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Abstract: This  paper  describes  the  methods  and  strategies  to  develop  a  humanoid  robot  using  a  

distributed architecture approach where centralized and local control co-exist and concur to provide 

robust full monitoring and efficient control on a complex system with 22 DOF. A description of the 

hardware  is  given  before  introducing  the  architecture  since  that  influences  greatly  the  methods  

implemented for the control and helps understanding the general decisions. The platform is still in 

improvement, but the results are very promising, mainly because many approaches and research issues  

suddenly opened and will provide opportunities to test distributed control systems with possibilities that  

go far beyond the classical control of robots. Some practical issues on servomotor control are also  

given since that turned out necessary before entering higher levels of control. That is addressed in the 

last part the paper which shows an example being developed to demonstrate the possibility of keeping a 

humanoid robot in upright balance position only by local control after reaction forces on the ground.
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1. Introduction

The field of humanoid robotics has been attracting the attention of a growing community, both from the 

industry  and  academia.  On  the  one  hand,  several  companies  have  unveiled  walking  robots  with 

impressive designs and skills,  as  the  well-known Honda’s  ASIMO (Sakagami,  Y.,  et  al.,  2002)  and 

Sony’s  QRIO (Nagasaka,  K.,  et  al.,  2004).  On the  other  hand,  the  continuous  progress  in  robotics 

technology opens up new possibilities for academic research on low-cost and easy-to-design humanoids, 

such as PINO (Yamasaki, F., et al., 2000), ESYS (Furuta, T., et al., 2001) and HanSaRam (Kim, J.-H., et  

al.,  2004),  and  others.  Some  platforms,  however,  show  up  limitations  due  to  centralized  control 

approaches and lack of modularity, making them difficult for others to replicate.

The main scope of the project beneath this paper has been the development of a humanoid platform to 

carry out research on control, navigation and perception. In particular, this paper focuses on the design 

and  implementation  of  a  distributed  architecture  for  a  humanoid  robot  where  centralized  and  local 

controls co-exist and concur to provide a robust and versatile operation. The paper begins by presenting 

the design concepts and the technological solutions to build a small-size humanoid robot at reduced costs 

using off-the-shelf technologies, but still aiming at a fully autonomous platform for research. Afterwards, 

the software development and the integration techniques in building the proposed control architecture are 

described. 

One most relevant feature of this implementation is the distributed architecture, supported on a CAN bus, 

in which independent and self-contained control units may allow either a cooperative or a standalone 

operation. The integration in these simpler control units of sensing, processing and acting capabilities 

play a key role to allow for localized control based on feedback from several sensors, ranging from joint 

position monitoring to  force sensors.  Moreover,  the reprogrammable modules  conduce to  the central 

question of a true autonomy, i.e., the ability of self-control in which the robot may evolve over time. At 

the same time, the main advantage of the modular system is the possibility of reusing specific modules, in 

terms of both hardware and software, with no major efforts. Comparing with other architectures (Albero, 

M.,  et al., 2005; Tomokuni, N.,  et al., 2005), even other based on CAN bus (Cho, Y.-J.,  et al., 1999), 

stands out the high versatility of implementation and the easy expansibility at the system’s level and 

reusable hardware, as described further. 

2. The Humanoid Platform

2.1. Mechanical design

The platform has 22 degrees of freedom with 12 of them dedicated to the legs, which represent the most 

challenging part both for designing and control. Structure is made essentially of aluminum and steel for 

axles and other small components, weights about 6 kg and is about 60 cm tall. Fig. 1 shows a CAD model 

and a current stage of development.



