another problem arises on how to modify trajectories such that
they can be applied to slightly different situations than they originally were
designed for, whereby the modification task must further take into account sta-
bility of locomotion. For this purpose, a method called Jacobi Compensation has
been developed which can make trajectory modifications producing changes in
the motion of certain parts of the body in a selected Cartesian direction.

Many efforts by other research groups related to the online modification of
precalculated trajectories have focused on ensuring gait stability by controlling
the Zero-Moment-Point (ZMP) [13] or adapting existing trajectories for walking
in the plane to walking on slopes [27]. Preliminary investigations towards an al-
ternative trajectory modification scheme are conducted in the experiments. The
adaptation method described here is, in principle, applicable to a wider range of
problems including gait stabilization, adaptation to slopes and compensation of
trajectory imperfections, though this has yet to be demonstrated.

For the organization of this article: Section 2 presents the kinematic pa-
rameters, inverse leg kinematics, and the dynamic parameters of the developed
humanoid prototype. An efficient dynamic modeling paradigm proposed in Sec-
tion 3 is the basis for a complete dynamic model used to obtain stride primitives
by numerical optimal control as discussed in Section 4. A method for online
modification of gait trajectories is introduced in Section 5. Experimental results
with a biped humanoid walking machine are presented in Section 6.

2 Kinematic Model

Fig. 1 displays a schematic of the current humanoid prototype (see Appendix A
and Figs. 7 and 9 for a picture of the real robot and for details of the hard-
ware (HW) and software (SW) system architecture. The humanoid construction
consists of 17 actuated joints:

– two legs each with 6 actuated joints
• hip with 3 DoF (Degrees of Freedom) rotating about x-, z- and y-axes
• knee with 1 DoF rotating about y-axis
• ankle with 2 DoF rotating about y- and x-axes



– waist with 1 actuated joint rotating about z-axis
– two shoulders each with 2 actuated joints rotating about y- and x-axes

The head is currently fixed to the body, though it is planned to equip the head
with 2 actuated joints (pan-tilt) and a CCD-camera.
The humanoid dynamic model consists of:

– 6 DoF describing a fictitious 3D rotation and translation joint between the
reference free-floating body (torso) and an inertial reference frame and

– 17 DoF for the existing internal joints.
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Fig. 1. Humanoid kinematic structure

A total of 23 position and 23 velocity states (q(t), q̇(t)) resulting in 46 first
order differential equations describe the system configuration.

q =


q1−3

q4−6

q7−12

q13−46

 =


Euler angles for system orientation
System linear translation vector

System angular and linear velocity vector
Legs, waist and shoulder angles and angle velocities


u =

[
u1−12

u13−17

]
=
[

Legs applied torques
Waist and shoulders joint applied torque

]
For the experiments reported in this paper, the waist and both shoulder joints

are held fixed, so the above state and control vectors simplify to q ∈ R36 and
u ∈ R12. Future experiments will integrate these joints to exploit the additional
DoF in order to further optimize the performance specifications (Sect. 4).

The humanoid robot is 80 cm tall and has a weight of about 12 kg without
batteries and mainboard. Its kinematic structure complies with the regulations



for the Humanoid League of RoboCup [20], an annual worldwide autonomous
robot soccer competition. Other kinematic design decisions take into account
dynamical aspects. For example, the hip flexion/extension joint performing most
of the work in the hip was placed last of the three hip joints. Thus, the needless
work of swinging the other two hip joints is saved. On the other hand, the flexion
ankle joint is placed higher than the abduction joint so that at collision of the
heel with the ground the impulsive force will disperse better throughout the
body rather than influence primarily only the ankle joints.

2.1 Inverse Kinematics

For the evaluation of the reduced dynamics presented in Sect. 3, the solution of
the inverse kinematics problem is required for a leg which may also be consid-
ered as a 6-link manipulator. It is well-known that an inverse kinematics solution
does not always exist for a 6-link manipulator, yet for this humanoid kinematic
structure a unique solution may be found. The problem is solved by first mod-
eling the three successive planar rotations (last hip joint, knee joint, first ankle
joint) as a single rotation. Then the inverse kinematics problem reduces to the
identification of four angles given the hip and ground contact positions. Taking
compositions of homogenous transformations with symbolic programming tools
produces equations from which the four joint angles may be solved. The remain-
ing joint angles are determined from the inverse kinematics solution of a planar
3-link manipulator [22]. The correct solution out of the finite number of possible
solutions is determined from considering the direction of knee rotation and rel-
ative lateral displacement of the foot with respect to the hip. The calculation of
the 6 joint angle velocities given the hip linear and angular velocities is a linear
problem for which standard methods may be used.

