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Abstract

We present a general method for determining con-
trollability of a class of kinematic legged robots. The
method is general in that it is independent of the robot’s
morphology; in particular, it does not depend upon the
number of legs. Our method is based on an extension
of a nonlinear controllability test for smooth systems to
the legged case, where the relevant mechanics are not
smooth. Our extension is based on the realization that
legged robot configuration spaces are stratified. The re-
sult is illustrated with a simple example.

1 Introduction

This paper considers the issue of nonlinear gait con-
trollability for legged robots. That is, we consider if a
specified gait can allow the robot to move in any di-
rection. This is important for two reasons. First, such
controllability is a necessary condition for motion plan-
ning algorithms. (Clearly, if the robot cannot move in
all directions, it is then impossible to specify an arbi-
trary path for the robot to follow). Secondly, control-
lability is a useful design tool.

Generally speaking, for autonomous robots, and
legged robots in particular, there is a trade off between
the complexity of the robot and the associated sophis-
tication of the controller. In other words, if the robot
has many degrees of freedom, it will be relatively sim-
ple to devise a control strategy for it; conversely, if
the robot has relatively few degrees of freedom, a con-
trol strategy which exploits the particular geometry or
other nonlinear features of the robot may be necessary.

As a specific example, consider the miniature six–
legged hexapod robot illustrated in Figure 1 (poten-
tially fabricated using MEMS technology). This model
will be fully explored in Section 4. Note that each leg
has only two degrees of freedom: the robot can only
lift its legs up and down and move them forward and
backward. As mentioned, such limited control author-
ity may be desirable in practical situations because it
decreases the mechanical complexity of the robot. This
hexapod requires only 12 degrees of freedom; whereas,
a conventional design requires 18 degrees of freedom.
However, such decreased complexity comes at the cost
of requiring more sophisticated control theory. Note

that for this model, it is not immediately clear whether
the robot can move “sideways,” and if it cannot move
sideways, then it is not controllable.
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Figure 1. Simple hexapod robot.

There is a vast literature on legged locomotion anal-
ysis, control, and motion planning. However, to our
knowledge, the issue of controllability has not been ex-
tensively analyzed. Most prospective robotic mecha-
nisms have contained sufficiently many degrees of free-
dom such that controllability is obvious; however, as
mentioned, such complexity may be reduced if com-
pensated by sufficiently sophisticated control method-
ologies. Our approach is to formulate results in suffi-
cient mathematical generality so that it will apply to
robotics problems independent of morphology. In con-
trast, most legged robotics efforts have focused either
on a particular morphology (e.g. biped [1], quadruped
[2], or hexapod [3]) or a particular locomotion assump-
tion (e.g. quasi-static [3] or hopping [4]). In contrast,
previous work by the authors [5], [6] and this paper
are general, in that they apply independent of mor-
phology, and additionally apply to problems of a class
which include legged robots.

There has been some recent work directed to un-
covering principles that span all morphologies so that
they are of general applicability. For example, Kelly
and Murray [7] showed that a number of “kinematic”
locomotive systems can be modeled using connections
on principal fiber bundles and also provide results on
controllability. Ostrowski [8], [9] developed analogous
results for a class of “dynamic” nonholonomic locomo-
tion systems. However, these results assume that the
equations of motion for the system are smooth, which
prohibits their application to legged robotics problems,



where the equations of motion are discontinuous. Stan-
dard nonlinear controllability tests (Chow’s theorem
and variations thereof), require that the system’s equa-
tions of motion be smooth. The main contribution of
this work is the extension of these standard nonlinear
control methodologies to a class of problems where the
equations of motion are discontinuous.

2 Background
In this section we introduce Chow’s theorem and

the notion of a stratified configuration space.

2.1 Mathematical Preliminaries
This paper is concerned with driftless robotic con-

trol systems with equations of motion of the form

ẋ = g1(x)u1 + · · · + gm(x)um, (1)

where x is the state of the robot and is a point in config-
uration manifold M , the ui are the control inputs, and
the gi(x) are vector fields defined on M . The driftless
assumption limits our results to quasi–static robotic
locomotion.

Central to nonlinear control theory is the Lie
bracket. Given two vector fields, g1(x) and g2(x), their
Lie bracket is the product defined by

[g1, g2] =
∂g2

∂x
g1 −

∂g1

∂x
g2.

