Motion Planning for Kinematic Stratified Systems with Application to Quasi—Static
Legged Locomotion and Finger Gaiting

Bill Goodwine
Aerospace and Mechanical Engineering
University of Notre Dame
Notre Dame, Indiana 46556
goodwine@controls.ame.nd.edu

Abstract: We present a general motion planning algo-
rithm for robotic systems with a “stratified” configuration
space. Such systems include quasi-static legged robots and
kinematic models of object manipulation by finger reposi-
tioning. QOur method is an extension of a nonlinear mo-
tion planning algorithm for smooth systems to the strati-
fied case, where the relevant dynamics are not smooth. The
method does not depend upon the number of legs or fingers;
furthermore, it is not based on foot placement or finger
placement concepts. Examples demonstrate the method.

I. INTRODUCTION

HIS paper considers the motion planning problem for

systems whose governing physics impose a “stratified”
structure on the system’s configuration space. A more for-
mal notion of a stratified configuration space is presented
in Section III. Stratification naturally arises in the context
of legged locomotion and object manipulation via finger
repositioning. These operations are characterized in part
by the system making and breaking contact with its en-
vironment. The configuration spaces (or c-space) of these
systems are “stratified” into subsets that correspond to dif-
ferent contact states. The governing dynamical equations
depend upon the contact state, and are discontinuous dur-
ing the making and breaking of contact.

The goal of our motion planning scheme is to determine
the control inputs (e.g., mechanism joint variable trajec-
tories) which will steer the walking robot from a starting
configuration to a desired final configuration, or to manip-
ulate the grasped object from an initial to a final configu-
ration via a combination of finger repositioning and finger
motions. The planner must simultaneously plan the mech-
anism’s motion during a single contact state, as well as de-
termine when to change contact states. This paper presents
a general motion planning methodology for this class of sys-
tems, which includes all quasi-static legged locomotors and
many kinematic models of multi-fingered hand manipula-
tion. The method is independent of the number of legs (or
fingers) and many other aspects of a robot’s morphology. In
the legged locomotion context, it is distinct from previous
planning methods in that it is not based on foot placement
concepts, and therefore the computationally burdensome
calculation of foot placement can be avoided. Instead, our
approach focuses on control inputs.

As a concrete example of when such a planner is needed,
consider the six—legged hexapod in Fig. 1 (this model will
be fully explored in Section V). Each leg has only two de-
grees of freedom—the robot can only lift its legs up and
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Fig. 1. (a) Schematic of simple hexapod robot; (b) Definition of
kinematic variables.

down and move them forward and backward. Conven-
tional hexapods are designed with three independent de-
grees of freedom per leg. The limited control authority in
this design may be desirable in practical situations because
it decreases the mechanical complexity of the robot. This
leg geometry can also probably be implemented at very
small size scales using MEMS technology. However, such
decreased kinematic complexity comes at the cost of requir-
ing more sophisticated control and motion planning theory.
Note that for this model, it is not immediately clear if the
robot can move “sideways.”

The issue of this mechanism’s ability to move sideways
is the controllability problem. Previous work by the au-
thors has considered controllability tests for stratified sys-
tems. We assume throughout this paper that a given sys-
tem is gait controllable in the stratified sense as defined
in Refs. [1], [2]. Otherwise, it is not necessarily possible
to determine a set of system inputs which steer the robot
to the desired final configuration. Given the assumption of
controllability, this paper addresses how to plan the robot’s
leg (or finger) movements so that it can approximately fol-
low a given trajectory. A conventional “foot-placement”
approach, where the foot can be placed as necessary to im-
plement vehicle motion will clearly not work for the hexa-
pod of Fig. 1, because sideways leg placement is impossible.



Our approach is an extension of the method by Laffer-
riere and Sussmann [3] for motion planning for a class of
nonlinear kinematic systems whose equations of motion are
smooth. However, since legged robots (and grasping hands)
intermittently make and break contact, their equations of
motion are not smooth. Hence, the method of Ref. [3] can
not be directly applied. Section IIT introduces the notion of
a stratified configuration space, which is decomposed into
various subspaces (or strata) depending upon which com-
bination of feet are in contact with the ground. We ex-
tend the approach of Ref. [3] by using the stratified c-space
structure in a novel way. It is likely that other methods for
steering smooth systems (such as Ref. [{]) can be similarly
extended by adopting our framework. A main contribution
of this work is the introduction of a geometric framework
that supports the extension of prior nonholonomic motion
planning techniques to this class of systems.

Our approach is general and thus works independently of
the number of legs (fingers). It may be true that for a given
quasi-static legged robot, one could develop a specific mo-
tion planner that would perform as well, or possibly better,
than the technique described in this paper. The key ad-
vantage of this approach is its generality. It is particularly
well suited to the task of quickly designing a planner dur-
ing the preliminary stages of legged robot system design.
While the techniques outlined in this paper are applicable
to both locomotion and a class of hand manipulation prob-
lems, the bulk of the paper will focus on locomotion, with
the application to hand manipulation briefly sketched at
the end of the paper.

There is a wvast literature on the analysis and control of
legged robotic locomotion. Prior efforts have typically fo-
cused either on a particular morphology (e.g. biped [5],
quadruped [6], [7], or hexaped [8]) or a particular locomo-
tion assumption (e.g. quasi-static [8] or hopping [9]). Less
effort has been devoted to uncovering principles that span
all morphologies and assumptions. Some general results
do exist. For example, the bifurcation analysis in Ref. [10],
many optimal control results such as those in Ref. [11] and
the fundamental conservation of momentum and energy re-
sults that underlie Raibert’s hopping results [9] have gen-
eral applicability. However, none of these methods directly
use the inherent geometry of stratified configuration spaces
to formulate results which span morphologies and assump-
tions. Our work makes a novel connection with recent ad-
vances in nonlinear geometric control theory. We believe
that this connection is a useful and necessary step towards
establishing a solid basis for locomotion engineering.

In contrast to robotic legged locomotion, many results
in robotic grasping and manipulation are formulated in a
manner that is independent of the morphology of the grip-
per, [12]. Vast efforts have been directed toward the analy-
sis of grasp stability and force closure [13], [14], [15], motion
planning assuming continuous contact [16], [17], [18] and
haptic interfaces and other sensing [19], [20], [21]. Finger
gaiting, where fingers make and break contact with the ob-
ject has been less extensively considered. Finger gaiting has
been implemented in certain instances [22], [23], [24] and

also partially considered theoretically [25], [26], [27]. Per-
haps the approach which most closely mirrors that of the
subject of this proposal is in [12] where notions of control-
lability and observability from “standard” control theory
are applied to grasping (however, these results are limited
to the linear case and do not allow for fingers to intermit-
tently contact the object). When applied to manipulation,
our method can seemlessly integrate point contact finger
repositioning, and is the first algorithm to do so with this
amount of generality. Extending this method to include
rolling contact manipulation is feasible, though nontrivial.
This extension will be the subject of a future publication.