2.2 Dynamic Parameters

For dynamical calculations (Sect. 3), the humanoid model must include dynamic
parameters which are estimated based on its kinematic structure and mass mea-
surements. When striving for precise optimization results, it is important that
these estimated values be as exact as possible. The real humanoid is divided
into geometrical primitives (cylinder, ellipsoid, or box) which are then individ-
ually measured and weighed. One leg, for example, is divided into more than
20 units. Assuming a uniform mass density in object, the link inertias may be
approximated with the help of the parallel and perpendicular axis theorem.

3 Efficient Dynamic Modeling

Biped constructions generally consist of a minimum of five links with two to
six degrees of freedom per leg. Dynamical simplifications allow one to analyze
certain predominant behaviors of the dynamic system, but many other important
features are lost. A more complete dynamical system description contains more



significant dynamical effects yet a control solution for these models based on
an analytical approach is usually not possible and results must be sought for
numerically. The modeling and optimization approaches presented here are thus
strongly dependent upon numerical methods.

Various approaches exist for modeling the multibody system (MBS) dynam-
ics of a tree-structured legged robot subject to unilateral contact constraints, all
with quite different characteristics regarding efficiency and accuracy in simula-
tion and optimization. The selected MBS modeling and computational approach
relies upon the Articulated Body Algorithm (ABA) due to its superior modu-
larity and computational efficiency for high dimensional systems [3, 21]. These
methods belong to the class of numeric, recursive, O(N ) complexity methods,
where N is the number of links in the system, further demonstrate their superior
modularity and flexibility when parts of the kinematical structure or the kinet-
ical data have to be changed and refined as occurs frequently during the design
and operation cycle of a humanoid robot. It is also desirable to use the same dy-
namic modeling framework during the entire development and operation period
of a legged robot, e.g., for the selection of actuators using dynamic optimization
(Sect. A.1), and for the optimization of reference trajectories for dynamic walk-
ing (Sect. 4.2), for the calibration of model parameters by optimization, for the
model-based estimation of dynamic state variables, and for the future develop-
ment of nonlinear dynamic model-based controllers realizing dynamically stable
legged locomotion.

The basic equations of motion are those for a rigid, multibody system expe-
riencing contact forces

q̈ = M(q)−1
(
Bu− C(q, q̇)− G(q) + Jc(q)T f c

)
0 = gc(q)

(1)

where N equals the number of links in the system, m equals the number of ac-
tively controlled joints, M ∈ RN×N is the square, positive-definite mass-inertia
matrix, C ∈ RN contains the Coriolis and centrifugal forces, G ∈ RN the gravita-
tional forces, and u(t) ∈ Rm are the control input functions which are mapped
with the constant matrix B ∈ RN×m to the actively controlled joints. The ground
contact constraints gc ∈ Rnc represent holonomic constraints on the system
from which the constraint Jacobian may be obtained Jc = ∂gc

∂q ∈ Rnc×N , while
f c ∈ Rnc is the ground constraint force. q, q̇, and q̈ are the generalized position,
velocity and acceleration vectors respectively.

A property prevalent in legged machines is that their constrained contact
legs often have unique inverse kinematic solutions for their joint angles and an-
gle velocities. This lends itself to the use of reduced dynamics algorithms for
simulation and optimization. The projection of the dynamics (1) onto a reduced
set of independent states converts the differential-algebraic (DAE) contact sys-
tem (1) into a system of first order ordinary differential equations (ODEs) of
minimal size. Define the independent qI and dependent qD states as:

qI = global orientation, position; swing leg(s) states
qD = contact leg(s) states



from which qI = Zq, where Z is a constant mapping. The reduced dynamics

q̈I = ZM(q)−1
(
Bu− C(q, q̇)− G(q) + JT

c f c

)
. (2)

is computed using a recursive numerical multibody algorithm [10]. The second
time derivative of the contact constraints are then satisfied with the simulation
of this ODE.