Lie brackets can be thought of as “new directions” in
which the system can flow because of the relationship

φ−g2
ε ◦ φ−g1

ε ◦ φg2
ε ◦ φg1

ε (x0) = φ
[g1,g2]
ε2 (x0) + O(ε3),

where φg
t denotes the flow along the vector field g for

time t, i.e., the solution to ẋ = g(x). In words, if we
appropriately “modulate” the control inputs u1 and
u2, to leading order, the resulting flow is along the Lie
bracket, [g1, g2]. The span of a set of vector fields is
a distribution, ∆ = span{g1, . . . , gm}, and its closure
under Lie bracketing is the involutive closure of the
distribution, denoted ∆, which is the smallest distri-
bution such that if f, g ∈ ∆, then [f, g] ∈ ∆.

A system is small time locally controllable (STLC)
if it can reach any point in an open neighborhood of its
starting point in arbitrarily small time. A fundamental
result in nonlinear control theory is Chow’s Theorem
which relates involutive distributions to controllability.

Theorem 2.1 Let ∆ be the involutive distribution
formed by the vector fields in Equation 1. If dim

(
∆

)
=

dim (M), then the system is STLC.

Unfortunately, Chow’s theorem can not be applied
to analyze legged systems because the Lie bracket cal-
culations require that the equations of motion be suffi-
ciently differentiable. Our goal is to develop an analog
of Chow’s theorem for such legged systems.
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Figure 2. Stratified configuration mani-
fold structure for a biped robot.

2.2 Stratified Configuration Spaces

We will motivate our definition of a stratified con-
figuration space with a simple example. Consider a
biped robot. The configuration manifold for the robot
describes the spatial position and orientation of the
robot as well as variables such as joint angles which
describe its internal geometry. The set of configura-
tions corresponding to one of the feet in contact with
the ground is a codimension one submanifold of the
configuration space. The same is true when the other
foot contacts the ground. Similarly, when both feet are
in contact with the ground, the system is on a codimen-
sion 2 submanifold of the configuration space formed
by the intersection of the single contact submanifolds.
The structure of the configuration manifold for such a
biped is abstractly illustrated in Figure 2. The goal in
this paper is to exploit the geometric structure of such
configuration spaces.

Because the robot is subjected to different con-
straints on each submanifold described above, it will
have different equations of motion depending upon
which combination of feet are in contact with the
ground. Also, except for when the robot transitions
from a state where a foot is off of the ground to one
where a foot contacts the ground, the equations of mo-
tion for the system are smooth.

We will refer to the configuration space for the biped
robot in Figure 2 as stratified. By considering legged
robot systems more general than the biped in Figure 2,
we can develop a general definition of stratified config-
uration spaces. Let M = S0 denote the legged robot’s
entire configuration manifold. Let Si ⊂ M denote the
codimension one submanifold of M that corresponds
to all configurations where only the ith foot contacts
the terrain. Denote, the intersection of Si and Sj , by
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Figure 3. Four Level Stratification

Sij = Si ∩Sj . The set Sij corresponds to states where
both the ith and jth feet are on the ground. Further in-
tersections can be similarly defined in a recursive fash-
ion: Sijk = Si ∩Sj ∩Sk = Si ∩Sjk, etc. Note that the
ordering of the indices is irrelevant, i.e., Sij = Sji. We
will refer to the submanifolds Si, as well as their recur-
sive intersections Sij , Sijk, etc, as strata. We will term
the lowest dimension stratum containing the point x as
the bottom stratum, and any other submanifolds con-
taining x as higher strata. When making relative com-
parisons among different strata, we will refer to lower
dimension strata as lower strata, and higher dimension
strata as higher strata. Denote an arbitrary stratum
by SI = Si1i2···in , I = {i1i2 · · · in}, and note that its
codimension is n, the length of the multi–index sub-
script.

Figure 3 illustrates a stratification with four lev-
els, which corresponds to the configuration space of a
quadruped. In the figure, the nodes of the graph cor-
respond to the different strata. The edges connecting
the nodes indicate whether it is possible for the system
to move from one stratum to another, i.e., if the nodes
are connected by an edge, then the system can move
between the strata, if there is no edge, the system can-
not move between the strata. While the figure simply
illustrates edges between nodes only one level apart,
multi–level jumps may be possible, in which case there
would be an edge connecting strata that are more than
one level apart.
Definition 2.2: (Gait)

A gait an ordered sequence of strata:

G = {SI1 , SI2 , . . . , SIn , SIn+1 = SI1}. (2)

where the first and last element are identical, indicat-
ing that the gait is a closed loop. The gait can be

considered as a closed path through the graph struc-
ture in Figure 3.

In order for the gait to be meaningful, it must be
possible for the system to switch from stratum SIi to
SIi+1 for each i. In Figure 3, this corresponds to each
stratum SIi in the sequence being connected to SIi+1

and SIn being connected to SI1 . Limitations on gaits,
such as stability requirements, could be expressed as
limitations on the cyclic gait paths.