To make the paper self-contained, Section II presents
some basic nonlinear control concepts and provides a brief
overview of the motion planning method of Ref. [3] (due to
space limitations, a comprehensive summary is, unfortu-
nately, not possible). Section III introduces our notion of a
stratified c-space. Section IV presents our algorithm in the
context of quasi-static legged locomotion, while Section V
applies this algorithm to the system of Fig. 1. Section VI
sketches the application of these ideas to multi-fingered
hand manipulation, and presents an example.

II. BACKGROUND

We assume the reader is familiar with the basic notation
and formalism of differential geometry and nonlinear con-
trol theory, as in Ref. [28]. The following definitions and
classical theorems are reviewed so that the starting point
of our development will be clear.

The equations of motion for smooth kinematic nonholo-
nomic systems take the form of a driftless nonlinear affine
control system evolving on a configuration manifold, M:

(1)

Since we restrict our analysis to quasi-static locomotion
and kinematic models of multi-fingered manipulation, the
governing equations of motion will piecewise take the form
of Eq. (1) on each strata. Recall that the Lie bracket be-
tween two control vector fields, gi(z) and go(z), is com-
puted as

=g (@)ur + -+ gm(@)un € M.

0g2(z)

[91(z), g2(x)] = o _ Ogi(x)

o g92()

g1(z)

and can be interpreted as the leading order term that re-
sults from the sequence of flows
977 0 677 0 67 0 ¢ (1) = 95" (@) + O(®),  (2)
where ¢9'(z) represents the solution of the differential
equation & = g;(z) at time e starting from z;.
The reults from [3] are formulated primarily by way of
formal computations. For example, the flow along the vec-

tor field g; can be considered by its formal exponential of
gi, denoted by

t2

O () 1= €% (2) = (T + tg; +

.
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where terms of the form g¥ are partial differential operators
(not vector fields) and Lie brackets are represented by com-
mutation: [g1,g92] = 9192 — ¢g291. In order to use Eq. (3),
composition must be from left to right, as opposed to right
to left for flows, e.g., @2 0gf! = e91"1e92"2 where both sides
of this equation mean “flow along g; for time ¢; and then
flow along g» for time t5.” A rigorous justification for the
use of such a formal representation is somewhat lengthy
and can be found in [3], [29]. Essentially, the approach in
[3] is to represent vector fields with “indeterminates,” for
which expansions of the form of Eq. 3 can be justified. The
relationship between the flow along vector fields sequen-
tially is given by the Campbell-Baker—-Hausdorff formula
[30].

Theorem 1: Given two smooth vector fields gq, g2 the
composition of their exponentials is given by

e91e92 — po1+92+35191,92]+ 15 ([91,[91,9211[92,[g1,92]]) - (4)

where the remaining terms may be found by equating terms
in the (non-commutative) formal power series on the right—
and left-hand sides.

A. Trajectory Generation for Smooth Systems

A nonholonomic control system typically does not have
enough controls to directly drive the system along a given
trajectory, i.e., the number m in Eq. (1) is less than the
c-space dimension. In the method of Ref. [3], this deficit
is managed by using an “extended system,” where “ficti-
tious controls,” corresponding to higher order Lie bracket
motions, are added. If enough Lie brackets are added to
the system to span all possible motion directions (which
is possible if the system is locally controllable), then the
motion planning problem becomes trivial for the extended
system.

The extended system is constructed by adding Lie brack-
ets to the original system from Eq. (1),

T =0b1v1 + -+ bV + bpp1Um1 + -+ + bsvs (5)

where b; = g; for e = 1,...,m, and the by,11,...,bs corre-
spond to higher order Lie brackets of the g;, chosen so that
dim(span{b; (x),...,bs(x)}) = dim(TxM) at each z € M.
The v;’s where i > m are called fictitious inputs since they
do not correspond with any actual system inputs. A techni-
cal requirement is that the higher order Lie brackets must
belong to the Philip Hall basis (see Refs. [31], [32] for a
definition) for the Lie algebra of vector fields on M.

The control inputs v; which steer the extended system
can be found as follows. If it is desired to start at the point
p and finish at the point g, define a curve v(t), ¢ € [0,1]
connecting p and ¢ and solve

F(t) = bi(y(B)vr + - - + bs(y(£))vs (6)

for the fictitious controls v;. This will simply involve in-
verting a square matrix or determining a pseudo-inverse,
depending on whether or not there are more b;’s than the
dimension of the configuration space, i.e., whether s > m.

A basic fact from differential geometry is that all flows
of Eq. (1) can be represented in the (formal) form

S(t) — ehs(t)bsehsfl(t)bsfl - eh2(t)b2eh1(t)b1 (7)
for some functions hq, hs, ..., hs, called the backward Philip
Hall coordinates. Furthermore, as shown in Ref. [3], S(t)
satisfies the formal differential equation

S(t) = S(t)(brvy + -+ -+ bsvs);  S(0) = 1. (8)

If we define the adjoint mapping
Adynn by = e MiPib bt

then it is straight—forward to show that

Ad, by o—hi1bio1 bjhj = (Z pj,k(h)bk> flj, 9)
k=1

for some polynomials pj(h). (For a complete derivation,
see Ref. [32]). Equating coefficients of the b; in Eq. (8)
with the derivative of Eq. (7), and using Eq. (9), yields
differential equations having the form

h=A(h)v  h(0)=0. (10)
These equations specify the evolution of the backward
Philip Hall coordinates in response to the fictitious inputs,
which were found via Eq. (6).

Ezxample 1: Here we present a simple example illustrat-
ing the computation of the Philip Hall coordinates. More
complicated examples are presented in detail in Ref. [32].
Consider a two input system on a three dimensional con-
figuration manifold:

& = g1(z)ur + g2(x)us.

Assume that the set {g1,92,[91, 92|} spans T, M at all z €
M. The extended system is

T = bl(l’)Ul + bg(l’)vg + b3(£L’)U3,

where
by = g1
by = go
bs = [91,92].

The formal differential equation is
S(t) = S(t)(brv1 + bavy + bsws), (11)
and the formal exponential is
S(t) = ehs (s gha(B)b2 gha(B)bs

Differentiating the formal exponential yields:

Sy =
+ eh3(t)b3 eh2(t)b2 h2 (t)bzehl(t)bl

eh3(t)b3 h3 (t)bgehz(t)bz ehl (t)bl

+ eh3(t)b3 eh2(t)b2€h1 ®)b hl (t)bl ’



rearranging gives:

Sty = S(b) (e—h1(t)b1e—h2(t)b2h3(t)b3eh2(t)bzeh1(t)b1)
S(#) (7P iy ()be™ O )
+  S(t)hi(t)by,

and using the adjoint notation:

S(t) = S(t) (Adg—notbs g—n10rmy iL3(t)b3

+ Ade—hl(t)bl hQ(t)bQ + hl (t)bl) R (12)

which is in the form of Eq. (8).