3.1 Constraints

An important aspect of formulating a gait optimization problem is establishing
the many constraints on the problem. For a biped, the gait cycle consists of
several phases describing different contact situations and being separated by
events. The order of contact events is straightforward and depends primarily
upon the speed of locomotion. A summary of the physical modeling constraints
for a half-stride consisting of a single limb support phase (SLS) and a double
limb support phase (DLS) of a periodic gait cycle in 3-dimensions is [10]:

1. Magnitude constraints on states and controls:

Lq ≤ q ≤ Uq, Lu ≤ u ≤ Uu,

where L(.) and U(.) are constant vectors with length equal to the length of
their argument containing upper and lower bounds of their argument.

2. Boundary conditions at end of half-stride:
– symmetry resp. anti-symmetry of states q and contact forces fc:

rotational states, controls and contact forces are symmetric about inertial y-
axis and anti-symmetric about x- and z-axes, while linear states and contact
forces are symmetric about inertial x- and z-axes and anti-symmetric about
y-axis. qe

(.) and q0
(.) denote the value of state q(.) at final resp. initial time:

qe
1

qe
2

qe
3

qe
4

qe
5

qe
6

 =


−1

1 0
−1

1
0 −1

1




q0
1

q0
2

q0
3

q0
4

q0
5

q0
6

+


0
0
0

step
0
0

 and


qe
7

qe
8

qe
9

qe
10

qe
11

qe
12

 =


−1

1 0
−1

1
0 −1

1




q0
7

q0
8

q0
9

q0
10

q0
11

q0
12


Periodic constraints are also placed between the contact forces experienced
by the stance foot at the beginning of the SLS and from the foot about
to become the sole stance foot at the end of the DLS. These constraints
satisfy the same symmetric and anti-symmetric relationship as above. The
periodicity constraints for the leg’s 6-DoF are implicitly enforced through the
6-dimensional foot contact constraints, contact location and their periodicity
constraints.

– lift-off force:
the leg to lift off at the end of the half-stride is able to lift off from the ground
iff the vertical component of the contact force is zero at the foot’s center of



pressure. This point is in general unknown so that one must additionally
restrict the rotational contact forces about the ground planar axes to be
zero at some reference point underneath the foot at the end of the DLS.
Friction constraints simultaneously require that the remaining components
of the 6-dimensional contact force vector be zero,

f c,i = 06×1 where leg i is breaking its contact with the ground.

3. Constraints during whole half-stride:
The following constraints must hold for all times during SLS resp. DLS.

– stability:
ZMP lies in convex hull of contact points, i.e. distance from ZMP to convex
hull HULL of contact points is negative (for both SLS and DLS):

dist(ZMP,HULL) ≤ 0.

– swing foot orientation:
the swing foot rotational position must not divert too far from its starting
and ending configuration, i.e. norm of vector FO containing the Euler angles
of foot orientation received from a forward kinematics algorithm FK must
be smaller than a user given value Uorient (for SLS and the swing foot only):

FO = FK(q,u) and ‖FO‖ ≤ Uorient

– leg reach:
Working with a reduced dynamics model has the advantage of dealing with
an ODE dynamical model rather than with a DAE (differential-algebraic
set of equations) model. The disadvantage is that extra constraints must be
added to ensure that there exists a solution for the dependent states in the
model. In this case, the hip(s) connected to the leg(s) in contact with ground
must remain within a maximal distance from the contact point(s) i.e.

Phip = FK(q) and dist(Pcntct,Phip) ≤ lhip−leg

where Pcntct are the coordinates of the contact point(s) and FK is a forward
kinematics algorithm that computes the position of the hip Phip from the
states. This condition must hold for all legs in contact with the ground, that
is for one leg in SLS and for two legs in DLS, so that the inverse kinematics
solution for the leg has a well-defined solution.

– swing height:
the swing foot must move above a pre-defined tolerance zone above the
ground due to robustness concerns, i.e. the z position coordinate of the foot
tip qtip (calculated by forward kinematics FK) must be greater than, e.g., a
sine curve of pre-specified amplitude:

qtip,z = FK(q) and qtip,z ≥ Az sin
πt

t1
with t1 = duration of SLS.



