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Abstract

We present a framework for designing stable control schemes for systems with changing dynamics –
systems whose dynamics change as the state evolves through different regions in the state space. Systems
with changing dynamics (SCD) form a subset of hybrid systems; their stabilization is therefore a problem
in hybrid control. It is often difficult or even impossible to design a single controller that would stabilize a
SCD. An appealing alternative are switching control schemes, where a different controller is employed in
each dynamic regime and the stability of the overall system is ensured through an appropriate switching
scheme. We formulate a set of sufficient conditions for the stability of a switching control scheme. We
show that by imposing a hierarchy among the controllers, sufficient conditions can be formulated in a
form suitable for the controller design. The hierarchy is formally defined through a partial order. With
partial order, the study of the stability of the system is reduced to the study of relationships among the
immediate neighbors in the partial order. This significantly simplifies the analysis and design processes.
The methodology is applied to stabilization (of a relative equilibrium) of a two-wheel mobile robot of the
Hilare type, where the wheels are allowed to slip. The example demonstrates that the approach is easy
to use and that the partial order concept naturally leads to modularity in the controller design.

Keywords: systems with changing dynamics, hybrid systems, switching controllers, par-
tial order, Hilare robot

I. Introduction

Design of controllers for hybrid systems remains a challenging problem and is the subject
of considerable research. A common assumption of many existing design methodologies
is that a physical plant with continuous dynamics is controlled by a supervisor in the
form of a finite automaton. Our work addresses a different problem. We study systems
whose dynamics change in different regions of the state space. There is no natural splitting
between the continuous and discrete layers of the system behavior, the discrete behavior
arises completely from the continuous. Because of the inherently discontinuous dynamics,
the control task becomes in many respects more challenging. The motivation for our
work comes from problems that arise in practice and have features not handled by prior
techniques. In particular, we are interested in applications in locomotion and robotics.

In this paper, we study stabilization of systems with changing dynamics (SCD). The goal
of control is to bring the system into a desired dynamic regime and stabilize an equilibrium
set in that regime. The equilibrium set might be for example a relative equilibrium or a
limit cycle. To reach the desired dynamic regime, the system must pass through other
regimes, and it is possible that they have to be traversed in a certain order for the system
to be stable. Because of discontinuous dynamics, it is difficult to design a single controller
that would stabilize a SCD. To reduce the complexity of the problem we propose an
alternative strategy, whereby a different controller is employed in each dynamic regime;
as the system evolves, we switch among different controllers. One of the goals of this
paper is to investigate what conditions must be satisfied by such a switching controller to
guarantee the stability of the system. A second goal is to suggest a paradigm for designing
a controller that satisfies such conditions. We observe that in many tasks the stability in
the sense of Lyapunov is too restrictive, so we concentrate on the control schemes that
only guarantee the convergence of the trajectories to the desired set. However, our basic
methodology does not preclude Lyapunov stability.
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A. Relation to previous work

A starting point for the controller design is a choice of formalism for describing hybrid
systems. Several alternatives can be found in the literature. Building upon their work
on the automata theory, [1] and [2] defined the notion of a hybrid automaton. Theory
of dynamical systems is the basis of the model in [3]. Examples of other works in this
category are [4] and [5]. References to several other models can be found in [6]. We use
models in this second group for our work.

Majority of works on hybrid controller design rely on certain properties of the system.
An early work is [7], where piecewise-linear systems are used as underlying model for
hybrid systems. Algorithms for automated design of controllers for a simplified version
of hybrid automata are described in [8] and [9]. A methodology for controlling multiple
cooperating agents is proposed in [10]. A game-theoretic framework for designing hybrid
controllers was proposed in [11] and applied to intelligent highway systems [12] and air
traffic control systems [13]. In [14], timed Petri nets are used to model hybrid systems;
supervisory control framework is employed for their control. A hybrid controller for the
so called cascade systems was proposed in [15]. Optimal control for hybrid systems was
explored in [16]; it was applied to trajectory synthesis in [17]. A controllability test and a
planning method for a class of hybrid systems called stratified systems was developed in
[18].

A number of authors considered stability of hybrid systems. Classical Lyapunov theory
has been extended for non-smooth and hybrid systems in [19], [20]. Multiple Lyapunov
functions were proposed for stability analysis of hybrid systems in [21], [22], [23]. A
controller design methodology based on multiple Lyapunov functions is described in [24].
An important contribution towards the application of multiple Lyapunov functions for
practical controller design is the work in [25] and [26]. There, the problem of finding a
set of Lyapunov functions for piecewise-linear systems is transformed into a (numerically
tractable) problem of solving a system of linear matrix inequalities. In [27], this ideas
were used to derive a simplified test for stability of a hybrid system modeled with a Petri
net. The idea of guiding the system through a sequence of equilibrium points in order to
stabilize it was employed in [28]. An assumption that is common to most of these works (an
exception is [28]) is that every subsystem has the same equilibrium point which has to be
stabilized. However, hybrid systems can exhibit much richer behavior: the system might
switch between multiple equilibrium sets before reaching the final state. Another common
assumption is that the switches between the controllers are either explicitly controlled, or
that the switching surfaces can be explicitly characterized. These assumptions are quite
restrictive and one of our goals is to overcome these limitations.

B. Our approach

As in [21], [22], [23], multiple Lyapunov functions are also the basis for the stability
analysis in the present work. However, we assume that the equilibrium sets among different
dynamic regimes are different. The convergence to the desired equilibrium set is achieved
not only by switching among different controllers, but also by switching among different
equilibrium sets. We show that a desired behavior of the system can be obtained by
prescribing a hierarchy among the controllers. The hierarchy is formally defined through
a partial order relation. If the switches between the controllers are consistent with the
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chosen partial order, the convergence of the system towards the desired equilibrium set
follows. We also propose a methodology for designing a set of controllers that satisfy such
requirements. An important feature of our work is that the convergence of the system
to the equilibrium set can be guaranteed by only satisfying certain relations between the
controllers “locally” (with respect to the partial order). This leads to modularity of the
design process and considerably simplifies the synthesis problem.

C. Motivating example

This section briefly describes an admittedly simple motivating example. A realistic
application of this work is presented in Section V. Consider a piecewise linear system
whose dynamics are described by:

M1 :

[
ẋ1

ẋ2

]
=

[
0 1
1
3

5

] [
x1

x2

]
+

[
0
1

]
u if ‖x‖ ≤ 1

M2 :

[
ẋ1

ẋ2

]
=

[
0 1
1
3

−1
3

] [
x1

x2

]
+

[
0
1

]
u if 1 < ‖x‖ ≤ 3

M3 :

[
ẋ1

ẋ2

]
= −

([
0 1
1
3

5

] [
x1 − 1

x2

]
+

[
0
1

]
u

)
otherwise

(1)

The partition of the state space into three dynamic regimes is shown in Figure 1.a.

(a)

M1

M3

M2

1 3

(b)

-5

-3

-1

1

3

5

-5 -3 -1 1 3 5

Fig. 1. (a) Partition of the state space; (b) some sample trajectories.

The aim of the control is to make the origin globally asymptotically stable. Note that
the dynamics in the regime M3 is the negative of the dynamics in M1, modulo a bias term
that makes the equilibrium point in M3 different from the origin. Therefore, if a linear
controller:

u = g(x1, x2) =
[

k1 k2

] [
x1

x2

]
(2)

stabilizes regime M1, the same controller will necessarily destabilize M3. The only way to
globally stabilize the origin is thus to design different controllers for M1 and M3.
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Let:

K1 =
[ −4

3
−7

]
(3)

be the gains for the controller g1 for M1 and

K3 =
[ −4

3
−3

]
(4)

the gains for the controller g3 for M3. A short calculation shows that g1 makes both poles
for M1 equal to p1 = p2 = −1, while g3 achieves the same for M3. In addition, g1 and g3

both stabilize M2: with the controller g1, the poles of the closed loop system are p1 = −3

and p2 = −1
3
, while with the controller g3, the poles are p1 = −11−4

√
7

3
and p2 = −11+4

√
7

3
.

It is also worth noting that g3 moves the equilibrium point of M3 to (−1
3
, 0).

Now define the following controller:

g(x) =

{
g1(x) if ‖x‖ ≤ 2
g3(x) otherwise

(5)

It is not difficult to show that with g defined as above, the function V = ‖x‖2 is nonde-
creasing in the regimes M1 and M2. This implies that once the system enters the domain
of M2, it does not switch back to M3. And since the equilibrium point of M3 is (−1

3
, 0), all

the trajectories of M3 will eventually intersect the domain of M2 and therefore converge
to the origin. Some trajectories of the system are shown in Figure 1.b.