 
Fig. 1 - 3D model of the humanoid robot and current stage of implementation

2.2. Actuators

Currently,  the  system  is  conceived  with  22  actuators  of  three  different  types  according  to  torque 

requirements  of  the  several  joints:  more  power  on  legs  and  less  power  on  neck  and  arms.  For  the 

dimensions involved, off-the-shelf actuation technologies do not offer significant alternatives other than 

the small RC servomotors, such as those from FUTABA, HITEC and similar. There are several general 

characteristics that have made them actuators of choice in a large number of other applications: small, 

compact and relatively inexpensive. In fact, the servomotor itself has a built-in motor, gearbox, position 

feedback mechanism and controlling electronics. These features appear much more advantageous than 

assembling from scratch a DC motor plus gear mechanisms and its control unit; the result would certainly 

be not as compact as the RC servomotor. The drawback of these commercially common servomotors is 

that they accept only position control by means of a PWM signal at about 50 Hz and duty-cycles around 

1-2 ms and offer no velocity or torque control!

This hard limitation had to be overcome by software emulation of velocity control by means of dynamic 

PWM generation with real feedback from the motor internal potentiometer. Several software techniques 

had to be developed (Ruas, M., et al., 2006) in order to perform velocity control and also evaluate joint 

torque so torque control may be a real possibility soon. The servomotors had to be deeply studied and 

several  experimental  analyses  were  carried  out  to  develop  appropriate  controllers  to  ensure  proper 

velocity and trajectory control.

Since these servos, although the most powerful among their counterparts, offer torques not much higher 

than 2 Nm, gear transmissions had to be implemented in the mechanical structure.

2.3.  General perception and sensors

Perception assumes a major role in an autonomous robot, therefore it must be reliable or abundant, or 

both if possible! For this platform the following perception was planned:

• Joint position (reading servo own potentiometer)



• Joint motor current (related to torque)

• Force sensors on the feet (ground reaction forces)

• Inclination of some links (using accelerometers)

• Angular velocity of some links (using a gyro)

• Vision unit (located on top)

Up to  now, only vision has  not  yet  been specifically approached in  the context  of  this project.  The 

remainder sensors were addressed with different levels of accuracy, but all potentially usable with current 

hardware. 

2.3.1 Servo potentiometer and motor current

Joint  position is  currently read directly  from the servomotor  potentiometer.  This was not  as easy as 

initially expected due the complexity of the servos internal control unit which appears not be completely 

disclosed to the general public. Indeed, the position reading only makes sense when duly synchronized 

with the PWM generation because doing otherwise will conflict with the servo own integrated controller 

(Fig. 2).
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Fig. 2 - PWM for motor control and position feedback potentiometer reading

Having solved this initial difficulty, the need for an additional external potentiometer or encoder is now 

postponed sine dia. Related to this phenomenon is the electric current consumption which was initially 

expected to be measured indirectly by the voltage on a resistor (0.47 Ω) in series with the servo (Fig. 10). 

Fortunately,  after  studying  the  servos  potentiometer  during  operation  as  observed  in  Fig.  2,  current 

reading may be extracted from the potentiometer voltage level itself. All this has required elaborated low-

level software development since PWM generation and sensor reading should be synchronized and tuned 

with resolution of up to 1  µs for three simultaneous servos (Fig. 9). The 0.47  Ω resistors became not 

needed and were later short-circuited.

2.3.2 Foot force sensors

The foot sensors are intended to measure the force distribution on each foot to further assist during 

locomotion or simply keeping upright. Four sensors on each foot allow evaluating balance and a behavior 

as the one illustrated in Fig. 3 is expected.



Fig. 3 - Force sensors and balancing

Commercial force sensors are expensive, so it was decided to develop a system based on strain gauges 

and amplify the deformation of a stiff material. The result is a kind of foot whose details can be viewed in 

Fig. 4 and is based on 4 acrylic beams located on the four corners of each foot that deform according to 

the robot posture. A simple Wheatstone bridge and an instrumentation amplifier complete the measuring 

setup (Fig. 5). The electronics hardware lays on a piggy-back board mounted on the local control unit, as 

can be seen in the lower part of Fig. 10.
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Fig. 4 - Foot sensor details

 

Fig. 5 - Circuit to measure force on the feet

2.3.3 Inertial devices 

Inertial perception is also a relevant source of information for dynamic and also static locomotion and 

balancing. Accelerometers and gyroscopes furnish information on acceleration and angular velocity.