– avoidance of slipping:
Ground contact forces lie within the friction cone and unilateral contact con-
straints are not violated [5, 19]. In the case of stationary flat foot contact,
the ground linear contact forces for foot j, F j = [Fj,x Fj,y Fj,z]T and rota-
tional contact forces T j = [Tj,x Tj,y Tj,z]T must satisfy (otherwise a slipping
contact state is entered)√

F 2
x + F 2

y ≤ µtFz and |Tz| ≤ µdFz

with friction coefficients µt, µd.
To prevent a foot lying flat on the ground from entering a rotational contact
state, the center of pressure must be constrained to lie underneath the foot
surface which may also be expressed in terms of the rotational contact force
vector T j = [Tj,x Tj,y Tj,z]T ,

|Tx| ≤ 0.5Fzly and |Ty| ≤ 0.5Fzlx ,

where lx and ly are the length and width of the foot respectively.
– positive contact forces:

all legs in contact with ground may only push to ground but may not pull
from ground, so the z-component of contact force of each leg in contact with
ground must be positive:

Fz ≥ 0.

4. Conditions at change of phase from SLS to DLS:
Here t− resp. t+ denotes time just before and just after a phase change.

– continuity of position, angle, and objective function states:

qi(t+) = qi(t−),

for all components qi of q related to positions or angles (see Section 2).
– discontinuity of velocity states:

the jump in the generalized system velocities due to an inelastic collision
with the ground are calculated using a collision dynamics algorithm [9]

CDA : (q̇) (t+) = CDA (q(t−)(t−), q̇(t−))

– foot placement and foot orientation:
As both feet are in contact with ground in the double limb support phase
and are stationary, foot placement and orientation must be considered at the
beginning and end of the SLS. A forward kinematics algorithm FK deter-
mines the foot position fp and orientation fo. Foot position must agree with
the unknown fixed parameters fpd in the optimization formulation while foot
orientation must be in-line with the inertial reference system in which case
its relative rotation matrix is the identity matrix I3:

(fp, fo) = FK (q(t−))) , fp = fpd and fo = I3



4 Gait Generation by Numerical Optimal Control

4.1 Measures for stable locomotion

The difficult task of maintaining stability of fast legged locomotion has been a
main obstacle in the construction of such systems. The notion of static stability,
often used to enforce postural stability, does not suffice for fast motion. Static
stability requires the ground projected center of mass (GCoM) to lie within
the support polygon, the convex hull about the leg’s contact points. This highly
conservative measure generally results in very slow legged motions. The notion
of dynamic stability is required for faster legged motion. A dynamically stable
gait is one without static stability that is sustainable indefinitely [7]; however, an
adequate measure suitable for gait generation and control design is not currently
available.

The Center-of-Pressure (CoP), equivalent to the Zero-Moment-Point (ZMP),
is a point on the ground where the net vertical ground reaction force acts. This
point has often been used in previous research efforts [14] to provide a dynamic
measure for postural stability by computing its distance to the support polygon
boundary. Instability occurs when the CoP reaches the boundary, then a change
in the system’s contact condition generally occurs, and the system will begin to
rotate about that edge. The CoP’s deficiency is that it always remains within
the contact polygon, even during periods of instability and does not provide
information as to neither the degree nor the direction of postural instability.

The Foot-Rotation-Indicator (FRI) [7], the point on the ground where the
net vertical contact force would have to act to keep the foot stationary, is more
informative than the CoP. It coincides with the CoP when under the foot’s
contact surface. When not under the surface, its location gives information about
the degree and direction of postural instability. When multiple feet are in contact,
individual foot instabilities are indicated by the FRI, though not by the system-
wide net CoP should they occur within the support polygon. In the moment a
foot’s FRI exits its ground contact surface, regardless of whether it continues in
the support polygon, the foot changes its contact condition and rotates about
that edge thus changing the system’s dynamic behavior.

The FRI is calculated as follows. It is assumed that contact forces fc cannot
be measured with sensors and must be deduced from a dynamic equilibrium
equation,

fc = −(JcM−1JT
c )−1QV̇c ,

where QV̇c represents the accelerations of the unconstrained system along the
constrained motion DoF at some reference point pr ∈ R3 on the foot’s contact
surface. In the case of flat foot contact, 6 motion DoF are constrained (3 linear
and 3 rotational) so that fc = [Nx Ny Nz Fx Fy Fz]T . The FRI point pf ∈ R3 is
the point where an equivalent force fc may be applied on the foot and for which
{Nx = 0, Ny = 0}. This can be calculated from the spatial transformation of a
force acting on a rigid body. Let pr = [pr,x pr,y 0]T .

pf = [pr,x −Ny/Fz pr,y + Nx/Fz 0]T . (3)



This point is calculated for each foot and constrained to lie inside the foot contact
surface during an optimization. Its distance to a central position may also be
minimized in the performance for optimal dynamic postural stability.