We also observe that the defined control scheme is robust with respect to the switches.
The switch between g1 and g3 occurs within the domain of M2 where both controllers are
stable. This implies that the system will behave properly even if the state is not known
precisely and the switch does not occur exactly on the set ‖x‖ = 2.

The example is not physically motivated and was constructed in order to motivate our
approach. However, it shows how our work differs from those above. In [19]-[24], it
is assumed that all the sub-systems have the same equilibrium point. Therefore, none
of those results can be applied here. Furthermore, while all the subsystems are linear,
the domains of each of the subsystems are not polygonal and convex, which makes the
application of the results in [25]-[27] difficult. Also, the switches between different dynamic
regimes are autonomous, so the scheme from [28] can not be used.

D. Contents of the paper

The paper is organized as follows. We describe our formal model for a SCD in Section
II. In Section III we review some notions for stability analysis on manifolds and then
formulate three propositions that give sufficient conditions for the stability of a switching
control scheme. The propositions are progressively less abstract and lead to a practical
methodology for the controller synthesis. Some techniques for designing switching con-
trollers that satisfy sufficient conditions for stability are described in Section IV. In Section
V we apply the methodology to the problem of stabilization of a Hilare robot whose wheels
can slip. Performance of the controller is illustrated with simulation results. We conclude
the paper with a discussion.

DRAFT



6

II. Modeling

In this section we describe the basic model of a dynamical system that will be used in
the paper. The main feature of a SCD is that as the system moves from one region of
the state space into another, dynamic equations of the system change. Partition of the
state space into different regions will be described by a collection of manifolds. Each of
the manifolds will be called a discrete state. On each of the manifolds (in each discrete
state), the system dynamics can be described by a (controlled) vector field. Since a vector
field describes the evolution of the continuous state, these control inputs will be called
continuous. On the other hand, in some cases we will be able to force the system to switch
from one regime to a different regime. Such a discrete selection will be described by a set
of discrete controls. Finally, we will need a map that describes how the system switches
between dynamic regimes. In other word, we need a function that maps the continuous
state in the current dynamic regime (discrete state), and current continuous and discrete
controls, into a new dynamic regime. We thus arrive at the following formal definition:

Definition II.1: A system with changing dynamics (SCD) is a tuple:

SCD = (Ξ,M,U , Γ,F , Σ) (6)

where
1. Ξ ⊂ ZZ is a (finite) set of discrete states.
2. M = {Mi}i∈Ξ is a collection of (differentiable, connected) manifolds. For simplicity, we
assume Mi ⊆ IRn for some n.
3. U ⊂ IRm is the set of continuous inputs.
4. Γ ⊂ ZZ is the set of discrete inputs.
5. F = {fi}i∈Ξ is a set of (C1) vector fields:

fi : Mi × U → TMi

fi : (x, u) �→ fi(x, u) ∈ TxMi

6. Σ : Ξ × ∪i∈ΞMi × Γ × U → Ξ is a function describing the discrete evolution of the
system.

The evolution of a SCD is given in the following way. The system evolves on Mi following
the vector field fi as long as Σ(i, x, η, u) = i. When Σ(i, x, η, u) becomes equal to j 
= i,
the system dynamics switches to (Mj, fj). The value of Σ(i, x, η, u) can change either
because the trajectory of the system leaves the manifold Mi and enters Mj , or because the
discrete input η changes. We will assume that as the dynamics of the system changes, the
continuous state remains the same. In other words, the evolution of the continuous state
x will be continuous1. This implies that the following condition must hold:

Σ(x, ., ., .) = i ⇒ x ∈ Mi (7)

In general, the vector fields in F will be different, reflecting changes in the dynamics of
the system. Also the dimensions of the manifolds in M might be different, as shown for
example in Fig. 2.a. The system in the figure evolves on four manifolds: M1, M2 and M3

of dimension 2 and M4 of dimension 1. The target equilibrium set E4 ⊂ M4 consists of

1Most of the results in the paper can be generalized to systems with jumps.
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a single point. Note that the manifolds are not disjoint and that M4 is a subset of M1,
M2 and M3. It often helps to represent the topology of a SCD with a graph. The vertices
of the graph correspond to the elements of M (dynamic regimes). There will be an edge
from a vertex associated with Mi to a vertex associated with Mj if it is possible to switch
from Mi to Mj . In other words, there exist x, η, and u, such that Σ(i, x, η, u) = j. For
example, if we assume that a nonempty intersection of two manifolds implies that it is
possible to switch between them, the graph for the system in Fig. 2.a is Fig. 2.b.

(a)
2

M3

M4

M

E

M1

4

(b)

M2

M1

M3

M4

Fig. 2. (a) A sequence of embedded manifolds; (b) the corresponding graph.

An important issue for a SCD is the existence and uniqueness of solutions. Assuming
that switches in the dynamic behavior are deterministic and that the vector fields in F
are Lipschitz continuous, a unique solution is guaranteed to exist on each Mi. However,
the overall evolution of the system might not be unique if chattering occurs. One way to
avoid such anomalies is to introduce hysteresis in the switching rules. We will not pursue
these issues further and we refer the reader to [29]. In the rest of the paper we assume
that no chattering occurs so that a unique solution for system dynamics exists.

A. Control Strategy

In this paper we study stabilization of SCD’s. The control task is to stabilize a subman-
ifold En in a particular dynamic regime, En ⊆ Mn. Depending on the application, it might
be necessary to achieve asymptotic stability or maybe only convergence of the trajectories
of the system to En. In both cases, the control task is complicated by the fact that it is
not known in advance what manifolds the dynamical system will traverse. In particular, it
is possible that the system switches autonomously between different manifolds. It is also
clear that switching might be unpredictable due to external disturbances.

Let Ω = (Ξ,M,U , Γ,F , Σ) be a SCD. A natural way to control a SCD is to design
a controller for each of the dynamic regimes. Therefore, for each manifold Mi ∈ M we
design a controller gi:

gi : Mi → U (8)

The function gi will be assumed to be measurable, but it can be discontinuous. The
evolution of the discrete state also depends on the discrete input η. We must therefore
also design a discrete controller:

S : Ξ × ∪i∈ΞMi → Γ (9)
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which at each state (i, x) ∈ Ξ × ∪i∈ΞMi selects a discrete input. consider the set of
all discrete states reachable from the current combined (discrete and continuous) state,
D(i, x) = {Σ(i, x, η, gi(x)) | η ∈ Γ}. Clearly, by choosing an appropriate discrete input,
we can force the system to switch to one of the discrete states in D(i, x). Without loss of
generality we can assume that Γ = Ξ and that whenever j ∈ D(i, x), Σ(i, x, j, gi(x)) = j.
For this reason, S will be also called a switching function. The collection of controllers
G = {gi}i∈Ξ and the switching function (discrete controller) S form a switching controller,
(G,S). Note that the switching controller turns Ω into an autonomous system, with the
vector fields in F depending only on the continuous state x and the function Σ depending
on the combined state (i, x).

When defining a SCD , we did not put any restrictions on M and F . In particular,
the manifolds in M or the vector fields in F need not be different. In this way, the case
when several different controllers are used in the same dynamic regime can be treated in
the same framework. If we design k different controllers for the dynamic regime (Mi, fi),
we can describe such a system by introducing additional elements M1

i , . . . , Mk
i to M, and

f 1
i , . . . , fk

i to F , where M1
i = · · · = Mk

i = Mi and f j
i (x) = fi(x, gj(x)). In this way, we

can always assume that exactly one controller is defined in each dynamic regime.

III. Stability of switching controllers

A. Stability theory on manifolds

We are interested in stabilizing submanifolds (possibly unbounded). The conventional
Lyapunov theory can not be directly applied in this setting so we need some additional
definitions (see [30]).

Definition III.1: A distance between a point x and a set E ⊆ IRn is defined by:

ρ(x, E) = inf
y∈E

d(x, y) (10)

A ball with radius R around E is the set:

B(E, R) = {x | ρ(x, E) < R}
Definition III.2: A smooth manifold E ⊂ M is locally stable if for any R > 0 there

exist r > 0 such that if ρ(x(t0), E) < r then ρ(x(t), E) < R for every t > t0. It is locally
attractive if there exists R > 0 such that if ρ(x(t0), E) < R then limt→∞ ρ(x(t), E) = 0. It
is locally asymptotically stable if it is both locally stable and locally attractive.