Expanding the formal exponentials to secord order ac-
cording to Eq. (3) gives the following coefficients for each
hi(t) in the preceding equation:

iLl (t) : b1
R (t) by — hi(t)(biby — baby) = by — hy(t)bs
iL3 (t) H b3.

In particular, the coefficient of h2(t) is computed as follows
(terms higher than second order are dropped):

Ad—ny (1yby ha(t)b2

(1 — hi(t)b1 + %h%(t)b%) fua (t)ba (1 +hi(t)br + %h%(t)b%)

= (b2 — h1(t)bibs) (I +h1(t)br + %h%(t)b%) ha(t)
= (by + hi(t)bab1 — hi()biba) ha(t)

= (b — ha(8)[b1,b2]) ha(t)

= (b — ha(t)b3) ha(t).

Equating the coefficients of the b;’s in Eq. 12 and Eq. (11)
(using the preceding computations)

iLl (t) = 1
B (t
hs(t)

~—

U2
h1 (t)U2 + vs3.

Solving these differential equations for the h; provides the
amount of time the system must flow along each of the
extended system basis vector fields in Equation 7. |

Next one must determine the actual inputs using the
Philip Hall coordinates. For systems with extended sys-
tems only including Lie brackets up to second order, this
is a straight-forward procedure. Having determined the
Philip Hall coordinates from Eq. 10, the flow for the system
is of the form of Eq. 7, where the Philip Hall coordinates,
h;i(t) are now known. Therefore, the final position of the
system is given by

S(1) = ehe(Dbsghe—1(Dbay | gha(1)ba gha (1)br
(recall that for the formal representation,

tion is from left to right ).
ehe(Ube ghama(Dbams

composi-
Since the exponentials
,elm 1 (Mbmit are second order Lie

brackets, each of the individual flows starting from the left-
most exponential can be simply represented by a sequence
of four piece-wise constant inputs as indicated in Eq. 2.
The exponentials e/tm(Dbm ehm—1(Dbm—1 —ohi(1)b1 iy
ply represent concatentated flows directly along each of the
control vector fields ¢ (), g2(x), . .., gm(x), these flows are
accomplished by letting the corresponding input be “on”
(i.e., u; = 1) for the corresponding time represented by
hi(1).

We only provide detailed computations for systems of de-
gree two since, in practice physical systems that require Lie
bracket motions of order greater than two may be incon-
venient to control since many motions are needed to effect

even a small motion in a higher-order Lie bracket direction.
Ezample 2: Returning to the previous example, since
hi(t), i = 1,2,3 are known, the final sequence of flows
is given by
u1(v/ha(1)) o ua(v/ha(1)) o —ui(

h3(1)) o —uz(+/h3(1))

Lie bracket bg = [g1, g2] approximation

followed by
uz(h2(1)) o ui(ha(1)),

where the notation u;(t) means that u; = 1 for time ¢

ift > 0oru = —1 for time || if ¢ < 0 and o means
concatenation, i.e., u1 (t) o uz(t) means that the flow for us
follows the flow for w;. O

For systems with Lie brackets of order greater than two
in the extended system, the procedure involves some ad-
ditional steps to which we direct the interested reader to
Refs. [3], [29]. In particular, for higher order systems, it
is easier to determine the real inputs using the “forward”
rather than backward Philip Hall coordinates. The trans-
formation from the backward to forward coordinates is an
algebraic transformation (see [3]). Additionally, since the
piece-wise approximation to the flow along Lie bracket is
only approximate, relatively straight-forward corrections to
this must be computed when determining a piece-wise ap-
proximation to flows along vector fields of degree greater
than two.

If the system is nilpotent!, this method exactly steers
the system to the desired final state; otherwise, the system
is steered to a point that is, at worst, half the distance
to the desired state [3]. The algorithm can be iterated
to generate arbitrary precision. This iterated method also
includes the notion of a “critical” step length. Ref. [3]
estimates the critical step length bound, and shows via
simulations that the actual critical length is typically larger
than the estimated bound.

III. STRATIFIED CONFIGURATION SPACES

The method reviewed in Section II-A can not be directly
used for legged or multi-fingered robots because their gov-
erning equations of motion are not smooth. To adapt this

LA system of the form Eq. (1) is said to be nilpotent of order k
if all the Lie brackets between control vector fields of order greater
than k are 0.



method (and similar nonholonomic motion planning meth-
ods) to these systems, we use the notion of a stratified con-
figuration space. While the stratified concept is equally
applicable to locomotion and multi-fingered manipulation,
the language of locomotion is used below for simplicity.

Let Sp denote a robot’s configuration manifold, which
describes the robot’s position and orientation as well as
all of the mechanism’s joint variables. The robot’s possi-
ble configurations will be subjected to constraints if one or
more of its feet (fingers) are in contact with the ground
(object). The set of configurations corresponding to one
contact is generically a codimension one submanifold of
Sop. Let S; C Sp denote the codimension one submanifold
of Sy that corresponds to all configurations where only the
ith foot contacts the terrain. That the {S;} are subman-
ifolds can be demonstrated by noting that set of points
corresponding to ground contact can be described by the
preimage of a function describing the foot’s height. We
generally assume that S;, is, at least locally, defined by a
level set of a function ®;(x) : Sy — R. For legged robotic
locomotion systems, these functions, ®; are naturally de-
fined by the height of the robot’s foot off of the ground so
that the level sets ®; *(0) are of interest.

When both the it* and jt* feet are on the ground, the
corresponding set of states is a codimension 2 submani-
fold of Sy that is formed by the intersection of the two
single contact submanifolds. Denote, the intersection of
S; and Sj, by Sij = S; NSj. The structure of the con-
figuration manifold for a biped is abstractly illustrated in
Fig. 2. For systems with larger numbers of legs (fingers),
further intersections, corresponding to more complicated
contact states, can be similarly defined in a recursive fash-
ion: Sijx = S;NS; NSy = 85; N Sk, etc. Denote an ar-
bitrary intersection set (or “stratum”) by Sr = Si iy,
I = {iyis---i,}, and assume that Sy is a regular subman-
ifold of Sp. This is generically true for rigid body mecha-
nisms. If the strata S;,,Si,,-..,S;, are locally described
by the functions ®;,,®;,,...,P;,, then S will be a sub-
manifold of Sy if the functions ®;,,®;,,...,®;, are func-
tionally independent. If the functions ®; correspond to
foot heights, this functional independence will be satisfied
for legged robots.

We say that the robot c-space is stratified > and call each
of the submanifolds St a stratum. The highest codimension
stratum containing the point z is called the bottom stratum,
and any other submanifolds containing 2 are called higher
strata. When making comparisons among different strata,
we will refer to higher codimension (i.e. lower dimensional)
strata as lower strata, and lower codimension (i.e. higher
dimensional) strata as higher strata.