4.2 Optimization of stability and performance indices

Algebraic control strategies for legged systems cannot yet be constructed to han-
dle the high dimension and many modeling constraints present in the locomotion
problem. Heuristic control methods, on the other hand, tend to have poor per-
formance with respect to power efficiency and stability. The remaining proven
approach is the use of sophisticated numerical optimization schemes which can
incorporate the numerous modeling constraints to generate optimal trajectories.
The resulting trajectories may later be tracked or used to approximate a feedback
controller in the portion of state space of interest. We list here three performance
indices currently used in our humanoid gait generation investigations.

Postural Stability Performance: Distance in the ground plane between foot
i’s FRI point ipf and a central reference point under the foot ipr

Js1[q, q̇,u] =
∫ tf

0

∑
i

(
iN

2
x + iN

2
y

iF 2
z

)
dt (4)

where iN
2
x+iN

2
y

iF 2
z

= (ipf,x − ipr,x)2 + (ipf,y − ipr,y)2.
Energy Performance: In legged systems where a high torque is generated by

a large current in the motor, the primary form of energy loss is called the Joule
thermal loss [16]. The integral of this value over a gait period is

Je1[u] =
1
s

∫ tf

0

N∑
i=1

Ri

(
ui

GiKi

)2

dt (5)

where Ri, Gi, Ki, and ui are the armature resistance, gear ratio, torque factor,
and applied torque for link i respectively, while s is the step length or total
distance traveled over one stride.

Efficiency Performance: The specific resistance ε as used in [8] measures the
output power in relation to the mass moved and the velocity attained and is a
dimensionless quantity. It represents a normalized form of the required kinetic
energy

Je2[q̇,u] =
∫ tf

0

∑N
i=1 |uiq̇i|
mgv

, (6)

where mg is the weight of the system, q̇i is the joint i angle velocity and v is the
average forward velocity.

The availability of a fully validated dynamic model combined with optimiza-
tion tools permits one to make conclusive investigations into which stability or
efficiency measures are most effective, though no one measure is sufficient for gait
generation. The stability performance (4) cannot be used alone to verify or de-
sign a dynamically stable control strategy and must be combined with additional



dynamic system measures. Efficiency is secondary in importance to stability in
legged systems, but it can also have a strong influence in the successful design of
an autonomous biped. A challenge for systems with limited power supply is to
combine energy conserving motion with the robust stability properties discussed
previously.

Numerical optimization tools have advanced sufficiently [23] such that the
many modeling and stability constraints can be incorporated into the problem
formulation together with a relatively complete dynamical model so as to ob-
tain truly realistic energy-efficient, stable and fast motions. The optimization
approach is based on a discretization of the control problem in time using direct
collocation and its subsequent formulation as a nonlinear programming problem
(NLP) then solved with a sparse sequential quadratic programming algorithm [6].

The optimization of the stability or energy performance indices subject to the
first order form of the system dynamics ẋ = f(x,u, t), x = (qI , q̇I), qI and u
from Eq. (2), and constraints leads to optimal control problems. Their solution
delivers optimal open loop trajectories x∗(t), u∗(t), 0 ≤ t ≤ tf . The method
DIRCOL [23] uses the method of sparse direct collocation and approximates
the states x with spline functions and the controls u with linear functions on a
discrete and successively refined time grid. The method is equipped to handle
the complexities of the walking problem: unknown liftoff times, different ground
contact combinations for the legs, discontinuous states at collision times of the
legs with the ground, switching dynamics, and actuation limits.

4.3 Computation of humanoid reference trajectories

Fig. 2. GCoM and individual foot FRI trajectories during two steps of an optimized
statically stable walk.

Inverse kinematic algorithms that were developed for the humanoid prototype
in order to compute the reduced dynamics (2) also facilitated the generation



of heuristic joint angle and angle velocity reference trajectories satisfying the
physical modeling constraints (Sect. 3.1). The reference trajectories served as
start trajectories for the complex 3-dimensional humanoid gait optimization.