Theorem III.3 ([31], [32]) If for a control system Ω there exists a C1 function V : M →
IR, such that:
(1) V (x) ≥ 0 and V (x) = 0 ⇔ x ∈ E;
(2) there exists a monotonically increasing function α : IR+ → IR+, α(0) = 0, such that
α(ρ(x, E)) < V (x);
(3) there exists a monotonically increasing function β : IR+ → IR+, β(0) = 0, such that
V (x) < β(ρ(x, E));
(4) V̇ (x) ≤ 0, where V̇ is the derivative of V along the trajectories of Ω;
then the manifold E is locally stable. If in addition:
(5) there exists a monotonically increasing function γ : IR+ → IR+, γ(0) = 0, such that
V̇ (x) ≤ −γ(ρ(x, E)) < 0,
then E is locally asymptotically stable.
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B. Sufficient conditions for convergence

Take a SCD Ω = (Ξ,M,U , Γ,F , Σ) and a switching controller (G,S). Assume the
control task is to stabilize En ⊆ Mn and let the controller gn stabilize En. Assume we can
construct a Lyapunov function Vn which satisfies the conditions (1)-(5) of Theorem III.3.
The following proposition gives sufficient conditions for En to be globally attractive:

Proposition III.4: Let the switching scheme S satisfy the following conditions:
(1.1) There exists L > 0 such that S(n, x) = n for every x ∈ B(En, L) ∩ Mn.
(1.2) For any trajectory x(t), there exists a ∆ > 0 and an infinite sequence {ti} whose
elements satisfy:
(a) for every t ∈ [ti, ti + ∆], S(η(t), x(t)) = n;
(b) Vn(ti + ∆) ≥ Vn(ti+1).
Then the submanifold En is globally attractive.

n

t2 t4 5t1 t3t

V

∆ ∆ ∆ ∆ ∆

.  .  .

Fig. 3. Values of the Lyapunov function and a sequence satisfying the condition (1.2b) of Proposition
III.4. The function is only shown when S(η(t), x(t)) = n.

Remark III.5: The condition (1.1) guarantees that there is a region around En in which
it is not possible to switch from gn to some controller gi, i 
= n. The condition (1.2)
states that regardless of the current state, the system trajectory will eventually enter
the manifold Mn and stay on it for at least ∆. Furthermore, we can find a sequence of
subintervals of length at least ∆ so that the Lyapunov function restricted to the union of
these intervals is monotonically decreasing (see Fig. 3).

Proof: Let {tk} be a sequence given by the condition (1.2). Since the Lyapunov
function Vn is monotonically decreasing when the system evolves on Mn, the condition
(1.2b) implies that ti+1 − ti ≥ ∆. Now take In = ∪

k∈IN[tk, tk +∆] and consider the system
evolving on In. By assumption, Vn satisfies the conditions of Theorem III.3, so we can find
monotonically increasing functions α, β and γ such that α(ρ(x, En)) < Vn(x) < β(ρ(x, En))
and V̇n(x) ≤ −γ(ρ(x, En)) < 0. Let r = ρ(x(0), En) and let ε be an arbitrary number such
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that 0 < ε < r. Then we can find δ > 0 such that β(δ) < α(ε). Let K be an integer such

that K > β(r)
∆γ(δ)

and take τ = tK +∆. Suppose that ρ(x(t), En) > ε for every t ∈ In∩ [0, τ ].

Then we have:

0 < α(ε) ≤ Vn(x(τ)) = Vn(x(tK)) +

∫ tK+∆

tK

V̇n(x(t)) dt

≤ Vn(x(tK)) −
∫ tK+∆

tK

γ(ρ(x(t), En)) dt ≤ Vn(x(tK)) −
∫ tK+∆

tK

γ(δ) dt

= Vn(x(tK)) − ∆γ(δ) ≤ Vn(x(tK−1) + ∆) − ∆γ(δ) ≤ . . .

≤ Vn(x(0)) − K∆γ(δ) ≤ β(r) − K∆γ(δ) < 0 (11)

This is a contradiction, implying that there exists τ ′ ∈ In∩[0, τ ] such that ρ(x(τ ′), En) < δ.
But then for every t ∈ In such that t > τ ′:

α(ρ(x(t), En)) ≤ Vn(x(t)) ≤ Vn(x(τ ′)) ≤ β(δ) < α(ε)

which implies:

ρ(x(t), En) < ε ∀t > τ ′, t ∈ In

This shows that ρ(x(t), En) converges to 0 on In.
Since ρ(x(t), En) converges to 0 on In, there exists T > 0 such that for all t > T, t ∈ In,

ρ(x(t), En) < L. But by assumption, for x ∈ B(En, L) ∩ Mn the system can not switch
from Mn to some Mj , j 
= i, which means that the system will stay under the control of
gn for all t > T and therefore converge to En.

This proposition underlines the difference between our work and other investigations
of the stability of hybrid systems (see Section I). In our work, the equilibrium sets of
the system on each of the manifolds are in general different, so the condition (1.1) is
necessary to guarantee the convergence to the desired equilibrium set. In most other
existing literature, the equilibrium point is the same in all the regimes so the trajectory
will in general keep crossing different regions as it approaches this point. Schematically,
the two alternatives are shown in Figure 4.
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Fig. 4. A schematic of the evolution of a hybrid system with a single equilibrium point (left) and when
the equilibrium points are different (right).
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While Proposition III.4 gives sufficient conditions for convergence of the system trajec-
tories to En, these conditions are difficult to check and therefore not suitable for controller
design. It is particularly difficult to check the condition (1.2). By introducing hierarchy
among dynamic regimes (continuous controllers), we can obtain conditions that are easier
to apply in the design process. The hierarchy will be formally defined through a partial
order.

Definition III.6: A (binary) relation on A is a subset of A × A. If R(A) ⊆ A × A is a
relation, we write aRb or R(a, b) when (a, b) ∈ R(A). If aRa for all a ∈ A, the relation is
reflexive. If aRb and bRc ⇒ aRc, the relation is transitive. If aRb and bRa ⇒ a = b, the
relation is antisymmetric. If R is a relation, the smallest transitive relation RTrans such
that R ⊆ RTrans is called a transitive closure of R.

Definition III.7: A binary relation on a set A that is reflexive, transitive and antisym-
metric is called a partial order and we will denote it by �. If a � b and a 
= b, we also
write a ≺ b. If there exists an element s ∈ A such that s � x for every x ∈ A, s is called
the smallest element. When it exists, the smallest element is unique.

A relation R(A) can be represented by a (directed) graph with vertices A and edges
R(A). For a partial order, transitivity and antisymmetry imply that there will be no
nontrivial cycles in the corresponding graph.

Now let M = {Mi}i∈Ξ be the collection of manifolds for a SCD Ω. The switching
scheme S defines a relation σ(Ξ), if we put σ(i, j) when it is possible to switch from the
manifold Mi (controller gi) to the manifold Mj (controller gj). More formally:

σ(Ξ) = {(i, j) | ∃x ∈ Mi s.t. S(i, x) = j} (12)

Note that the graph representing this relation is precisely the graph described in Section
II. We can then show:

Proposition III.8: Take σTrans(Ξ) and let � be a partial order within σTrans(Ξ) that has
n for the smallest element. Assume the switching scheme S has the following properties:
(2.1) There exists L > 0 such that S(n, x) = n for every x ∈ B(En, L) ∩ Mn.
(2.2) If x(t) is a trajectory of Ω and Mi, i 
= n is a manifold on which x(t) evolves for an
infinite amount of time, then there exists ∆ > 0 such that for every T we can find τ > T
such that S(η(t), x(t)) ≺ i for every t ∈ [τ, τ + ∆].
(2.3) If a system switched from gn to some other controller at time toff and if ton is the
time when the system switches again to gn, then Vn(toff) ≥ Vn(ton).
Then the submanifold En is globally attractive.

Remark III.9: The condition (2.1) is the same as the condition (1.1) in Proposition III.4,
while the conditions (2.2) and (2.3) together replace the condition (1.2). The condition
(2.2) means that for any manifold Mi on which a trajectory stays for an infinite amount
of time, we can find a switch at an arbitrarily large time to a manifold that lies lower in
the partial order � and that after such a switch the system evolves on the manifolds that
are below Mi for at least ∆.