Whenever an additional foot contacts the ground, the
robot is subjected to additional constraints. For “point-
like” feet, this may be a holonomic constraint; whereas,
some contacts are better characterized by nonholonomic

2Note that the terms “stratification” and “strata” are also used in
other contexts to describe the topology of orbit spaces of Lie group
actions, and are a slight generalization of the notion of a foliation
[33].
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Fig. 2. Abstract depiction of the stratified structure of a biped robot
c-space.

constraints. Regardless of the constraint type, the system’s
equations of motion will change in a non-smooth manner.
Otherwise, the system’s equations of motion are smooth,
though generally different in each strata. Hence, the dis-
continuities are localized to regions of transition between
strata.
The equations of motion at xz € Sy are written as
T = g[,l(m)ul,l + 91y (x)ul,nn (13)
where ny depends upon the codimension of Sy and the na-
ture of the additional constraints imposed on the system in
Sr. We assume that the vector fields in the equations of mo-
tion for any given stratum are well defined at all points in
that stratum, including points contained in any substrata
of that stratum. For example, the vector fields go ;(z) are
well defined for = € S;. Note, however, that they do not
represent the system’s equations of motion in the substrata,
but, nonetheless, are still well defined as vector fields.

Level O

Level 1

Q Level 2
S
34

S S S S S
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S S S S
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Fig. 3. Four Level Stratification

Fig. 3 illustrates, via a graph-like structure, a four-level
stratification, which corresponds to a four-legged walker.
A node corresponds to a stratum, and the presence of an



edge connecting nodes indicates that it is possible to move
between the strata that are connected by the edge. The
ability to move between two strata depends upon the me-
chanics of a given problem, and will generally be obvious
from the characteristics of a given problem. Whether or
not edges between nodes are permissible is considered in
more detail in Ref. [2]. When a configuration manifold is
consistent with the above description, we will refer to it as
a stratified configuration space.

Definition 1: Let Sy be a manifold, and n functions ®; :
So — R, i = 1,...,n be such that the level sets §; =
®;1(0) C Sy are regular submanifolds of Sp, for each i,
and the intersection of any number of level sets, S;,iy...i,, =
'I>i_11(0) N @;1(0) Nn---N <I>i_ml(0), m < n, is also a regular
submanifold of Sy. Then Sy and the functions ®,, define a
stratified configuration space.

Locomotion gaits have a straight-forward interpretation
in a stratified configuration space. In particular, we specify
a gait as an ordered sequence of strata:

g= {51175127---5‘51"751“4.1 = Sh}:

where n is the number of different contact states in the
gait. In this ordered sequence, the first and last element
are identical, indicating that the gait is a closed loop in
the strata graph. For the gait to be meaningful, the sys-
tem must be able to switch from stratum Sy, to Sy, for
each i. We further assume that the specified gait or gaits
satisfy the gait controllability conditions of Ref. [2] so that
arbitrary trajectories can be tracked.

For a given strata, Sy, the distribution defined by the

span of the control vector fields active on Sy is:

Ag, =

(14)

Span {gSI,l ] gSI,nI }

The involutive closure of Ags,, denoted by Ag,, is the
closure of Ag, under Lie bracketing. The controllability
of a given gait, Eq. (14), can be determined by letting
Dy = Ay, If Sp,_, C Sr,, then D; = D;_1 + Ay,. Else, if
Sr, € Si,_,, then D; = (Di—l ﬁTS]i) +K]i In Ref. [2] it s
shown that if dim(D,) = dim(Tx,Sg) the system is gait
controllable from xy. For a more rigorous discussion and
summary of stratified system controllability, see Refs. [1],

2].
IV. LEGGED TRAJECTORY GENERATION

This section extends the procedure outlined in Section II
to kinematic systems having a stratified c-space. We focus
on quasi-static legged locomotion in this section. Section
VI sketches the extension to basic finger gaiting manipula-
tion.

Assume that the robot starts at a configuration p and
seeks to reach a final configuration ¢q. By a configuration,
we mean the position and orientation of the body, as well as
the configuration of the legs. We assume that both p and
q lie in the same bottom stratum, denoted by Sp. This
corresponds to the legged robot starting and stopping with
the same set of feet in contact with the ground. Eliminat-
ing this requirement is a simple extension of the algorithm
described below.

Fig. 4. Sequence of Flows

The switching behavior associated with stratified sys-
tems can not be accounted for in the methods of Section
II-A. However, the method can be extended to legged and
fingered robotic systems via the notion of a stratified ez-
tended system on Sp.

A. The Stratified Extended System

On each strata, only one set of controls (or governing
equations) is in effect. Generally, the equations of motion
in the bottom strata will be different than those in higher
strata. Furthermore, it will be typically true that the goal
g can not be reached by remaining in Sp. Hence, some
switching amongst the strata will be necessary. However,
since the bottom strata is defined by the intersection of
higher strata, the equations of motion in the higher strata
are valid at points arbitrarily close to the bottom strata.
As shown below, it is possible to consider the vector fields
associated with each stratum in one common space. In
this case, that common space will be the bottom stratum.
This concept will be encapsulated below in the definition
of a “stratified extended system.” We first introduce some
examples to show how we can consider vector fields defined
on different strata in a common space. Additional examples
that deal with more subtle issues can be found in Ref. [34].

Ezample 3: Consider the conceptual biped configuration
space as shown in Fig. 2. Assume that on stratum S;,, the
vector field gi,1 moves the system off of Si» and onto S,
and correspondingly, g 1 moves the system off of Si> onto
Sy. Also, we consider the vector fields g; » and gz,2, defined
on S; and S, respectively. Consider the following sequence
of flows, starting from the point xzg € S

— te ts ta t3
Tr = ¢*92,1 © ¢92,2 ° ¢!]2,1 ° ¢*91,1 °
—— M~ ~—
SleSZ on Sz 52(7512 512(751
(2] t1
¢91,2 ° ¢g1,1 (1‘0) (15)
M~ =~
on Sl 51(7512

The notation “Sis < S1” means that the flow takes the
system from S; to Si2 and “on S;” means that the flow
lies entirely in S7. This sequence of flows is illustrated in
Fig. 4. In this sequence, the system first moved off of the



bottom stratum into S;, flowed along the vector field g o,
flowed back onto the bottom stratum, off of the bottom
stratum onto S, along vector field g» 2 and back to the
bottom stratum.

Notice that from the Campbell-Baker—Hausdorff for-
mula (Eq. (4)), if the Lie bracket between two vector fields
is zero, then their flows commute. Thus, if
(16)

91,1,912] =0 and [g21,92,2] =0,

we can reorder the sequence of flows in Eq. (15) by inter-
changing the flow along g1,1 and g;,» and the flows along
g2,1 and g2 » as follows

£ t t
¢!]2 2 QS 6!]2 1 ¢92 1 ¢91 2 °© ¢jg1,1 ° 911,1 (:L’g)
S——— S———
interchanged

= ¢922 ¢912( )
—_———

Ty =
interchanged
(17)

on Sz

if t1 = t3 and t4 = tg. O

Note that g1 2 and g2 2 are vector fields in the equations
of motion for strata S; and Ss, respectively, but not on
stratum Si2. However, the sequence of flows in Eq. (15)
occurs on different strata, where the flows are governed
by vectors fields associated with each stratum. This flow
yields the same net result as the net flow in Eq. (17), where
the vector fields are evaluated on the bottom stratum, even
though they are not part of the equations of motion there.
Furthermore, we note that if the vector fields g; » and g2.2
are tangent to the substratum Sio, then the resulting flow
given in Eq. (17) will remain in Sj». In fact, it is implicitly
required in the above argument that at least g; » is tangent
to 512.