Several stages of gait optimizations were performed with varying complexity
until all physical and stability constraints were included in the 3-D optimizations.
An energy performance index was chosen (5) subject to the statically stable and
dynamic postural stability nonlinear constraints (Sect. 4.1). First investigations
using a dynamic model considering only the 12 joint DoF in the legs were made
using statically stable gaits, walking on flat feet, with one swing phase com-
posing 80–85% of the gait period and a double contact phase composing the
remainder of the gait period. This conservative gait was chosen to facilitate
first experiments with the humanoid robot prototype. Thus a 25-dimensional
ODE (including the objective) has been optimized subject to numerous explicit
and implicit nonlinear boundary constraints and nonlinear inequality constraints
(Sect. 3.1). An optimization using 44 time grid points required 1584 NLP vari-
ables (Sect. 4.2) with 1079 nonlinear equality constraints and 220 nonlinear
inequality constraints. The necessary run-time after two automatic grid refine-
ments using a reasonable starting solution was 1418 seconds on a Pentium III,
1150 MHz. The GCoM and individual foot FRI trajectories from the optimal
gait are displayed in Fig. 2. Note that the system remains statically stable and
that the FRI points remain centered about the middle of their respective foot
contact surfaces.

5 Online Compensation

When precalculated optimal control trajectories are applied in practice there
usually occur some deviations of stability criteria or constraints due to modeling
errors, link flexibilities, gear loss, backlash, joint control errors, and external
disturbance forces acting on the robot from the environment. These may result
in a degraded walking performance. Commonly, a sensor-based control strategy
has to be applied to cope with such deviations.

In this section a method termed Jacobi Compensation is proposed [28], which
modifies precalculated trajectories in selected task coordinate directions in order
to reduce stability criteria deviation and thereby improve walking performance.
Task coordinates can be selected Cartesian directions of e.g. the hip coordinate
or other task-dependent criteria such as the projected CoM, etc.

The goal of the method is to move a specific set of coordinates pc ∈ Rmc

of points on the humanoid, e.g. the center of the hips or an ankle, in the di-
rection ∆pc in Cartesian space to reduce deviations. The joint angles qt, e.g.
obtained from a precalculated trajectory, are modified by ∆q = h(∆pc), where
h(·) transforms the Cartesian motion ∆pc into a joint space motion ∆q. As
shown in Fig. 3, this correction ∆q is linearily superimposed with the joint
configuration qt resulting in a new posture qd = qt + ∆q of the robot.
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Fig. 3. Jacobi Compensation: The precalculated trajectory is modified so that the
motion of one part of the body is increased in direction pc.

The relationship between Cartesian motion and joint space motion is de-
scribed by the Jacobian

J(qa) =
[

∂pc
∂qa1

· · · ∂pc
∂qaN

]
∈ Rmc×N ,

a function of the actual joint angles qa ∈ RN which maps the velocity q̇c in
joint space to the velocity ṗc ∈ Rm

c in Cartesian space according to

ṗc = J(qa) q̇c. (7)

To invert this relationship the pseudoinverse J# := JT (JJT )−1 minimizing
the Euclidian norm ||q̇c||2 is used to obtain the joint motion; here, mc < N is
assumed for existence of a solution, i.e. the motion modification is along less
task coordinates pc than degrees-of-freedom N of the system. The velocity for
correction of deviations is the obtained as

q̇c = J#(qa) ṗc , (8)

which is integrated to obtain the position modification ∆q in joint space. Su-
perimposing it with the precalculated trajectory qt allows one to adapt the
trajectory to the actual requirements, cf. Fig. 3.

Depending on the control problem there exist a variety of possibilities to
compute the correction velocity ṗc. For the experiments described in Sect. 6, the
velocity has been chosen proportional to the control error ṗc = K ∆pc of the
task coordinates, where K is a positive definite (und usually diagonal) matrix.

Applications of this method are plentiful: In the experiments in Sect. 6 the
method has been used to alter the posture of the robot and thus modify pre-
calculated trajectories to improve walking stability and performance. Other ap-
plications include the possibility to adapt precalculated gait trajectories to fit
for walking on slopes. If the robot walks up a slope, the center of mass can be
slightly shifted to the front by Jacobi Compensation. Apart from that modifi-
cation the trajectories can remain unchanged, hence less trajectories in a step
data base need to be precalculated in advance.

6 Experimental Results

In the following, results of three experiments are described: In the first exper-
iment, the trajectories generated according to Sect. 4.3 are scaled in duration



and applied to the humanoid without further modification as reference trajecto-
ries to local joint PD position controllers. The resulting walking performance is
sometimes not stable. To improve the precalculated trajectories the Jacobi com-
pensation method presented in Sect. 5 is used to modify certain cartesian task
coordinate points of the robot in the second experiment. The last experiment
shows walking performance with completely unmodified trajectories.