Fig. 6- Dual accelerometer electrical circuit

The accelerometers can be used to measure the acceleration of gravity,  or better said, its component 

aligned with some axis. In other words, they can be used to measure inclination. That is what has been 

done  by  using  the  ADXL202E  from  Analog  Devices.  This  very  small  MEMS  device  has  two 

accelerometers in orthogonal axis that can be used to monitor tilt and roll angles of the platform. The 



system was mounted on a small PCB as shown in Fig. 7. Measuring inclination can only be done in static 

or nearly static operation since motion inertia will be coupled with system accelerations.
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Fig. 7- Piggy-back board with two accelerometers

Finally, in what concerns sensors, a gyroscope unit has also been developed. The GYROSTAR ENJ03JA 

from MURATA has been selected due to several advantages and ease of interfacing. Up to now, although 

built and tested, the unit has not yet been used in the developed platform but its circuit is simply adapted 

from the vendor datasheet and using a INA129 amplifier.

3. Distributed architecture and software development

3.1. Principles of the approach

When the  project  begun,  emerged  the  concern  that  controlling  a  machine  with  so  many degrees  of 

freedom would be very demanding if  done on a centralized control  unit.  Further,  different  levels of 

control  would  coexist  making  it  difficult  to  develop  new software  and  would  also  make debugging 

difficult.  Last,  but  not  the least,  the endless web of wires and plugs connecting motors,  sensors and 

central unit would make it not an easy task when assembling or reassembling components!

Besides these practical concerns, it made much more sense to enable the platform with simpler control 

units responsible for fewer tasks and therefore more robust to failure. All units would be interconnected 

by a local network so information could be exchanged among them in case it was necessary.

All this led to the conception of a distributed system. Without loss of generality of the approach, some 

motion joints have been grouped by vicinity criteria and are controlled locally by a dedicated board based 

on a PIC microcontroller. A CAN bus relays all units in a slave configuration. The PIC controller chosen 

was the PIC18F258 simply because it contains CAN bus managing integrated hardware, and that was the 

main reason why to use the 18F series; other possibilities such as the PIC18F458 would be acceptable 

without any changes on the software.

Slave control units (SCU) generate PWM waves to control up to three actuators instead of only one. This 

rationalizes controllers in a practical implementation and also allows fast communication among three 

close joints by not depending on the bus. This represents an intermediate level of distributed system: not 

all actuators have fully independent hardware controllers. This concept was extended to perception. Once 

again, it would not be practical to have each of the several sensors with its own board hung up in the 

CAN bus. So, each slave unit has attached some nearby sensors that are somehow related to the actuators 

being controlled.

To collect data from the several SCUs, a special unit was conceived. Its role is to query all slaves for data 

and also give them directives or instructions for their behaviour. It was named the Master Control Unit 



since it accesses in first place the CAN bus and relays all SCUs. Its functions are simply to dispatch and 

collect data from the bus. Nonetheless, and being made from the same hardware as are the slaves, it could 

also control actuators and monitor sensors (those roles are refrained for now by a matter of principle!).

To end the architecture description a final element is necessary: the main or general control unit. In a first 

stage, this unit is the interface for the programmer with the remainder blocks and allows accessing data 

and issuing orders to actuators but, in the future, its role will be the general control directives, interface 

with remote systems and, very importantly, to process high rate data such as vision. It will also be able to 

change the SCU firmware and control programs, but progressively it is expected not to do so since the 

purpose is to proceed to a largely distributed control system, even with the possibility of self-learning. 