Whether a stratum is permissible partly depends
upon whether the equations of motion for the system
can be expressed as a kinematic system (recall Equa-
tion 1), in a neighborhood of the point of interest. For
example, for a biped robot, clearly if it lifts both feet off
of the ground, it is not a kinematic system because the
fact that gravity will make it fall back to the ground.
For robotic systems, the possibility of movement from
a higher to a lower stratum will be obvious in a given
problem, since it will be obvious whether or not, from
a given configuration, it is possible for the robot to
move a foot to the terrain.

Example 2.3 Section 4 investigates the hexapod ex-
ample from Figure 1 in detail, but here we illustrate
one possible gait for it. Assume that the hexapod
walked with a tripod gait moving legs 1–4–5 in unison
and legs 2–3–6 in unison. This assumption reduces the
high dimensional and complex graph structure of the
system to a very low dimensional and simple one, as
illustrated in Figure 4. In the figure, the arrows show
the cyclic path of the gait. It will always be possible
for this system to move from a higher stratum (S145

or S236) onto the bottom stratum (S123456), since the
robot can always put its feet on the ground regardless
of its configuration. �
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Figure 4. The Simplified Hexapod Graph

Associated with each stratum in a stratified system
will be a set of equations of motion for the system.
Since we consider driftless nonlinear systems, the equa-
tions of motion at x ∈ SI are expressed as

ẋ = gI,1(x)uI,1 + · · · + gI,nI (x)uI,nI .



The involutive closure of the distribution defined by
the span of these vector fields on SI will be denoted
∆I . We assume that the vector fields in the equations
of motion for any given stratum are well defined at all
points in that stratum, including points contained in
any substrata of that stratum. For example, the vec-
tor fields g0,i(x) are well defined for x ∈ SI . Note,
however, that they do not represent the equations of
motion for the system in the substrata, but, nonethe-
less, are still well defined as vector fields.

Finally, we assume that the only discontinuities
present in the equations of motion are due to tran-
sitions on and off of strata. These correspond to states
where one or more feet make or break ground con-
tact. Specifically, vector fields defined on any stra-
tum are assumed to be smooth when restricted to that
stratum. When a configuration manifold is consistent
with the above description, we will refer to it as a
stratified configuration manifold. Generic quasi–static
legged robotic systems have such a structure.

3 Gait Controllability
In a general stratified structure, there will be one

bottom stratum, denoted SB, defined by the intersec-
tion of all the codimension 1 strata in the configuration
space. In Figure 3, this is stratum S1234 and for the
hexapod example, this is stratum S12456. For a legged
robot, this bottom stratum corresponds to the set of
points in the configuration space where all the feet are
in contact with the ground.

Given an open set V ⊆ M , define RV (x0, T ) to be
the set of states x such that there exists u : [0, T ] →
U that steers the control system from x(0) = x0 to
x(T ) = xf and satisfies x(t) ∈ V for 0 ≤ t ≤ T , where
U is the set of admissible controls. Define

RV (x0,≤ T ) =
⋃

0<τ≤T

RV (x0, τ). (3)

We will refer to RV (x0,≤ T ) as the set of states reach-
able up to time T . For gait controllability, the set of
admissible controls must be consistent with the gait,
i.e., admissible control inputs must steer the the sys-
tem through the sequence of strata that define the gait.

Definition 3.1 A gait, G = {SI1 , SI2 , . . . , SIn , SI1}
is gait controllable from x0 if the reachable set
RV (x0,≤ T ) contains a neighborhood of x0 for all
neighborhoods V of x0 and T > 0, where the neigh-
borhood is open in the relative topology of the bottom
stratum, SB. �

To clarify the presentation, we make one technical
assumption. Later we will discuss the conditions nec-
essary to eliminate this assumption.

Assumption 3.2 If SIi+1 ⊂ SIi , in the gait, G =
{SI1 , SI2 , . . . , SIn , SI1}, then SIi+1 is a codimension
one submanifold of SIi . In other words, multi–level
“jumps” to lower level strata are not allowed. �

Physically, this assumption requires that the robot
put one foot down at a time instead of putting multiple
feet down simultaneously.

Now, we construct the gait controllability distribu-
tion, which, in Proposition 3.3 will indicate whether
the system is controllable. Recall that ∆I is the in-
volutive closure of the distribution ∆I defined by the
vector fields which define the control system on stra-
tum SI . Given a gait, G, the gait distribution defined
on the bottom stratum, SI1 = SB, is the distribution

Dm =
m∑

i=2

Di−1 +
(
∆Ii ∩ TSB

)
,

where D1 = ∆I1 .
The following Proposition is our main result.