6.1 Trajectory Following Using Slow Trajectories

The precalculated trajectories obtained by the algorithms discussed in Sect. 4.3
are scaled in time by a factor of 20 for debugging purposes. Those prolonged
trajectories are applied to the humanoid as reference trajectories to joint level
PD position controllers. Fig. 4 shows the measured data of the left knee. Since
the knee joint supports a significant part of the robot total weight, the load in
the other joints is similar or less than the knee load.
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Fig. 4. First experiments with trajectory following control (knee joint of left leg).

From Fig. 4(a) one can see, that the error of the commanded joint trajec-
tory (dashed) and the measured position (solid) is quite small and does not
exceed 0.025 rad for a complete stride. This validates the performance of the PD
joint position control with a sampling rate of 250 Hz, see Appendix A for more
implementation details. The corresponding motor current (solid) and PWM ra-
tio (dashed) are shown in Fig. 4(b). This plot similarly displays that the knee
joint of the robot operates well below its limits with currents of 3A (below the
maximum H-bridge amplifier current of 4A) and the PWM ratio always less
than 50%. Another insight from this result is that the commanded PWM ra-
tio is roughly proportional to the current in the motors, which indicates that in
principle torque command control is realizable with the given hardware architec-
ture. The quality of the (unfiltered) current measurement is promising for future
application of to be developed external disturbance force estimation algorithms.



Despite small errors in trajectory following in joint space, the robot gait was
slightly tottering. One cause may be attributed to unmodeled backlash in the
gears and other effects such as link flexibilities. Furthermore by stretching the
time scale of the stride for debugging reasons, dynamic effects incorporated in
the gait planning were reduced. In an attempt to alleviate the errors in the
torso inertial reference trajectory, a teach-in Jacobi Compensation (cf. Sect. 5)
strategy has been applied as follows.

6.2 Jacobi Compensation on Slow Trajectories

In experiments with precalculated trajectories it turned out that the CoM is not
shifted sufficiently far over the supporting leg.

To improve stability of the gait Jacobi compensation has been applied. The
desired ∆pc has been trained in a teach-in cycle. The precalculated trajectory is
stopped every 2 s and the operator modifies ∆pc or directly at the joint level a
∆q to achieve a statically stable trajectory point by keyboard commands. These
trained modifications of the precalculated trajectory are then linearly interpo-
lated and superimposed with qt during normal operation. The improvement of
walking behavior, in particular stability, is significant as a result from this man-
ual teach-in compensation method.

Fig. 5(a) again shows the desired and the measured trajectory of the left knee.
As the robot now has to support its complete weight by the knee, the control
error is higher than before; the maximum error is 0.042 rad. From Fig. 5(b) one
can see, that the joint has reached its maximum load capabilites as the motor
current saturates and the PWM ratio is close to 100%. This is not surprising,
as the robot has been designed for fast locomotion where the required motor
torque is smaller than the torque necessary for statically balancing on one leg.
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Fig. 5. Trajectory following with manually modified trajectories (knee joint of left leg).

The effect of the compensation is shown in Fig. 6(a) where the target tra-
jectory and the modified trajectories of the left ankle joint are presented. The



compensation mainly affects the support phase, where the robot has to be bal-
anced on the left leg and hence small errors in the joint angle degrade static
stability. Fig. 7 shows snapshots of some stages in a walking sequence.
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Fig. 6. Experimental result with teach-in compensation: (a) knee joint of left leg; (b)
compensation trajectory ∆q3 for knee joint.

The success of this experiment demonstrating the applicability of Jacobi
Compensation is regarded a first step towards sensor based stability control.
In the following, walking performance with an unmodified trajectory with a
duration of 6 s computed as discussed in Sect. 4.3 is described.

6.3 Trajectory Following Using Fast Optimal Control Trajectory

The result of conducting the same experiment as in Sect. 6.1 with a faster, un-
scaled trajectory is shown in Fig. 8. In this experiment, two strides are performed,
where each stride consists of a single-support phase and a double support phase,
each taking 3 s, see Fig. 8a. Although the absolute error in the knee joint is
0.06 rad and hence slightly higher than in the case of the slow trajectory, the
average load on the joints is less when compared to the slow trajectory shown
in Fig. 5. This shows that the robot dynamics have successfully been exploited
in the gait generation process.