If the bottom stratum is described by the level set of
a function, ®p, and if a vector field, g;,2 is not tangent
to the bottom stratum, then, (d®p, g1 2) = f1 # 0. Also,
since the vector field g;,1 moves the foot out of contact, we
similarly have (d®p, g1,1) = f2 # 0. Then, the vector field,

Ji2=0g12— %gl,l, is tangent to Sp because

(d®B,g1,2) = (d®B,g1,2) — %(d‘bB,gl,l) =0. (18)

Henceforth, we will just assume that the vector field on
the higher stratum is tangent to the lower stratum, and
note that if it is not tangent, we can modify it to be so in
the above manner.

The above example shows how one can effectively deter-
mine the influence of a control that is defined in a higher
stratum on the net evolution of the system in the lower
stratum. The following example shows how motions that
are analogous to Lie Bracket motions can be realized by
controls on different higher strata.

Example 4: Consider the sequence of flows

_t t t t
xf_(bl?}zl ¢1;122 ¢g12010¢9g11 ¢g12 ¢g11

O¢t692 1 ¢92 2 ¢92 1 ¢ g1,1 ¢91 2 ¢91 1( )

The first six flows in this example are the same as in Exam-
ple 3. Following the first six flows are six more wherein the
flows that are entirely on S, i.e., the flow along g; 2, and
entirely on Ss, i.e., the flow along g2 », are in the negative
direction. If the Lie brackets are zero as in Eq. (16), and
t; = tiy2, i = 1,4,7,10 these flows can be rearranged as

t t
xf:¢j;2,2o¢89120¢922 ¢912( )

NOW, if t2 = t5 = tg = tll;

o= ¢t_1;2‘2 ° ¢t891 2 © ¢g2 2 ¢g1 2( )
¢f91,2,g2,2] + O(t?’)(xo)’

where t = t5 = t5 = tg = t11 < 1. Thus, this sequence
provides a net flow in S;5 in the direction of the Lie bracket
between vector fields which are in the equations of motion
on different strata, S; and Ss. O

In Examples 3 and 4, it was required that certain Lie
brackets be zero. While one could simply check that these
conditions are met in a given situation, the following as-
sumption will guarantee this condition.

Assumption 1: If it is necessary to lift a foot from the
ground during a gait cycle, we assume that the robot can
directly control, (via a single control, or a combination
of control inputs), the height of that foot relative to the
ground. Furthermore, for each stratum comprising the
given gait, we assume that the system’s equations of mo-
tion are independent of the foot height, i.e., the robot’s
motion is independent of whether a particular foot is very
close to the ground, or very far from the ground, but may
be dependent upon whether or not a foot is in or out of
contact with the ground. When this is so, the Lie bracket
of the vector field controlling foot height with any other
vector field is zero, and the decoupling requirement is satis-
fied. Additionally, the tangency requirements for canceling
the flows associated with raising and lowering the foot will
automatically be satisfied.

This is arguably a strict assumption. However, for kine-
matic, legged robots this assumption will almost always be
satisfied (see Section V for an example).

Examples 3 and 4 show that in given a stratified system,
the vector fields on any stratum (other than vector fields
corresponding to lifting or replacing feet) can be considered
as part of the equations of motion in the bottom stratum
if either certain Lie bracket and tangency conditions are
met, or if Assumption 1 is satisfied. If the vector fields are
not tangent to the bottom stratum, they are modified as
in Example 3.

We have shown above that it is possible to consider vec-
tor fields in higher strata as part of the equations of motion
for the system on the bottom stratum. Based on this ob-
servation, we introduce the following.

Definition 2: Extended Stratified System The extended
stratified system on the bottom strata, Sp, is the driftless
system comprised of the vector fields on the bottom strata,
chosen vector fields from the higher strata, and Lie brackets
of vector fields from Sp and higher strata, i.e., it is a system



taking the form:

by (z)vy + - by (z) vy
+ bm+lvm+1 R bn’l}n

T =

from higher strata

+ bn+1’l}n+1 + -+ bpvp, (19)
any Lie brackets
where the {b1,...,b,} span T,,Sp, the inputs v, ...,v, are

real, and the inputs v,,41,...,v, are fictitious.

With this definition, we have effectively increased the
class of vector fields that we may employ when using the
motion planning algorithm presented in Section II.

B. The Motion Planning Algorithm

For the purposes of motion planning, the method pre-
sented in Section II could be used in conjunction with the
stratified extended systems. The basic idea is to use the
stratified extended system to plan the motion in the bot-
tom stratum in order to obtain the fictitious inputs. We
can determine the actual inputs by the method in Section
II with the modification that whenever the system must
flow along a vector field in a higher stratum, it switches to
that stratum by lifting the appropriate foot or feet, flowing
along the vector field, and then replacing the appropriate
foot or feet, as in Example 3.

Specifically, the algorithm to generate trajectories that
move the system from initial configuration p to final con-
figuration q is as follows.

1. Construct the extended stratified system, Eq. (19), on
the bottom strata, Sp.

2. Find a nominal trajectory, v(¢), that connects p and q.
Given ~v(t), solve

Y(t) = bi(z)vr + -+ + by(2)vp,

for the fictitious inputs, v;. As discussed in Section IV-C, it
may be necessary to decompose the entire trajectory from
the initial point to final point into smaller subtrajectories.
3. For each path segment in each strata, compute the ac-
tual controls that steer the system along y(t). As discussed
previously, this solution might require the transformation
of the backward Philip Hall coordinates to forward Philip
Hall coordinates if the degree of the Lie brackets in the
extended system is greater than two.

4. Flow along each first order vector field, and approximate
higher order vector fields as illustrated in Example 3. In
general, it will be necessary to switch strata between some
of these flows.

C. Gait Stability

Before we illustrate this method in Section V, we con-
sider the additional issue of and stability. There is not an
inherent mechanism in the straight—forward application of
the method of Section II to guarantee the stability of the
gait. Recall that the method is based on the selection of
a trajectory for the extended system, v(t), from which the

fictitious inputs are determined. It is important to note
that the actually realized trajectory will generally not be
v(t). Thus, merely picking an initial trajectory -y(¢) which
is always stable is not sufficient. One also must guaran-
tee that the method’s inherent deviations from the initial
trajectory lie within the stability bounds.

Stability considerations can be incorporated into the
method as follows. Assume that there is a means for deter-
mining the stability of the system by means of a scalar—
valued function of the configuration, ¥(z). For conve-
nience, assume that when ¥(z) < 0, the system is unstable,
when ¥(z) > 0, the system is stable, and when ¥(z) = 0,
the system is on the stability boundary. In our analysis, the
initial trajectory, v(t), must be selected such U(v(t)) > 0.