Proof: We will show that the conditions (2.2) and (2.3) imply the condition (1.2) of
Proposition III.4. Let x(t) be a trajectory of Ω and let Mi be a manifold on which x(t)
evolves for an infinite amount of time. Since we have a finite number of manifolds, there
will be at least one such i. The condition (2.2) guarantees that there will be an infinite
number of instances when the system evolves for at least ∆ on manifolds that are below
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Mi in the hierarchy defined by �. But this implies that x(t) will evolve on these manifolds
for an infinite amount of time and since there are only finitely many manifolds below Mi,
there must exist a manifold Mj with j ≺ i on which x(t) evolves for an infinite amount of
time. By proceeding recursively and because n is the smallest element for �, we conclude
that the system must evolve on Mn for an infinite amount of time and in instances that
last for at least ∆. The condition (2.3) guarantees that each time the system switches
to gn, the value of the Lyapunov function is smaller than when the system last switched
off Mn. The existence of the sequence {ti} in the condition (1.2) of Proposition III.4 is
therefore guaranteed.

Using Proposition III.8 we can design a stable switching scheme by choosing a partial
order, developing controllers on each Mi that guarantee a switch to a lower level with
respect to this partial order, and enforcing the decreasing of Vn at switches to Mn. How-
ever, developing controllers that guarantee a switch to a lower level is still not an easy
task. One possible strategy is to make each controller stabilize a certain manifold within
a region from which the system switches to manifolds lower in the hierarchy. A similar
idea was employed in [28]. The idea can be formalized in the following way:

Proposition III.10: Assume a partial order � on Ξ that has n for the smallest element.
Let each controller gi asymptotically stabilize a manifold Ei and assume we can find a
Lyapunov function Vi for gi. Let the switching scheme S satisfy the following conditions:

(3.1) For each i, there exists Li > 0 such that S(i, x) ≺ i for every x ∈ B(Ei, Li) ∩ Mi

(for i = n we require S(n, x) = n).
(3.2) There exists ∆ > 0, such that for any T at which the system switches from gi to gj,
j ≺ i, S(η(t), x(t)) ≺ i for each t ∈ [T, T + ∆].
(3.3) If the system switches from gi to some gj, i ≺ j, at time toff and after that switches
again to gi at time ton and if S(η(t), x(t)) 
≺ i for all t ∈ [toff , ton], then Vi(toff) ≥ Vi(ton).

Then the submanifold En is globally attractive.
Remark III.11: For i = n, the conditions (3.1) and (3.3) above clearly become the same

as conditions (2.1) and (2.3) in Proposition III.8. Note that Propositions III.8 and III.10
imply that we can examine the stability of the system by simply examining the relations
between the immediate neighbors in the partial order. This has important implications for
the synthesis problem and can be exploited to obtain modularity of the controller design
process.

Proof: We will show that the above conditions imply the conditions of the Proposition
III.8. Assume that a trajectory x(t) evolves on a manifold Mi for an infinite amount of
time, but after some time T it never switches to any manifold Mj such that j ≺ i. Let
Ii = {t > T | S(η(t), x(t)) = i}, the union of the intervals beyond T during which the
system evolves on Mi. By the condition (3.3), Vi will be monotonically decreasing on Ii

and by the condition (3.2), we can find an infinite sequence of (disjoint) intervals of length
∆ that lie in Ii. By the same reasoning as in the proof of Proposition III.4, x(t) converges
to Ei. By the condition (3.1) this implies that the system will switch to some Mj, j ≺ i,
which is a contradiction. This and the condition (3.2) above therefore imply the condition
(2.2) of Proposition III.8.

Condition (3.1) is often too stringent, but it is not difficult to see that it can be relaxed:
Corollary III.12: For any i, condition (3.1) in Proposition III.10 can be replaced by the

following two conditions:
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(3.1a) There exists a submanifold Hi ⊂ Mi such that any trajectory converging to Ei

intersects Hi.
(3.1b) S(i, x) ≺ i for every x ∈ Hi.

So far, we have assumed that the switching scheme S is static. In other words, S only
depends on the current state (i, x). However, Proposition III.10 suggests that the switching
scheme should change so that a switch to some controller gi should be allowed only at the
points where the condition (3.3) is satisfied. For this to be true, the switching scheme
in all the discrete states j such that i ≺ j should depend on Vi(toff). More generally, we
would like to allow the switching scheme to change when the discrete state changes. Such
changes can be also understood as adding memory to the discrete controller, so that its
actions depend on the past evolution of the system (the discrete state). A look at the proof
of Proposition III.8 shows that there is nothing that would require the switching scheme
to be static. The proposition therefore remains true even if the switching scheme changes
as the discrete state evolves. We have to be slightly more careful with the Proposition
III.10. In that case, we need to guarantee that even if the switching scheme changes, the
convergence of the trajectories on a manifold Mi to an equilibrium set Ei implies that the
system will switch to some gj, j ≺ i. We can show:

Proposition III.13: Assume that the switching scheme changes from S− to S+ whenever
the system switches from the discrete state i to the discrete state j 
� i. If this change is
such that the following holds:

S+(j, x) 
= S−(j, x) ⇒ j 
≺ i and S+(j, x) = j (13)

then Proposition III.10 still holds, as long as the condition (3.1) holds for any fixed time.
Note that if we make the switching scheme depend on Vi(toff) as the system leaves gi in

order to satisfy the condition (3.3), the switching scheme will change exactly as above.
Proof: If (13) holds, the switching scheme does not change in any discrete state that

is lower (in the partial order) than the current discrete state. Therefore, conditions (3.1)
and (3.3) can be employed in the proof of Proposition III.10 in the same way as before.
Similarly, the change satisfying (13) does not affect the condition (3.2).

C. Stability

Propositions III.4, III.8, and III.10 provide sufficient conditions for En to be attractive,
not to be stable. To prove the stability we have to show that trajectories starting outside
Mn “nicely” converge to Mn. One possible way of stating this is:

Corollary III.14: The manifold En will be stable if in addition to the conditions of
Proposition III.4:

(1.3) For any R > 0 and every i, there exists r > 0 such that if x(0) ∈ (Mi\Mn)∩B(En, r)
then under the control of gi, x(t) ∈ B(En, R) for every t > 0.

Proof: The Lyapunov function V guarantees that for any R2 > 0, there exists
r2 > 0 such that x(0) ∈ Mn ∩ B(E2, r2) implies x(t) ∈ B(En, R2) as long as x(t) stays in
Mn. Take R2 = min{R, L} and find the corresponding r2. Take R1 = min{R, r2}. By
assumption, there exists r1 such that x(t) stays in B(En, R1) for any trajectory starting
in B(En, r1) \ Mn and evolving in Mi. By the condition (1.1) of Proposition III.4 and by
the choice of R1, x(t) will intersect Mn inside B(En, r2) ∩ Mn. But a trajectory on Mn
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that comes inside B(En, r2) ∩ Mn will stay inside B(En, L) ∩ Mn and thus remain under
the control of gn (and stay inside B(En, R)) for all later times.

Remark III.15: If we assume the scenario of Proposition III.10 and for every i, Ei ⊆ En,
the condition (1.3) will be trivially true.

IV. Design of switching controllers

Proposition III.10 (Corollary III.12) can be used to design stable switching controllers.
Design of the discrete controller will be guided by choosing a partial order on Ξ (hierarchy
among Mi’s). The partial order can not be chosen arbitrarily, part of it is usually dictated
by the physics of the problem (see also Section V). The continuous controllers on each
Mi must be then designed so that they are consistent with the chosen partial order. In
particular, we need to satisfy the conditions (3.2) and (3.3) of the Proposition III.10. We
outline three techniques that can be used to satisfy these conditions.

A. Hysteresis

Hysteresis can be used to enforce the condition (3.2). Suppose we want to switch from
Mi to Mj, j ≺ i. If fj(x, gj(x)) is bounded for all x in a neighborhood in which the switch
occurs, then the condition (3.2) will be automatically satisfied if:

inf
{x | S(i,x)=j}

d(x, {y | S(j, y) 
� j}) > d0

where d0 > 0 is some constant. In other words, after the switch to Mj we are some (fixed)
finite distance from any point y in H where the system would switch to a discrete state
which is not lower in the partial order. Because of the bounded rate of change of the
continuous state, this implies that such a switch can only occur after some finite time
interval. Hysteresis in the switching rule is also useful to eliminate chattering and increase
the robustness of the system.