Self-learning  is  for  now  a  utopia,  but  with  local  sensors  and  control,  and  an  adequate  software 

application, the local controllers may be able to tune parameters and store the new values since the used 

hardware (Flash PIC controllers) has on-board EEPROM that can be used for dynamic storage.  Fig. 8 

illustrates a simplified representation of the architecture control units where only the 2 legs, one arm and 

the two joints for the trunk are shown making only 17 DOF visible; 3 more DOF exit for the other arm 

and 2 more for the neck/head, making a total of 5 additional DOF completing the set of 22 actuators.
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Fig. 8 - Schematic of architecture layout

3.2. Hardware for the units in the architecture

As mentioned, master and slave units are based on a PIC microcontroller. Slaves are all alike and can be 

distinguished by a configurable address. Slaves can drive up to 3 servomotors, and can monitor their 

angular positions and electrical current consumption. Concerning additional sensors, each slave unit has 

the possibility of accepting a piggy-back board where additional circuit can lay to interface to other 

sensors. Some examples of the developed piggy-back boards include force-sensors, accelerometers and 

gyroscope.

Fig. 9 shows a generic diagram of a slave unit. There, the main internal blocks can be seen, such as power 

supply regulation, CAN interface, the PIC controller, the multiplexer for sensor interfacing, PWM lines, 

CAN address switches and also lines prepared for RS232 communication. This kind of layout allows high 

versatility both on hardware and software approaches.

Being all similar, the construction of the boards is easier, along with software development (the same 

base code for all units). The master unit is different since it is not expected to drive motors neither to 



acquire  many  sensorial  data.  Furthermore,  it  communicates  both  by  CAN and  serial  RS232  to  the 

upstream  controller.  Hence,  its  piggy-back  module  was  used  to  interface  electrically  the  RS232 

communications by installing a MAX232 circuit instead of sensor acquisition.

Fig. 9 - Block diagram of generic slave unit

Slaves will be able to perform local control when adequate algorithms will be developed. In the slave 

units,  three  PWMs  are  generated  for  the  three  servomotors  with  resolutions  of  few  micro-seconds 

according to directives received from the CAN bus, but local algorithms may decide better how to control 

the motors instead of relying on central control. Still at the slaves, the sensorial data is currently acquired 

with 8 bits,  but  10 bits  are  possible  in  case it  becomes  necessary  and adequate  signal  filtering and 

conditioning is provided. Fig. 10 shows a slave unit PCB with the main components and also includes a 

piggy-back  board  for  signal  electric  conditioning.  The  RS232  plug  is  only  used  in  the  master  to 

communicate with main control unit; slaves do not use it for now.
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Fig. 10 - The slave processing board without most components (right) and in full mounting with two 
piggy-back boards for force sensors (left).

3.3. Communications: CAN and RS232 messages

In  the  current  stage  of  development,  on power-up  or  reset,  each slave  checks  its  address  and  starts 

monitoring the CAN bus. While no messages arrive, the slave unit will drive its joints to a home position 

at a reduced speed and starts monitoring local sensors at a given rate (pre-programmed). When messages 

from the CAN bus arrive, the slave unit will process them; messages are of two kinds: imposing new 

desired position and speeds to each of the three motors, or query for sensorial data. These requests come 

from the master at a variable rate depending on the number of slaves and the amount of data exchanged 

between master and slaves (currently, 8 units are used); the CAN bus is driven at nearly 1 Mbit/s. 



CAN messages contain a data field with 8 bytes, enough to exchange (in one message only) orders for 

three servos (3 positions and 3 speeds). On the other hand, to gather data from the slaves, more than one 

message may be necessary. Indeed from 3 motors 6 variables are required (3 positions and 3 current 

levels), and additional sensor values (such as force or inertial) must go on other messages. The master 

keeps a current status of the full system and delivers that data to the main control unit, when requested, 

using  the  RS232 link.  Currently,  this  protocol  defines  a  4-byte  message  to  the  master  and a  6-byte 

message from master to control unit, but if necessary this may change for matters of efficiency.