The overall approach is to, when necessary, take steps
that are “small enough” to ensure that the system remains
stable. Since the flow sequences are composed of small
motions and a norm is necessary to measure the length of
a flow, we will either consider the system locally in R
or equip the configuration manifold with a metric. Given
a desired step along the trajectory, v(t), t € [0,1], let
R = min{||lz —¢||, ¢ € ¥1(0)}, i.e. the distance from
the step’s starting point to the closest point on the stabil-
ity boundary. We want to ensure that the system’s tra-
jectory does not intersect the set ¥—1(0). Let z, and z
denote the starting and final trajectory points. Without
loss of generality, let v(t) = « + t(zy — ;) be a desired
straight line path between the starting and end points.
Also, let A = ||z — z4||. Recall that the fictitious in-
puts, v; were determined by solving an equation of the
form 4(t) = g1 (y(#))vr + -+ + gs(y(t))vs for the v;. We
have that |lv;|] < C||¥(t)]] = CA, for some constant C.
By the method of constructing of the real inputs from the
fictitious inputs, we have that |Ju;]] < CAY* where k is
the degree of nilpotency of the system, or the degree of the
nilpotent approximation.

Pick a ball, B, of radius R, and let K be the maxi-
mum norm of all the (first order) vector fields, g; for all
points in B. Recall that the real inputs, u; were given by
a sequence of inputs which approximate the flow of the
extended system. Denote this sequence by u;'-, where the
superscript indexes the input, and the subscript indexes
its position in the sequence. The maximum distance that
the system can possibly flow from the starting point, xy, is
given by the sum of the distances of the individual flows.
Let z,, = maxsepo,1]{||z(t) — z5||} denote the point in the
flow that is maximally distant from the starting point (this
is not necessarily the final point, zy). To guarantee sta-
bility, we must show that ||z, — z|| < R. However, this
distance, ||z, — z|| is necessarily bounded by the sum of
the norms of each individual flow associated with one real

. Z .
control input, uj, i.e.,

1
[2m — 2l < II/ giujdt||.
— Jo
i,j



However, [|uf|| < CAY* and ||gi(z)|| < K Vx € B. Thus,
lom — ]| <Y KCOAYE, (20)

1,3

and since A = ||z — ||, by choosing the desired final point
close enough to the starting point, the trajectory will not
intersect the stability boundary.

Note that since A is raised to the power of 1/k, if k
is large, then it may be necessary to make A exceedingly
small in order to ensure stability. However, the bound ex-
pressed in Eq. (20) is itself very conservative since it sums
the length of a bound on each individual flow in the series.
In actuality, because the largest flows correspond to the
Lie brackets of order k, simply summing their component
lengths will give a conservative bound. Given these two
observations, an appropriate step length may often be best
determined experimentally.

The same observations also apply to obstacle avoidance.
If the robot traverses an environment with obstacles, we
assume that the nominal trajectory is designed by an holo-
nomic or rigid body planner in such a manner as to avoid
obstacles. Ensuring that the actual trajectory also avoids
the obstacles, requires that the nominal trajectory be anal-
ogously broken into sufficiently small steps to ensure that
the actual trajectory remains sufficiently close to it.

V. EXAMPLE

The approach is illustrated by generating control inputs
that will steer a simplified model of the hexapod of Fig. 1
to walk over flat terrain (see Section VI for an example
involving manipulation of a curved object, which is anal-
ogous to locomotion over uneven terrain). This hexapod
model is adapted from a similar robot model presented pre-
viously in [35]. The key difficulty in this example is the fact
that the legs are kinematically insufficient, making side-
ways motion difficult. Assume that the robot walks with
a tripod gait 2, alternating movements of legs 1-4-5 with
movements of legs 2-3-6. With the tripod gait assumption,
this robot has four control inputs. The inputs u; and us
respectively control the forward and backward angular leg
displacements of legs 1-4-5 and legs 2-3-6, while inputs
ug and u4 respectively control the height of legs 1-4-5 and
2-3-6.

The equations of motion can be written as follows.

& = cosf (alh)ur + B(ha)us)
g = sinf (a(h)ur + B(h2)uz)
0 = la(hi)uy —1B8(hs)us

<?>1 = Ui, <{52 = U2
hy = wu3z; hy = wuy

where (z,y,6) represents the planar position of the center

of mass, ¢; is the front to back angular deflection of legs
1-4-5, ¢» is the angular deflection of legs 2-3-6, [ is the

3Ref. [1] shows that the hexapod is small time locally gait control-
lable when a tripod gait is used.

Fig. 5. Stability Margin for Hexapod Tripod Gait

leg length and h; is the height of the legs off the ground.
The functions a(h;) and S(hs) are defined by

1 it =0
am”_{o if hy > 0

Note that these equations require some foot slippage in or-
der to describe the motion of a robot like the one illustrated
in Fig. 1. Since the robot walks in a tripod gait, stability
is ensured if the robot’s center of mass remains above the
triangle defined by the tripod of feet which are in contact
with the ground. Considering the motion of legs 1-4-5, the
center of mass of the robot must be at least b = %’ +1sin ¢
from the front of the robot to ensure stability, where [, de-
notes the length of the body. See Fig. 5. Alternatively, if
the center of mass is located a distance b from the front
of the robot, then stability is ensured during the motion if
both of these constraints are satisfied

b <sm1<w—%m>

1 ifhy =0
Bm”‘{o if hy > 0

¢ > —sin”! ((%b - b)/l) :

Denote the stratum when all the feet are in contact (a =
B = 1) by Si2, the stratum when tripod one is in contact
(a = 1,8 =0), by Si, the stratum when tripod two is in
contact (& = 0,8 = 1), by S2 and the stratum when no legs
are in contact (« = 8 = 0), by Sp. Note that this system
satisfies the requirements of Assumption 1 since, regardless
of the values of a and f3, the vector fields moving the foot

oh; }7
the equations of motion are independent of the foot heights,
hi.

The equations of motion in the bottom strata, Si2 (where
all the feet maintain ground contact), are:

out of contact with the ground are of the form { and

& cosf cosf

Y sinf siné

o |=| 1 - (“1> (21)
. u2

o1 1 0

b 01



where (x,y, 0) represents the planar position of a reference
frame attached to the robot’s center, ¢; is the angle of legs
1-4-5 and ¢- is the angle of legs 2-3-6. The variables ug
and u4 are both 0 since the legs maintain ground contact.
Let g12,1 and g12,2 represent the first and second columns
in Eq. (21).