B. Mixing of the controllers

It is difficult to directly design controllers that would satisfy the condition (3.3). An
alternative is to combine several controllers. More precisely, suppose we would like to allow
switches from Mi to Mj , j ≺ i. To satisfy the condition (3.3), we need to have a controller
gi that is able to decrease the Lyapunov function Vj . Controllers gi and gj stabilize Ei and
Ej , respectively. We also know that the controller gj decreases the Lyapunov function Vj.
If Ej ⊂ Ei, we can construct a new controller, ĝi that brings the system to Ei and then
moves the state along Ei towards Ej . Chose some neighborhood H of Ei and define ĝi to
be:

ĝi(x) =

{
gi(x) if x ∈ Mi \ H
gi(x) + εgj(x) if x ∈ Mi ∩ H

(14)

where ε is a small constant. Now we can modify the switching scheme as discussed in
Proposition III.13 so that we do not switch from gi to gj until Vj has sufficiently decreased.
This will guarantee that the condition (3.3) is satisfied. The following lemma gives rigorous
justification for such a design:
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Lemma IV.1: Let E be an asymptotically stable manifold for the system:

ẋ = f(x) (15)

and let V be a Lyapunov function satisfying Theorem III.3 such that |∂V
∂x
| is bounded

on B(E, R) for some R. Let g(x) be a function such that |g(x)| is bounded on B(E, R).
Given 0 < L < R, it is always possible to choose ε > 0 such that every trajectory of the
system:

ẋ = f(x) + ε g(x) (16)

that starts in B(E, L) never leaves it.
Proof: Let V̇u be the derivative of V along the trajectories of 15 and V̇p the derivative

of V along the trajectories of 16. Let Q = supB(E,L) |∂V
∂x
| and M = supB(E,L) |g(x)|. Choose

ε = γ−1(L)
QM

(where γ is a monotonically increasing function such that V̇u(x) ≤ −γ(ρ(x, E)),

see Theorem III.3). Then we have:

V̇p(x(t)) = V̇u(x(t)) +
∂V

∂x
εg(x) ≤ −γ(ρ(x, E)) + εQM < 0 if ρ(x, E) > L (17)

The Lemma tells us that it is always possible to construct the controller ĝi(x) so that
once the system enters the ball B(Ei, Li), where Li is the constant from the condition
(3.1), it will not leave the ball until it switches to gj. To verify that ĝi actually decreases
Vj while the system evolves on B(Ei, Li), we can use linearization around Ei.

C. Dealing with autonomous switches

Mixing of the controllers can be used to enforce the condition (3.3) when the switches
between two discrete states i and j are under our control. But there will be situations when
the system switches autonomously. In this case, it is helpful to decouple the autonomous
switches from the switches between controllers with different equilibrium sets. Assume
the system can switch autonomously from the discrete state i to j, but the controllers gi

and gj have different equilibrium sets. We can try to design a controller gi
j on Mj that

has the same equilibrium set and the same Lyapunov function as the controller gi on Mi.
Then instead of switching from gi to gj, we switch from gi to gi

j . Since the controllers have
the same Lyapunov function, the condition (3.3) is automatically satisfied. To switch to
the controller gj (and enforce the convergence to a different equilibrium set), we then use
mixing of the controllers gi

j and gj, as described above.

V. Example: Hilare robot

We study control of a mobile robot of a Hilare type. A schematic of such a robot
is shown on Fig. 5. The robot has two independently actuated wheels. The inputs to
the system are the two torques that drive the wheels. In the robotics literature, it is
commonly assumed that the wheels of the robot do not slip, leading to a nonholonomic
system. However, slippage of the wheels can easily occur if the robot drives on a slippery
surface, when large torques are applied on the wheels, when the robot makes turns at
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sufficiently high velocity, or when it is perturbed by external forces. As the experience
with cars shows, slippage of the wheels can lead to catastrophic results. In this example,
we therefore study control of a Hilare robot whose wheels can slip. Since the dynamics
of the robot change as the wheels switch between rolling and sliding, this is an example
of a SCD. We want to make the robot drive along a prescribed line in the plane with a
constant forward velocity v0 > 0 (such a line is a relative equilibrium). Referring to Fig.
5, the control task will be to stabilize the robot to the line y = 0 and the velocity vx = v0.

y

x

yv

xv

1u2

φ

u

φ12

θ

r

lIm

m

m

2

2

1,

Fig. 5. A top view and a side view of the Hilare robot

The dynamics of the system changes depending on whether the wheels are rolling or
sliding. We have four different regimes: (a) both wheels are rolling; (b) both wheels are
sliding; (c) wheel 1 is rolling and wheel 2 is sliding; (d) wheel 1 is sliding and wheel 2 is
rolling. We denote these regimes by RR, SS, RS and SR, respectively. To each regime
corresponds a manifold on which the system evolves. The graph describing the system’s
discrete behavior is shown in Fig. 6.

SS

SR RS

RR

Fig. 6. Graph corresponding to a Hilare robot

In general, the Hilare robot can be described with 5 configuration variables: position
of the center of mass (x and y) and orientation of the main body (θ), and the angles of
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rotation of both wheels (φ1 and φ2). The phase space is therefore in general of dimension
10. If any of the wheels is rolling, additional relations among the state variables must hold
and the dimension of the state space decreases.

In order to derive the dynamic equations, we first write down the expression for the
kinetic energy of the system. It is useful to express the kinetic energy in the body-fixed
frame:

2 T = w2
1Iw + w2

2Iw + ω2(Ib + 2Iv) + (v2
x + v2

y)(mb + 2mw) (18)

The symbols are:

Iw Moment of inertia of a wheel around its axis
Ib Moment of inertia of the body of the robot around

the vertical axis through the center of mass
Iv Moment of inertia of a wheel around the

vertical axis through the center of mass
mb mass of the body of the robot
mw mass of a wheel

while the variables are:

w1 rotational velocity of the wheel 1
w2 rotational velocity of the wheel 2
ω rotational velocity of the body of the robot
vx forward velocity
vy lateral velocity

It is important to observe that the expression for the kinetic energy does not depend on
the position of the robot in space or on the angles of rotation of the wheels. The same is
true for the actuating torques, as well as the forces between the ground and the wheels.
In the language of mechanics, we say that the system is invariant under the action of a
group SE(2)×S1×S1. Since this group is also the configuration manifold for the system,
we can use the Euler-Poincaré equations to describe the dynamics of the system [33]. The
equations are:

ẇ1 =
F 1

x r + u1

Iw

ẇ2 =
F 2

x r + u2

Iw

ω̇ = l
F 1

x − F 2
x

Ib + 2Iv
(19)

v̇x = ω vy +
F 1

x + F 2
x

mb + 2mw

v̇y = −ω vx +
F 1

y + F 2
y

mb + 2mw

The configuration (group) variables can be obtained from the velocities by integrating the
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equation:

ġ = gξ (20)

where g ∈ SE(2) × S1 × S1 stands for the group variables and ξ for the body-velocity
(Lie algebra) variables [33]. In this paper, we are only interested in controlling the con-
figuration variables y and θ, the rest of the variables are controlled at the velocity level.
The dimension of the system is thus 7. The forces F 1 and F 2 are the forces between the
ground and the two wheels, expressed in the body-fixed frame. The indexes x and y stand
for the forward and lateral directions. The rest of the symbols are explained in Fig. 5.

If the wheel 1 is rolling, we have two constraints:

vx + lω + rw1 = 0

vy = 0 (21)

Similarly, when the wheel 2 is rolling, the constraints are:

vx − lω + rw2 = 0

vy = 0 (22)

When the wheel i is rolling, the force F i prevents slippage of the wheel and can be
eliminated from Eq. (20) using Eq. (21) or Eq. (22). Since the rolling constraint results
in two constraint equations, the dimension of the system drops by 2 whenever a wheel
starts rolling. However, when both wheels are rolling, (21) and (22) only constitute 3
independent constraints. Therefore, when both wheels are rolling, the dimension of the
system is 4, including the configuration variables y and θ.

When the wheels are sliding, the reaction forces are frictional forces. The force F i when
the wheel i is sliding is:

F i = −µd
vi

r

‖vi
r‖

(
mb

2
+ mw)g (23)

where µd is the coefficient of (dynamic) friction, g is the gravity constant and vr is the
relative velocity between the point on the wheel which is in contact with the ground and
the ground (the left-hand sides of Eqs. (21-22)).