Although the servos need not to be updated at rates higher than 50 Hz, the reading of some sensors may 

be higher than that for finer tracking, or during the development phase when all information is precious. 

Any way, a single calculation can be done: if 8 slave units are used and admitting for each board 2 

messages towards slaves and 2 messages back to the master, this results in a full cycle of 8×4=32 CAN 

messages. If we assume 50 Hz as the maximal useful refresh rate, this results in 1280 CAN messages 

exchange per second that, at about 80 bits per message, yields ca. 102 kbits/s, which is far below the 

1 Mbit/s that CAN provides. This means that more slaves may be added or additional information may be 

exchanged between master and slaves.

One of the strengths of this architecture is that the main base code is the same for all slaves. Different 

behaviors are now decided by each SCU own address (dip-switch adjustable).  Base code consists of 

generating PWM for motors obeying position and velocity requirements. Torque control (or something 

similar to that) appears possible since instant motor current can be monitored. Next developments will 

enable slaves to accept control directives and perform their own control accordingly.

4. Low-level controller

Among  the  major  challenges  in  building  low-cost  and  easy-to-reproduce  humanoid  robots,  the 

performance  of  their  control  architectures  and  the  constraints  on  actuator  systems  assume  a  special 

importance. From the control point of view, the computational and sensing abilities of the robotic system 

impose additional limitations on the robot’s performance. In general, the control problem consists of (1) 

providing the adequate computational resources and (2) using control laws and strategies to achieve the 

desired system response and performance. The first part of the problem has been extensively discussed in 

Section 3. Here, we concentrate on the second part with the emphasis being placed on the implementation 

of the low-level controllers to achieve an improved performance. 

The humanoid robot combines a number of special-purpose pieces of hardware, deals with inputs from a 

variety of sensors with different time scales, and responds to external events in real time while attempting 

to meet several goals. The distributed set of interacting microcontroller units is the key element towards a 

control system where centralized and local controls co-exist and concur to provide robust full monitoring 

and easier expandability. A further advantage in generating the control signals locally at each controller 

unit is the contained computational overhead on the controlling software. 

The basic idea is to select measurable parameters that can be used to anticipate the influence of the 

disturbances on the process variables. Then, feedback is  provided to introduce suitable compensation 

control actions via the closure of an outer position control loop. In this work, procedures are described on 

how an external microcontroller can read the shaft position in order to evaluate intrinsic velocity by the 



motor. The experimental results obtained can be seen as a basis for further position and velocity control 

improvements.

4.1. Servomotor limitations

The selected servomotor is practical and robust because the control input is based on a digital signal, 

whose pulse width indicates the required position to be reached by the device. Its  internal controller 

decodes this input pulse and tries to drive the motor up to the required position. However, the controller is 

not  aware  of  the  motor  load  and  its  velocity  varies  with  the  load.  By design,  servos  drive  to  their 

commanded position fairly rapidly depending on the load, usually faster if the difference in position is 

larger. Additionally, which may be critical, as the load increases a steady-state error occurs, turning the 

device into a highly non-linear actuator upon variable loads on the shaft. 

4.1.1 Experimental setup

An entire system was set up to evaluate the actuator performance required for the servomotor advanced 

control; that includes a master and a slave unit controlling a servomotor properly fixed and loaded as 

described ahead. On the one hand, the master unit is connected to a computer through a RS-232 link, 

using MatLab software as the user’s interface. On the other hand, the slave unit is connected to the servo 

mechanism  in  two  ways:  by  sending  the  desired  servo  position  command  and  by  reading  the 

potentiometer feedback signal. The experimental apparatus comprises several loads that will be applied to 

the servo shaft through a linkage with 10 cm long. The servo is fixed in a mechanical lathe such that its 

zero position corresponds to the perpendicular between the link and the gravity vector. Finally, and this 

was  the  sole  hardware  intervention  on  the  servomotor  unit,  in  order  to  measure  the  servo  position 

feedback signal, an extra output wire was connected to the servo internal potentiometer.  Fig. 11 shows 

photos from this experimental arrangement where a calibrated weight is being lifted up. 