If legs 1-4-5 are in contact with the ground, but legs
2-3-6 are not in contact, the equations of motion are

3}“ cos§ 0 O

Yy sinf 0 0 u

6 I 00 !

oo |7 1 00 2 (22)
s 0 10 ta

by 0 0 1

where hsy is the height of legs 2-3-6 and wu3 is constrained
to be 0. Label columns one, two and three in Eq. (22)
g1,1,91,2 and g; 3, respectively. If legs 2-3-6 are in ground
contact and legs 1-4-5 are not, the equations of motion are

T 0 cosf O

Y 0 sinf 0 "

] 0 -1 0 !

o |71 o o U2 (23)
s 0 1 0 s

Iy 0 0 1

where w4 is constrained to be 0. The columns in Eq. (23)
are denoted g¢3,1, 92,2, and g2 3.

For motion planning purposes, we must select enough
vector fields to span the tangent space of the bottom
stratum, Si2. A simple calculation shows that the set
of vector fields, {g121,912,2,91,2,92,1,[912,1,912,2]} spans
Tz512 for all z € 512. Note that [912’1,912’2] =
(—2lsin#, 2l cos6,0,0,0)7.

The stratified extended system is constructed from the
extended system that uses the vector fields from all strata.

& = g12,101 + 912,202 + 91,203 + g2,104 + [912,1, §12,2]v5 (24)

or, in greater detail,

z cosf cosf 0 0 —2lsinf v1
Z'{ sinf@ sinf 0 0 2lcosf vo
0 = l -1 0 0 0 vs
b1 1 0 0 1 0 N
éo 0 1 1 0 0 vs

Let the starting and ending configurations be:

p = (x,y,0,¢1,¢2,h1,h2) = (0,0,0,0,0,0,0)
q :(mayaead)lad)%hl:h?):(1717070705070) ’

A path that connects these points is y(t) = (¢,¢,0,0,0,0,0),
t € [0,1]. Equating 4(¢) with with the stratified extended
system and solving for the fictitious controls yields

vy I(cos @ + sinB)

U2 1 I(cosf + sin 0)

v | =g —I(cosf +sinf) |,
Vg —I(cosf + sin @)

U5 (cos@ — sinB)

10

or, since #(t) = 0, and if we let | =1,

U1 1
(] 1
U3 = - -1
V4 -1
Vs 1

For a system which is nilpotent of order 2, we have from
Eq. (9) (where the g’s from Eq. (24) are substituted for
the b;’s in Eq. (9) in the order that they appear in Eq. (24)

o=

U1,
h2 = U3,
h3 = Us,
h4 = U4,
iL5 = v+ hl’l}g
which yields.
1
hi(1) = h(1) =5
1
hs(1) = ha(1) =5
3

Since the nilpotent approximation is of order two, there
is no need to transform to forward Philip Hall coordinates.
Instead, we can directly construct a sequence of controls to
move in the desired direction.

Let o denote concatenation of control inputs, so that, for
example, uj ous denotes that uy = 1 for time hy (1) followed
by us = 1 for time hy(1). Considering the vector fields on
S12, (9121, 9122 and [g12,1, 912,2]), the system needs to flow
along the first two vector fields for % seconds, and construct
a piece-wise approximation to the flow along the third Lie
bracket vector field for % seconds. The control sequence to
approximately move the system in the direction of the flow
of the Lie bracket is

UL O U O —UL O —Uy (25)
where each of the individual control inputs is equal to one

for 1/32 seconds (recall Eq. (2)). To flow along g11,1, u1 =1

for 1 seconds. Similarly to flow along g121, uz = 1 for 1

seconds.

On the higher strata, to flow along g1 1, u1 = —1 for £
seconds and to flow along ¢2,1, u; = —1 for % seconds. In
order to execute these flows, the robot must switch from
the bottom stratum to the higher strata when executing a
control input associated with a fictitious input for a higher
strata.

Thus, the total control sequence is

\/g(ul O U2 © —UL © —Us2)

O%UQ ) %ul O €Uy O (—%Ug) o (—euy)

o€ug © —(%m) o (—eus3).
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Fig. 6. Straight Trajectory

The first four terms in the sequence approximate the Lie

bracket motion on the bottom stratum. The % term de-

notes the length of time each control input is “on.” The
next two terms are the contribution of the u; and us terms
individually on the bottom stratum. The next term repre-
sents a small flow associated with removing legs 2-3-6 out
of contact with the ground, and the following term corre-
sponds to legs 2-3-6 moving back to their initial position.
Since the legs are not in contact with the ground, this mo-
tion does not cause the body of the robot to move. The
next input corresponds to legs 2-3-6 moving back into con-
tact with the ground. The next three inputs correspond to
legs 1-4-5 performing an analogous motion.

Fig. 6 shows the path of the robot’s center as it follows
a straight line trajectory, which is broken into four equal
segments. Due to the nilpotent approximation, there is
some small final error. Better accuracy can be obtained by
use of a higher order nilpotent approximation or a second
iteration of the algorithm from the robot’s ending posi-
tion. Note that the main body axis is oriented along the
x-axis in this example. Since the legs can not move imme-
diately sideways, the robot’s motion must include “parallel-
parking-like” behavior to follow this line.

There is no inherent limitation in the method which re-
quires the trajectory to be broken down into subsegments,
however, there are two reasons to do so. First, since the
method is based upon decomposing a desired trajectory
into flows along the Philip Hall basis vector fields, the final
trajectory is only related to the desired trajectory in that
the end points are the same (or approximately the same
for nilpotent approximations). Breaking the path into seg-
ments leads to better overall tracking. Second, robot sta-
bility requirements may also demand smaller steps.

The approach is general enough that approximate track-
ing of arbitrary trajectories is possible. Fig. 7 shows the
hexapod following an ellipse while maintaining a constant
angular orientation. Fig. 8 shows the results when a smaller
step size is used. In the first simulation, the elliptical tra-
jectory is broken into 30 segments. In the second, it is
divided into 60 segments. In this example, part of the tra-
jectory tracking error is due to the nilpotent approxima-
tion, but another contribution to the error is the simplicity
of the model. Some directions are more “difficult” for the
system to execute than others due to the kinematic limi-
tations of the leg design. Because this mechanism can not
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execute “crab-like” gaits, its tracking error during side-
ways motions increases, as this direction corresponds to a
Lie bracket direction.

Also plotted in these figures is the stability criterion. Let
the body length be 2 units of length and let the center of
mass be located a distance of 0.75 units from the front of
the robot. Then, the stability criterion is ¢; < 0.25 [rad]
and ¢3 > —.85 [rad]. In Fig.s 7 and 8 the stability limits
for ¢, are indicated by the straight horizontal lines. In the
first case, where the robot takes bigger steps, the stability
condition is violated. However, in the second case it is not.

Fig. 9 depicts the footprints left by the hexapod as it
follows a straight line diagonal path while simultaneously
rotating at a constant rate. The complex pattern of the
footfalls suggests that any technique that is based on foot
placement would be very difficult to apply to this system.