The switch from rolling to sliding occurs when the amplitude of the constraint force
exceeds the amplitude of the (static) friction:

‖F i‖ > µs(
mb

2
+ mw)g ⇒ rolling → sliding (24)

The condition for the switch from sliding to rolling is that the relative velocity is 0 and
that the amplitude of the frictional force is greater than the amplitude of the constraint
force:

vi
r = 0 and ‖F i‖ ≤ µs(

mb

2
+ mw)g ⇒ sliding → rolling (25)
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A. Controller design

The control task is to stabilize the robot to the relative equilibrium ERR = {y = 0, vx =
v0}, a subset in the regime RR. The control strategy will be to first make the wheels roll
and then stabilize the robot to the desired relative equilibrium. Note that once the wheels
roll, we can not guarantee that no slippage will occur, the convergence to the desired set
must be attained through switching.

When the wheels roll, the constraint force also depends on the control inputs. Therefore,
we do have a certain amount of control over the switches from rolling to sliding. However,
once the feedback controllers for u1 and u2 are designed, the switches between rolling and
sliding are autonomous (the discrete inputs have no effect on the switches). To deal with
these autonomous switches we can use the method described in Section IV-C. We need
to design a set of controllers for the four regimes that share a Lyapunov function at least
pairwise. This is possible since the equations for w1 and w2 can be feedback linearized
regardless whether F is a constraint force or a friction force. Let the linearizing controllers
obtained by substituting the appropriate expressions for the force F in different regimes
be gSS, gSR, gRS, and g1

RR (the last superscript indicates that we will need additional
controllers in the regime RR). Using these controllers, we can drive the wheels to a
constant value −v0

r
(the nominal driving velocity). Given that friction is a dissipative

force, we expect that after w1 and w2 converge, the wheels of the robot will start rolling,
causing the robot to drive in a straight line. The formal proof that the controllers gSS,
gSR, gRS, and g1

RR drive the system to the regime RR and asymptotically stabilize the set
E1

RR = {w1 = w2 = −v0

r
, vx = v0, vy = ω = 0} is deferred to Appendix A.

The next step is to design a controller in the regime RR that stabilizes the robot to
the desired equilibrium set. We choose vx and ω as the velocity variables (the others are
eliminated through the nonholonomic constraints), so the state of the system in the regime
RR is (y, θ, vx, ω). Consider the following two outputs:

h1 = y + L sin θ (26)

h2 = vx (27)

where L is an arbitrary positive constant. Physically, h1 corresponds to the y coordinate
of a point displaced by L along the x axis of the body-fixed reference frame, and h2 to
the forward velocity of the vehicle. Using these two outputs, we can design a controller
that input-output linearizes the system (if L 
= 0). We can therefore make the set ẋ = 0,
y = −L sin θ globally asymptotically stable. Such controller was proposed in [34] for
trajectory tracking. Let this controller be g3

RR. With the chosen outputs, the relative
degree of the system is (2, 1), implying that the system has one-dimensional (nonlinear)
internal dynamics. The state corresponding to the internal dynamics can be chosen to be
y, so the internal dynamics becomes:

ẏ = h2 sin θ = h2
h1 − y

L
(28)

The equilibrium sets for the system are therefore h1 = ḣ1 = y = 0, h2 = v0. Note that this
equilibrium set contains values θ = k π for any k ∈ ZZ. To analyze the stability properties
of the system, consider the function:

V3 = V h
3 + y2
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where V h
3 is the Lyapunov function corresponding to the linearized dynamics such that

V̇ h
3 = −(h2−v0)

2− 2 v0

L
h2

1−ḣ2
1. A closer look at V̇3 reveals that it vanishes on the equilibrium

set of the system and is negative for any trajectory starting with h2 > 0. Furthermore, the
level sets V3 = C are closed around ERR (the value θ = 0) for C small enough. According
to LaSalle’s theorem, for any such C, the set W = {(y, θ, vx, ω) | V3(y, θ, vx, ω) < C} is
therefore the region of attraction of ERR.

To guarantee that the system converges to θ = 0 it is thus necessary to bring the
trajectory of the system into W . On the other hand, the controllers gSS, gSR, gRS, and
g1

RR stabilize the robot to the set E1
RR = {vx = v0, vy = ω = 0}, so the value of θ and y

can be arbitrary. For that reason, we need to design an additional controller, g2
RR. We

proceed similarly as before. We select the outputs we wish to control:

h1 = θ (29)

h2 = vx (30)

and obtain the controller g2
RR by input-output linearization. The Lyapunov function V2

for the linearized system is easy to construct. The zero dynamics of the system is ẏ = 0.
In total, we have designed six controllers: controllers gSS, gSR and gRS in regimes SS,

SR and RS, respectively, and three controllers, g1
RR, g2

RR and g3
RR in the regime RR. In

order to use the model described in Section II, we replace the manifold MRR with the
manifolds M1

RR, M2
RR and M3

RR (all equal to MRR). The final partial order between the
controllers is shown in Fig. 7.a: the partial order between the controllers gSS, gSR, gRS

and g1
RR is induced by the physics of the problem, while the rest of the partial order follows

from the way we designed g1
RR, g2

RR and g3
RR.

(a)

gSR

gRS

g1
RR

g2
RR

g
RR
3

gSS

(b)

3

g1

g2
RR

RR
g

Fig. 7. (a) Partial order between all the controllers; (b) partial order after abstraction of controllers gSS ,
gSR, gRS and g1

RR into g1.

B. Convergence to ERR

To show the convergence of the robot to the desired equilibrium set ERR, we will use
Proposition III.10 (and Corollary III.12). We could proceed by simply checking the condi-
tions for all six controllers. However, given that the controllers gSS, gSR, gRS, and g1

RR all
stabilize E1

RR and make the wheels rolling, we can avoid analyzing these four controllers
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again. Instead, we consider them as a single, more complicated, controller g1 that sta-
bilizes E1

RR ⊂ M1
RR. This shows that the partial order concept is very convenient for

designing switching controllers since it naturally leads to a modular design.
Consider therefore the controllers g1, g2

RR and g3
RR. The resulting partial order is shown

in Fig. 7.b. We must also design a switching scheme (discrete controller). Consider the
following function:

S(η, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3 η = 3 and |θ| < π
2

and ‖F 1
c ‖ < Fg and ‖F 2

c ‖ < Fg (1)
3 |θ| < λπ

2
and |vx| < v0 (2)

and ‖F 1
c ‖ < λFg and ‖F 2

c ‖ < λFg

2 η = 2 and ‖F 1
c ‖ < Fg and ‖F 2

c ‖ < Fg (3)
2 ‖F 1

c ‖ < λFg and ‖F 2
c ‖ < λFg (4)

1 η = 1 and ‖F 1
c ‖ < Fg and ‖F 2

c ‖ < Fg (5)

where 0 < λ < 1 and Fg = µd(
mb

2
+ mw)g. The above conditions have to be evaluated in

order: first we select the controller g3
RR and compute the corresponding constraint forces

(the constraint forces depend on the input torques and thus the controller). If neither of
the conditions (1) and (2) is satisfied, we try with the controller g2

RR and test conditions
(3) and (4). If also these conditions fail, we use the controller g1 (at this step the system
might switch to one of the regimes SS, SR or RS).

The factor λ in conditions (2) and (4) achieves hysteresis in the switches. Condition
(2) implies that when the system switches to g3

RR from g2
RR, the constraint force will be

strictly less than the maximum allowed value Fg (condition (3)). Since the rate of change
of the constraint force is bounded, the system is guaranteed to stay under the control
of g3

RR for some finite amount of time. Condition (4) similarly implements hysteresis in
switches from g1 to g2

RR. The requirement θ < π
2

in conditions (1) and (2) guarantees that
the controller g3

RR stabilizes the system to the value θ = 0 (as opposed to θ = π). Note
that the factor λ is used in condition (2) to achieve hysteresis. Finally, the requirement
|vx| < 2 v0 in condition (2) guarantees that V̇3 is negative when the system is controlled
by g3

RR.
We next show that all the conditions of Proposition III.10 are satisfied. Since the

dynamics do not change as the system switches between the controllers g1, g2
RR, and g3

RR,
we use mixing of controllers as described in Section IV-B to satisfy the condition (3.3).
The condition (3.2) is satisfied by employing hysteresis in S through the factor λ (Section
IV-A). Finally, by appropriately choosing the gains of the linearizing controllers g2

RR and
g3

RR, the constraint forces on the equilibrium manifolds E1
RR and E2

RR can be made strictly
less than λFg. The condition (3.1) (conditions (3.1a) and (3.1b) for controller g1) is thus
satisfied in all three discrete states.