Proposition 3.3 If

dim (Dn) = dim (TxSB) ,

then the system is gait controllable from x.

Proof: This proof is complete; however, a much more
detailed version can be found in [10]. First, note that
the dimension of the reachable set on any stratum,
SIi is equal to the dimension of ∆Ii . This follows di-
rectly from Frobenius’ Theorem (see, e.g., Theorem
4.4.7 of [11]), or from the standard proof of Chow’s
theorem (see, e.g., Proposition 3.15 of [12]).

To construct the reachable set on any stratum, Sii ,
consider the composition of flows of the form

Nm = φXm
εm

◦ · · · ◦ φX1
ε1 (x0),

where φX
t is the flow along the vector field X for time

t and Xi ∈ ∆Ii . A variety of arguments (such as the
orbit theorem, Theorem 1 of Chapter 2 of [13]) show
that this is an m–dimensional submanifold of SIi . If
m < dim(∆Ii), then there must be an Xm+1 ∈ ∆Ii

such that

Nm+1 = φXm+1
εm+1

◦ φXm
εm

· · · ◦ φX1
ε1 (x0), (4)

is an m+1–dimensional submanifold of SIi . If this were
not the case, then ∆Ii ⊂ TSIi, which is a contradiction
since this would require that the dimension of ∆Ii be
less than m. The reachable set is now constructed by
extending it on a stratum–by–stratum basis through
the gait.

Lemma 3.4 In the construction of the reachable set,
if SIi ⊂ SIi+1 , then the dimension of the reachable



set increases by the same amount as the increase in
dimension between Di and Di + ∆Ii+1 .

Proof: Let dim(DIi) = m and dim
(
DIi + ∆Ii+1

)
=

m + n, i.e., the dimension increases by n. By the defi-
nition of a gait, there exists a vector field Xoff �∈ DIi ,
that takes the system off of SIi into SIi+1 . Now, on
SIi+1 by exactly the same argument as before, un-
less ∆Ii+1 is one dimensional, there must exist an
Xm+1 ∈ ∆Ii+1 ⊂ DIi+1 such that

Nm+1 = φXm+1
εm+1

◦ φ
Xoff
εoff ◦ φXm

εm
· · · ◦ φX1

ε1 (x0),

is an m+2–dimensional manifold. Repeating this same
argument for the existence of Xm+2, Xm+3, . . . , Xm+n

gives the reachable set Nm+1 = φ
Xm+n
εm+n ◦· · ·◦φ

Xoff
εoff · · ·◦

φX1
ε1 (x0), which is an m + n–dimensional manifold. H

Lemma 3.5 In the construction of the reachable set,
if SIi+1 ⊂ SIi , then the dimension of the reachable set
increases by the same amount as the increase in dimen-
sion between DIi and DIi + ∆Ii+1 minus the difference
between the dimensions of SIi+1 and SIi .

Proof: First, the reachable set must be restricted to
the submanifold SIi+1 . However, Assumption 3.2 im-
plies that SIi and SIi+1 intersect transversely. This is
because SIi+1 is a codimension 1 submanifold of the
M , and, by the definition of a gait, the reachable set
on SIi intersects it. The standard result for transverse
submanifolds (Corollary 3.5.13 of [11]),

codim
(
SIi ∩ SIi+1

)
= codim (SIi) + codim

(
SIi+1

)
,

implies that the dimension of the reachable set de-
creases by one. Now, the increase in dimension due to
the sum of DIi and DIi+1 (restricted to SIi+1), follows,
again, from the argument before and in the previous
lemma. H

It follows that in the construction of the gait distri-
bution that the dimension of the reachable set will be
the dimension of Dn. If the first and last strata in the
gait G is the bottom stratum, then the result follows
since the reachable set it contained in SB and has di-
mension equal to the dimension of SB. �

We assumed that if SIi+1 ⊂ SIi , then the reachable
set is transversal to the substratum, SIi+1 . As noted,
this is natural if dim

(
SIi+1

)
= dim (SIi) − 1, which

was assumed by Assumption 3.2. This assumption can
be relaxed to allow switches between strata with di-
mensions which vary by more than one as long as this
transversality assumption is satisfied.

4 An Example
The following example is adapted from Kelly and

Murray [7]. Consider the six–legged robot shown in

Figure 1. Recall, as discussed in the introduction, it is
not obvious that the robot can move in any direction.