Finally, we consider obstacle avoidance. While the nomi-
nal initial trajectory () must a priori avoid any obstacles,
this constraint alone will not guarantee that the actual mo-
tion avoids obstacles. If the trajectory is divided into suffi-



Fig. 10. Nominal obstacle avoidance trajectory.

ciently small segments, as suggested in Section IV-C, then
obstacle avoidance can be realized. Fig. 10 shows a desired
nominal path (indicated by a black line) of the hexapod’s
body center through a set of obstacles. The walls of the en-
vironment are indicated by dark grey regions. The lighter
grey regions correspond to locations of the robot’s center
where some vehicle orientations may cause the hexapod to
intersect the walls (i.e., the grey regions are the projected
silhouettes of the c-space obstacles).

To make the problem more challenging, we also specify
that the robot rotates at a uniform rate as it follows the
nominal trajectory. A real-world scenario where this might
be desirable is a patrol robot that must constantly scan in
all directions. Fig. 11(a) shows the path of robot’s center
of mass when the trajectory is not finely divided enough
to satisfy the criteria of Section IV-C (it is subdivided into
100 subtrajectories). Since the path of the center of mass
intersects the lighter grey regions during portions of its mo-
tion, the robot would realistically bump into the walls in
this example. However, if the nominal trajectory is suffi-
ciently subdivided (into 300 subtrajectories in this case) to
satisfy the requirement of Section IV-C, the robot avoids
the walls, as illustrated in Fig. 11(b).

VI. MULTI-FINGERED HAND MANIPULATION

The methodology described above can be almost imme-
diately applied to object manipulation via finger gaiting in
a multi-fingered hand as long as the equations of motion
can be written in the form of a kinematic system. This may
be difficult in the case of rolling contact because the equa-
tions of motion may become extremely complicated. Pre-
liminary efforts to overcome this limitation can be found in
Ref. [36] The application of this approach leads to an ob-
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(a) Obstacles not avoided; (b)Obstacles avoided.

ject manipulation planning strategy that is independent of
the geometry of the grasped object and independent of the
manipulating hand’s morphology. The method is also inde-
pendent of the type of contact between the finger and ob-
ject (e.g., “point contact with friction,” “soft finger” etc.)
and independent of the morphology of the manipulating
“fingers” (i.e., independent of the number of joints, etc.).

Consider the “egg—shaped” object in Fig. 12 whose sur-
face is parameterized by

1+ %) cosu cosv _

_ ( Z) : u € (Tﬂ—a%)

clu,v) = [ (1+ F3) cosusinv |, )
5 sinu ’

This object is to be manipulated by four, three DOF fin-
gers whose kinematic model is shown in Fig. 13. A “point
contact with friction” model is assumed.

Fig. 12. Four fingers manipulating an object.



Fig. 13. Finger kinematics.

The stratified c-space will consist of a total of 16 differ-
ent strata, corresponding to all the possible combinations
of finger contacts. However, as will be clear shortly, the
system is manipulable if it is restricted to only 5 strata:
when all four fingers are in contact plus each of the four
cases where only one of the fingers is out of contact. De-
note these strata as 51234, 5123, 5124, 5134, and 5234 where
the subscripts denote which fingers are in contact with the
object.

Since the nominal trajectory stays away from the fin-
gers’ kinematic singularities, the finger tip velocities can
be considered as system inputs. This input choice will sim-
plify the computations and make the equations of motion
satisfy Eq. (16). One can not generally choose the inputs
in this way, (for example, when the the finger tips are in
rolling contact with the object); however, the more general
cases still fits within the framework of the stratified motion
planning method outlined in Section III.

The equations of motion for such a grasped system are
straight—forward, though possibly tedious, to derive (see,
[32] for details). The equations of motion on the bottom
stratum are of the form

= gi1(z)ur + -+ go(T)us,
and on the higher strata are of the form

g1(x)ur + - + gs(x)ug + gr(z)ur
+gs(x)us + go(x)uy,

T =

where the first 6 inputs are associated with the finger tip
velocities for the three fingers contacting the object, and in-
puts 7-9 are the three degrees of freedom for the finger that
is not in contact with the object. Note that g7(z) through
go(z) will take the form (0,---,1,---,0) since they are the
unconstrained finger tip velocities of the finger which is not
contacting the object, and thus they will satisfy Eq. 16.
Therefore, they may be incorporated into the equations of
motion for the bottom stratified extended system.

Incorporating these unconstrained finger tip velocity vec-
tor fields for each of the four higher strata gives a stratified
extended system of the form

Tz = gl(m)ul + -+ gg(a:)u(i
on ‘5:1234

+ gr(@)ur + gs(w)us + go(w)uo

from Sios
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+ gw(l‘)ule + gir(2)usr + gls(ﬁf)ulga

from Ssas

where all the vector fields except those on the first line cor-
respond to free finger tip motion. Tedious detailed calcu-
lations show that {g1,...,g1s} spans the tangent space to
the c-space, so the system is stratified manipulable. Since
no Lie brackets are necessary to make the system stratified
manipulable, this system is already in extended form, and
the actual control inputs are the same as the “fictitious”
inputs presented in Sections II and III.

Fig. 14. Snapshots of computer simulation of object manipulation
via finger repositioning

Assume that the initial and final configurations are iden-
tical (as illustrated in Fig. 12), and that the desired motion
is a pure rotation of 27 about the axis w = (\/Lg, %, %)
Using exponential coordinates, then, the object’s nominal
configuration as a function of time is given by Rodrigues’

formula:

v(t) = e’ =TI+ @sin2rt + 0?(1 — cos2nt),



t €10,1].

For the object’s initial and final configuration in Fig. 12,
each finger is oriented at an angle of 7/4 relative to the
z— and y-axes. As the object rotates, each finger’s nomi-
nal configuration is such that it contacts the object along
that same axis. This can be determined by equating the
forward kinematics for each finger with the point on the
object’s surface that intersects the respective x/4 radial
from the origin, and then, using the kinematics of each fin-
ger, determine the desired joint configurations. For this
particular example, this trajectory is difficult to compute
analytically, but is simple to do numerically for each step of
the system’s motion. The desired trajectory is decomposed
into 10 subsegments, and a sequence of six “snapshots”
from the manipulation is shown in Fig. 14.

VII. CONCLUSIONS

Our method provides a general means to solve the trajec-
tory generation problem for many types of legged robotic
and multi-fingered systems. The simulations indicate that
the approach is rather simple to apply. The method is inde-
pendent of the number of legs (fingers) and is not based on
foot (finger) placement principles. For a given legged robot
mechanism, a specifically tuned leg-placement-based algo-
rithm may lead to motions which use fewer steps or results
in less tracking error. However, for the purposes of initial
design and evaluation of a legged mechanism, our approach
affords the robotic design engineer an automated way to
implement a realistic trajectory generation scheme for a
quasi-static robot of nearly arbitrary morphology. More
importantly, we believe that our approach provides an evo-
lutionary path for future research and generalizations.

Since many interesting robotic systems (such as bipeds)
are not kinematic, an algorithm for solving the trajectory
generation problem for such systems is necessary. How-
ever, since the state of the art for solving the trajectory
generation problem for smooth systems with drift is still
in its infancy, it may be difficult to make headway along
these lines until more complete results for the smooth case
become known.
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