C. Simulation results

Figure 8 shows snapshots of a simulation run. The figures are shown at time intervals
equal to 0.44s. The whole sequence spans 8s. The numbers in the figures represent the
value of the switching function (controllers that were active): 3, 2, 1,−1,−2,−3 correspond
to g3

RR, g2
RR and g1

RR, gRS , gSR, and gSS, respectively. Figure 9 shows the trajectories for
y, θ and ẋ together with the value of the switching function. The initial velocities of the
wheels (w1 and w2) were set to 0 while the velocities of the body of the vehicle were set to
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Fig. 8. Snapshots of the motion of the robot.
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Fig. 9. Trajectories for y, θ, and ẋ. The solid line is the value of switching function.

(ẋ, ẏ, θ̇) = (2, 2, 15). These initial velocities correspond to large initial relative velocities,
giving rise initially to a period of sliding and a large excursion in the y direction. During
the sliding phase the robot also makes a full turn around its center. Both wheels stop
sliding at time 1.57s and the system switches to the controller g3

RR. Two switches between
g3

RR and g2
RR follow: at 1.75s and 3.25s. The corresponding switches from g2

RR to g3
RR

occur at 3.13s and 4.46s. From time 4.46s on, the controller g3
RR remains active and it

finally stabilizes the robot to ERR.

VI. Conclusion

We investigated the problem of stabilizing systems with changing dynamics (SCD’s).
Such systems form a subclass of hybrid systems. A natural control strategy for stabilization
of a SCD is to design a switching controller consisting of continuous controllers for each
dynamic regime and a discrete controller that switches between them. We derived sufficient
conditions for stability of a switching controller. Using the concept of partial order to
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introduce the hierarchy among continuous controllers, we have shown that the sufficient
conditions can be reformulated in a way that naturally leads to a design methodology.
In this framework, the partial order plays the role of the control strategy at the discrete
level. We described three strategies that further simplify design of switching controllers:
hysteresis in the switching rules, mixing of controllers in the same dynamic regime and
decoupling of autonomous switches from the switches in the control objective. These
techniques were applied to stabilization of a mobile robot of Hilare type whose wheels
are allowed to slip. In the example, we demonstrated that the proposed methodology
naturally leads to a modularity in the design process.

The presented work leaves some important questions unanswered. The proposed frame-
work can only be used to control the system towards a time invariant submanifold of the
state space, while in many problems it is necessary to stabilize the system to a periodic
orbit that passes through several discrete states (example is walking). Another interesting
question is whether we could formulate an inverse theorem and show that the partial order
is an inherent feature of every stable switching controller. Finally, we showed that mixing
of controllers naturally leads to time-varying discrete controllers where memory is used to
determine the current switching rules. An interesting problem is what classes of SCD’s
can be stabilized by purely state-dependent (memoryless) controllers and in which cases
memory variables are essential for stabilization.
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Appendix

I. Convergence to the rolling regime

A. Partial feedback linearization

A useful technique when designing controllers for nonlinear systems is partial feedback
linearization. The following result will prove useful in the ensuing stability analysis:

Lemma A.1: Let

ξ̇ = ϕ(ξ)

be asymptotically stable to ξ = 0. Let

ẋ = f(x) (31)

be asymptotically stable to E and V (x) be a Lyapunov function that satisfies Theorem
III.3. Let Φ(x, ξ) be a C1 function such that Φ(x, 0) = 0. If for any initial condition
(x0, ξ0) the trajectories of the system:

ẋ = f(x) + Φ(x, ξ) (32)

remain bounded in x, the system (32) is asymptotically stable.

Proof: Let V̇u be the derivative of V along the trajectories of (31) and V̇p the deriva-
tive of V along the trajectories of (32). Since the dynamics for ξ is stable and x remains
bounded, there exists a ball B(0, R) (in the combined state space (ξ, x)) such that the
trajectories (ξ(t), x(t)) always stay within. Let Q = supB(0,R) |∂V

∂x
| and M = supB(0,R)

∂Φ
∂ξ

.

Since V satisfies Theorem III.3, there exist monotonically increasing functions β and γ
such that V (x) ≤ β(ρ(x, E)) and V̇u(x) ≤ −γ(ρ(x, E)). Then we have:

V̇p(x(t)) = V̇u(x(t)) +
∂V

∂x
Φ(x, ξ) (33)

≤ −γ(ρ(x, E)) + QM‖ξ‖ ≤ −γ(β−1(Vp(x))) + QM‖ξ‖

Using the comparison principle [35], we conclude that V → 0.

B. Equilibrium sets for gSS, gSR, gRS, and g1
RR

To analyze the convergence properties of gSS, gSR, gRS, and g1
RR, we need to identify the

equilibrium sets (sets where the vector fields describing the dynamics vanish) for each of
the regimes. We start with the regime gSS. Since we can specify the dynamics for w1 and
w2, we can make −v0

r
to be the (globally asymptotically stable) equilibrium point for these

two states. We next examine the zero dynamics of the system (the remaining dynamic
equations, where we assume w1 = w2 = −v0

r
). We substitute Eqs. (21) and (22) into Eq.
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(23) to obtain the frictional force. The zero dynamics of the robot is thus given by:

v̇x = ω vy + CT

⎛
⎝− (vx − v0) + lω√

v2
y + (vx − v0 + lω)2

− (vx − v0) − lω√
v2

y + (vx − v0 − lω)2

⎞
⎠

v̇y = −ω vx + CT

⎛
⎝− vy√

v2
y + (vx − lω − v0)2

− vy√
v2

y + (vx + lω − v0)2

⎞
⎠

ω̇ = CR

⎛
⎝− lω + (vx − v0)√

v2
y + (lω + vx − v0)2

− lω − (vx − v0)√
v2

y + (lω − vx + v0)2

⎞
⎠ (34)

where

CT =
gµd

2

CR =
gl(mb + 2mw)µd

2(Ib + 2Iv)

It is not difficult to see that vx = v0, vy = ω = 0 is an equilibrium point (fixed point)
for the zero dynamics. In the rest of the section we show that this point is also globally
asymptotically stable.

We introduce the following symbols:

νx = vx − v0

T1 =
lω + νx√

v2
y + (lω + νx)2

T2 =
lω − νx√

v2
y + (lω − νx)2

Now consider the function Vω = 1
2
ω2. From Eq. (34) we get:

V̇ω = −CR ω (T1 + T2) (35)

Note that either νx or −νx agrees in sign with ω. Assume for example that ωνx > 0. A
short calculation then shows that |T1| ≥ |T2|, which implies that V̇ ≤ 0. We therefore
conclude that the amplitude of ω decreases with time.

Next, we show that for any initial conditions (even when w1 and w2 are not equal to
−v0

r
) the system remains in a bounded region. Consider the following function:

Vvxvyω =
1

2CT

(v2
x + v2

y) +
1

2CR

ω2
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The derivative of Vvxvyω along the trajectories of (20) is:

d

dt
Vvxvyω = −

√
v2

y + (vx − w1 + lω)2 −
√

v2
y + (vx − w2 − lω)2

+w1
vx − w1 + lω√

v2
y + (vx − w1 + lω)2

+ w2
vx − w2 − lω√

v2
y + (vx − w2 − lω)2

Since w1 and w2 are directly controlled, we can assume that they are bounded, |wi| < W .
We have:

d

dt
Vvxvyω ≤ −

√
v2

y + (vx − w1 + lω)2 −
√

v2
y + (vx − w2 − lω)2 + 2W

It is now not difficult to see that d
dt

Vvxvyω remains negative outside a ball Bvxvyω(0, 2
√

3W ),
which implies that vx, vy and ω remain bounded.