Assume that the robot walks with a tripod gait,
alternating movements of legs 1–4–5 with movements
of legs 2–3–6. The equations of motion are

ẋ = cos θ
(
α(h1)u1 + β(h2)u2

)
ẏ = sin θ

(
α(h1)u1 + β(h2)u2

)
θ̇ = lα(h1)u1 − lβ(h2)u2

φ̇1 = u1 ḣ1 = u3

φ̇2 = u2 ḣ2 = u4

where (x, y, θ) represents the planar position of the cen-
ter of mass, φi is the front to back angular deflection of
the legs, hi is the height of the legs off the ground and
l relates the rotation of the body to the leg deflection.
The tripod gait assumption requires that all the legs
in a tripod move with the same velocity φ̇1 = φ̇4 = φ̇5

and ḣ1 = ḣ4 = ḣ5, and similarly for legs 2–3–6. The
inputs u1 and u2 control the leg swing velocities, while
the inputs u3 and u4 control the leg lifting velocities.

The functions α(h1) and β(h2) are defined by

α(h1) =
{

1 if h1 = 0
0 if h1 > 0 β(h2) =

{
1 if h2 = 0
0 if h2 > 0 .

If all legs are in contact with the ground (S123456), the
equations of motion are⎛

⎜⎜⎜⎜⎝

ẋ
ẏ

θ̇

φ̇1

φ̇2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos θ cos θ 0 0
sin θ sin θ 0 0

l −l 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎠ (5)

where u3 and u4 are constrained to be 0. Note that if
we let f represent the first column, and g the second
column, then

[f, g] =

⎛
⎜⎜⎜⎜⎝

−2l sin θ
2l cos θ

0
0
0

⎞
⎟⎟⎟⎟⎠ . (6)

Clearly, on S123456, we have generated enough direc-
tions to span the (x, y, θ) directions, but not enough
to span all the shape variables (the hi and φi direc-
tions) as well.

On S145the equations of motion are⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ

θ̇

φ̇1

φ̇2

ḣ2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cos θ 0 0 0
sin θ 0 0 0

l 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎠ (7)



where u3 is constrained to be 0.
On S236 the equations of motion are⎛

⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ

θ̇

φ̇1

φ̇2

ḣ1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 cos θ 0 0
0 sin θ 0 0
0 −l 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

u1

u2

u3

u4

⎞
⎟⎟⎠ (8)

where u4 is constrained to be 0.
Now, we must construct the gait distribution. We

take as our gait, the following sequence of strata:

G = {S123456, S145, S123456, S236, S123456},
as illustrated in Figure 4. The equations of motion for
the system restricted to the bottom stratum, S123456

are given in Equation 5. Also, a Lie bracket is neces-
sary to construct ∆123456, as given in Equation 6. By
inspection, ∆123456 = D1 has a dimension of three.

Now extend the construction to S145. Since
S123456 ⊂ S145, D2 = D1 + ∆145, where ∆145 is
determined from Equation 7. By inspection, then,
dim (D2) = 5.

Next, the construction returns to the bottom stra-
tum, S123456. We note that S12 is a codimension 1
submanifold of S1. Also, since D2 contains the basis
vector ∂

∂h1
, Assumption 3.2 holds. Then, we have that

D3 = D2 − 1 = 4.
Now, the construction is extended to stratum S236.

As with S145, S236 increases the dimension of D4 by
two, so that dim (D4) = 6. “Projecting” this back
down to S12 as before gives the dimension of the reach-
able set to be 5, which is the dimension of S123456.
Therefore, the hexapod example is gait controllable.

5 Conclusions
This paper presented a general method to deter-

mine whether a specific gait of a legged robot is con-
trollable. One attractive feature of this method is that
it is independent of the particular morphology of the
robot, and, more specifically, independent of the num-
ber of legs. This is a consequence of the fact that this
method is an extension of general nonlinear control
techniques, which, themselves are of general applicabil-
ity for smooth systems. Also, the test has applicabil-
ity beyond problems of legged locomotion. Grasping is
one obvious related problem in which the finger gaiting
(lifting and replacing fingers) is the analog of walking,
and the question of controllability relates to whether
or not it is possible to reorient a grasped object to any
arbitrary orientation.

The main limitation of this work, and thus a
prospect for future work, is the limitation of the
method to driftless systems, or quasi–static robotic lo-

comotors. Eliminating this limitation would make the
method applicable to an even broader class of legged
robotic systems, including dynamic bipeds and hop-
ping monopods. The main difficulty is that, even for
smooth systems, the “state of the art” for systems with
drift is much less developed. A general theorem on lo-
cal controllability for system with drift does exist [14];
however, it only provides sufficient conditions for con-
trollability. Even more limiting is that it is only valid
at equilibrium points, which further inhibit an exten-
sion of the theory to stratified systems.
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