7 Conclusions

This paper presents the control development procedure to accomplish stable
walking in a humanoid robot. A key fundamental element is the approxima-
tion of an accurate dynamic model for the robot. Gait trajectory generation is
achieved by numerically solving an optimal control problem subject to numerous
physical and non-physical constraints. The cost function for the optimization is a
weighted combination of several objectives penalizing high energy consumption
and postural instabilities. The optimal gait trajectories are consequently tested



Fig. 7. Snapshots of a step sequence.
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Fig. 8. Double stride, duration per stride 6 s.



on the developed humanoid robot prototype hardware in experiments. A gait
trajectory modification strategy is used on-line to robustify the calculated ref-
erence trajectories and is a first step towards sensor based stability control. The
experiments point out the importance of exact modeling as the system stability
while following generated trajectories increases significantly with the quality of
the model. Although very accurate trajectories cannot replace online stability
control, it can significantly reduce the amount of corrective control effort allow-
ing the system to operate closer to calculated optimal performance levels. Future
development will aim towards more accurate modeling and faster gait trajecto-
ries. Furthermore, sensor-based control using accelerometers, gyroscopes, and an
inclination sensor as well as foot contact force sensors will be used to improve
the walking performance with respect to stability and increased speed of the
robot.
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A Hard- and Software System Architecture

This appendix discusses the hardware realization of the 17 DoF humanoid robot
prototype hardware, the control, computing and software environment used to
control the robot.

A.1 Hardware Design and Software Environment

For simplicity of design, one important aim was to assemble the robot from as
many identical modules as possible. Therefore all joints are variations of an el-
ementary joint: The shaft of the motor-gear-unit is fixed to an L-shaped base
plate. Attached to the axis of the motor is a lever arm whose far end is con-
nected to the base plate of the next joint. Though this lightweight construction
spares additional bearings the motor axis is still sufficiently stable to support
the exerted load. For the links between the motors ordinary steel with a rectan-
gular profile of 3×15 mm2 is used. This slightly flexible construction was chosen
to incorporate an additional mechanical shock absorption mechanism damping
the impact of the feet hitting the ground. Joints requiring more than one DoF,
like the ankle or the hip, are realized by two or more sequential motors with
orthogonally oriented axes of rotation, see Fig. 9.

The mechanical robot construction arising from linking these elementary
modules is shown in Fig. 9. The robot carries 3 batteries as power supply, two



of them visible on the picture at the height of the hips and below the navel
joint. The third battery is located symmetrically behind the hips together with
an ATX power supply for the main PC mounted on the upper body. The chosen
Sony BP-L90A batteries provide a capacity of 90Wh each, hence allowing for
approximately 45 min autonomous walking.

The motors are chosen in consideration of the best use of power supply and
weight of the necessary batteries and the remaining robot to gain the optimal
torque for the proposed tasks. By optimizing under these constraints motors
with 20 W and 42 V have been chosen [11].
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Fig. 9. Mechanical realization of the robot (left) and left leg rear view (right).

The motors are accessed using the microcontroller board shown in Fig. 9
which was developed at the Control Systems Group in Berlin [4]. The core of
the board is a Motorola MC68HC908BD48 8 bit microcontroller including: 3 USB
endpoints, a 6 channel A/D converter and a 16 channel pulse-width modulator
(PWM). These PWM signals are amplified by a National LMD18200 mosfet
H-bridge, hence a motor load of up to 3 A at 55V is admissible. The actual
position of a motor is determined by evaluating the signals of pulse encoders
attached to each motor using US Digital LS7266 quadrature decoders. To each
board weighing 170 g, 4 motors can be connected. Hence this board represents
a lightweight motion control solution.

With these components position PD control loops are implemented on the
microcontroller. The A/D converters on the microcontroller are wired to sense



the motor current which also allows to drive the motors with current control.
These motion control boards are linked with the main PC on the robot via an
USB connection. Through this link, new control inputs are delivered to the board
retrieving the measured values at the same transfer stage.

For a main computer carried along by the robot a fullsize ATX mainboard is
used. Being similar in weight compared to most full sized single board computers
with equivalent computational power, a fullsize computer can be tolerated. The
PC is equipped with an Athlon 1300MHz CPU providing enough computational
power for motion control and additional tasks such as object recognition using
a camera system.

To obtain a graphical interface to the robot and the motion control boards,
a Matlab S-function has been implemented allowing to drive the robot from
within the Simulink simulation environment. Experiments showed, that this
rapid prototyping environment handles well the soft realtime constraints for the
outer control loop without the need for a hard realtime environment. This may
be attributable to the efficient task scheduling capabilities of the Linux kernel.
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