We can also establish a lower bound on V̇ as a function of ω and vy. First, consider the
case |νx| ≤ |lω|. In this case T1 and T2 are of the same sign. Therefore:

|T1 + T2| = |T1| + |T2| ≥ |lω + νx|
M

+
|lω − νx|

M
=

=
2l|ω|
M

where M = maxB̄(0,2
√

3 W ){
√

v2
y + (lω + νx)2,

√
v2

y + (lω − νx)2} (both functions are con-

tinuous and therefore bounded on a closed set). Now consider the case |νx| > |lω|. Define:

Φ(x) =
x + νx√

v2
y + (x + νx)2

where we assume vy 
= 0 is a constant. We have:

Φ′(x) =
v2

y√
v2

y + (x + νx)2

The mean value theorem then leads to:

|T1 + T2| = |Φ(lω) − Φ(−lω)| ≥ 2l|ω| v
2
y

M

In summary, |V̇ω| ≤ −l |ω|
2

M
min{1, v2

y}.
Now consider the function Vω again. Since it is non-increasing and bounded from below,

it converges to some value V 0
ω = 1

2
ω02

. First, we claim that this implies that vy converges
to 0. If not, we can find a constant 1 > ε > 0 and an infinite sequence of times {ti}
(where ti < tj for i < j) such that |vy| > 2ε. Since the rate of change of vy is limited
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(v̇y ≤ |ω0|(|v0| + l|ω0|) + 2CT ), there exists η > 0 such that |vy| > ε on every interval

[ti − η, ti + η]. This implies that on every interval [ti − η, ti + η], |V̇ω| ≥ 2lV ω0

M
ε2. It follows:

|Vω(ti + η) − Vω(ti − η)| = |
∫ ti+η

ti−η

V̇ω(t)dt| =

∫ ti+η

ti−η

|V̇ω(t)|dt ≥

≥
∫ ti+η

ti−η

(2l
V 0

ω

M
ε2)dt ≥ 4l

V 0
ω

M
ε2η

which clearly contradicts the fact that Vω(t) converges.
Assuming that vy is arbitrary small, similar reasoning as for Vω shows that the function

Vνx = 1
2
ν2

x is decreasing and it thus converges to a value V 0
νx

= 1
2
(ν0

x)
2. Equations (34) thus

become:

v̇x ≈ CT

(−sgn(ν0
x + lω0) − sgn(ν0

x − lω0)
)

ω̇ ≈ CR

(−sgn(ν0
x + lω0) + sgn(ν0

x − lω0)
)

The expressions on the right are constant and since both ω and νx converge, they must
be 0. This implies ν0

x = ω0 = 0.
This shows that vy = νx = ω = 0 is (globally) asymptotically stable equilibrium set

for the zero dynamics. The fact that the zero dynamics is globally asymptotically stable
does not necessarily imply that the whole system is. However, since we have shown that
any trajectory (vx, vy, ω) remains in a bounded region, we can employ Lemma A.1 to
conclude that the equilibrium set E1

RR = {w1 = w2 = −v0

r
, vy = νx = ω = 0} is globally

asymptotically stable.
We can also prove that E1

RR is globally asymptotically stable equilibrium set in the
regimes SR, RS, and RR. But unlike the proof above, the proof for these regimes is
simply an algebraic exercise since the dynamic equations become much simpler.

C. Convergence

We have shown that the controllers gSS, gSR, gRS, and g1
RR all have the same equilibrium

set E1
RR. To show that this also implies that the system converges to the dynamic regime

RR, we employ Proposition III.8. We want to show that the system converges to the
submanifold E1

RR ⊂ MRR. The partial order among the controllers is shown in Fig. 10.
The switching rule is given by the physics of rolling and sliding (Eqs. (24) and (25)). We
first need to find a Lyapunov function V for g1

RR on MRR. This is straight forward, since
the dynamics on MRR is given by the dynamics of w1 and w2 (because of the constraints
(21) and (22)), which are directly controlled:

V = (w1 − v0)
2 + (w2 − v0)

2

By construction, w1 and w2 are also the controlled outputs in all the other regimes. It
follows that V will be a (partial) Lyapunov function on the whole space, implying that
the condition (2.3) will be automatically satisfied.

Next, we observe that on E1
RR, the constraint force is 0. Therefore, for any ε > 0, there

is a neighborhood around E1
RR in which ‖F‖ < ε. This implies that the condition (2.1)

holds.
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g1
RR

gSS

RSg

SRg

Fig. 10. Partial order between the controllers gSS, gSR, gRS and g1
RR is implied by the physics of sliding

and rolling.

Finally, we need to show that the condition (2.2) holds for the regimes SS, SR, and
RS. We will again only consider the regime SS, the reasoning for the other two regimes
is similar. We first show that the set ESS = {w1 = w2 = −v0

r
, ω = 0} is asymptotically

stable for a system as a whole, regardless how the discrete state (dynamic regimes) change.
Clearly, this is true for the states w1 and w2. Now consider ω as the zero dynamics of the
system. As the wheels switch between rolling and sliding, the zero dynamics will change.
However, the function Vω given in Eq. (35) is always decreasing along the trajectories (this
was formally shown above for the regime SS, a simple algebraic computation shows it for
the other regimes) and a reasoning similar as above shows that Vω has to converge to 0.
According to Lemma A.1, ESS is therefore globally asymptotically stable. Given that ESS

is asymptotically stable, we can consider the zero dynamics (νx, vy). Since the dynamics
for these two states is nonzero only on MSS, and it was shown above that νx and vy on
MSS converge to 0, the zero dynamics (νx, vy) is also asymptotically stable everywhere.
We can thus again employ Lemma A.1 to conclude that E1

RR is globally asymptotically
stable, regardless how the dynamics switches.

Now take T > 0 and assume that a trajectory of the system for t > T evolves on SS
for an infinite amount of time. Since E1

RR is asymptotically stable, the trajectory will
converge to E1

RR. As noted before, the constraint force on E1
RR is zero, so we can find

a neighborhood of ERR in which it is smaller than some ε > 0. If any of the wheels
starts rolling inside this neighborhood, they will keep rolling for some fixed amount of
time, given that the rate of change of the constraint force is bounded (this is the idea of
hysteresis, described in Section IV-A). Therefore, the existence of ∆ in condition (2.2)
is guaranteed. To show that the switch to rolling actually occurs, we need to show that
the relative velocity vi

r of either of the wheels becomes zero (see Eq. 25). But this follows
from the fact that in a neighborhood of E1

RR, the rate of change of |vi
r| is:

d

dt
|vi

r| ≈ −2(
1

mb + 2mw

+
l

Ib + 2Iv

) + 2
Cs√

C2
s + 4l2ω2v2

y

(
1

mb + 2mw

− l

Ib + 2Iv

)

where

Cs = l2ω2 − ν2
x − v2

y

Since this expression is strictly negative, |vi
r| will decrease at a rate greater than some

nonzero constant. It will therefore reach 0 in finite time. This shows that the condition
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(2.2) is satisfied and therefore completes the proof of convergence of trajectories to the
set E1

RR. In fact, the set will be stable, not only attractive. This is a direct consequence
of Corollary III.14, since E1

RR is an asymptotically stable equilibrium set for all four
controllers.
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[24] J. Malmborg, B. M. Bernhardsson, and K. J. Åström, “A stabilizing switching scheme for multi-controller
systems,” in 13th IFAC World Congress, (San Francisco, CA), 1996.

[25] S. Pettersson and B. Lennartson, “Stability and robustness for hybrid systems,” in Proceedings of the 35th
IEEE Conference on Decision and Control, (Kobe, Japan), 1996.

[26] M. Johansson and A. Rantzer, “On the computation of piecewise quadratic Lyapunov functions,” in Proceed-
ings of the 36th IEEE Conference on Decision and Control, (San Diego, CA), 1997.

[27] K. X. He and M. D. Lemmon, “Lyapunov stability of continuous-valued systems under the supervision of
discrete-event transition systems,” in Hybrid Systems: Computation and control, LNCS 1386, pp. 175–189,
Springer, 1998.

[28] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition of dynamically dexterous robot
behaviors.” Preprint, 1996.

[29] A. J. van der Schaft and J. M. Schumacher, “Hybrid systems modeling and complementarity problems,” in
1997 European Control Conference, (Brussels, Belgium), 1997.

[30] W. Hahn, Stability of motion. Springer-Verlag, 1967.

DRAFT



31

[31] N. Rouche, P. Habets, and M. LaLoy, Stability theory by Liapunov’s direct method. New York: Springer-Verlag,
1977.

[32] A. Vannelli and M. Vidyasagar, “Theory of partial stability theorems, converse theorems, and maximal
Lyapunov functions,” in Proc. Annu. Southeast Symp. Syst. Theory, (Piscataway, NJ), pp. 16–20, 1980.

[33] J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry. Springer-Verlag, 1994.
[34] N. Sarkar, X. Yun, and V. Kumar, “Control of mechanical systems with rolling constraints: Applications to

dynamic control of mobile robots,” The International Journal of Robotics Research, vol. 13, no. 1, pp. 55–69,
1994.

[35] M. Vidyasagar, Nonlinear systems analysis. Prentice Hall, 2 ed., 1993.

DRAFT