 
Fig. 11 - Experimental evaluation of actuators’ response and velocity control using a HITEC HS805BB 

servomotor

4.1.2 Open-loop performance

All the control issues mentioned in this section report to the application of a given pulse train with a 

specific width. Therefore, the servo will be always presented with a Heavyside step in position. The first 

experiments are performed with “large” steps (equivalent to 90º) for several loads and, then, smaller steps 

(few degrees each) are used in order to simulate some kind of linear input and launching the basis for 

velocity control.

After applying a step from -45º to +45º, the first notorious observation is the presence of steady-sate 

errors. For a low mass, the steady state error is negligible, but for the larger load (1129g) about 8º error 

remains after the transient phase (Fig. 12).



Another observed anomaly in Fig. 12 is the unstable dynamic behavior on position reading, which shows 

at the beginning a sudden jump to a position below -45º and some oscillations during the path up to the 

final set point. The interesting part of this observation is that the motor shaft, physically, did not show this 

behavior; a continuous and a fast motion to the final position were observed without speed inversions or 

oscillations. 

  

Fig. 12 - Step response for two loads from -45º to +45º (left) and response to a slope input (right)

In order to implement some sort of velocity control, some experiments were then carried out in a manner 

that a variable position would be successively requested to the servo. The rate at which each new position 

was imposed settled some kind of velocity. Nonetheless, the only way is still to give (smaller) position 

steps to the servo controller; only their magnitude and rate will dictate some desired “average velocity”. 

This approach will generate an approximately linear increase (slope) for the position, which is to say, 

some constant velocity.

This way, the current demands will only practically depend on the load torque because of the speed 

limitation introduced by the ramp input (the levels of current will be lower). In addition, beyond the 

position control, velocity control is introduced by the definition of the ramp length. In Fig. 12 it can be 

seen that, although the transient response has a very improved behavior, the steady state error still exists.

4.2. Servo control enhancement

In all experiments reported above, the servo’s own controller is the only responsible for the resulting 

performance. To overcome the mentioned limitations, an external PWM controller should be applied to 

the servo, and adequate parameterization has to be formulated.

4.2.1 Highlight of the approach

On the basis of the above limitations, two kinds of possible solutions could be devised. On one hand, the 

trend followed by several authors has been to emphasize on the embedded hardware by changing the 

motor internals. The price to pay, however, is often the replacement of the electronics unit of the motor 

package by dedicated control boards. On the other hand, it is expected that enhanced performance can 

also  be  achieved  by  software  compensation,  provided  that  position  and/or  torque  measurements  are 

available.  In  such  cases,  an effective  strategy  to  improve  the servo’s  operation is  using an external 

controller, where an outer position control loop is closed around each slave unit.  Fig. 13 illustrates the 

block diagram of the proposed servo controller. 



  
Fig. 13 - Servo controller diagram

The servo circuit has a very narrow input control range and it is difficult to control accurately, though it 

has adequate speed and torque characteristics. The outer position control loop is proposed as an effective 

tool to achieve good performance in terms of  steady-state behavior  and enhanced trajectory tracking 

capabilities. That is achieved by a variable PWM throughout the full excursion o a joint. The algorithm is 

based on dynamic PWM tracking using the servo own potentiometer for feedback. In other words, the 

software tracks motor position with time and adjusts the PWM in order to accelerate or decelerate the 

motor motion. 

For that purpose, several control algorithms can be derived. The simplest approach that can be followed is 

to consider a digital  PID-controller (or a particular combination of P,  I  and D cases). In this line of 

thought,  this  section  focuses  on  the  control  and  planning  algorithms  to  generate  smooth  and  stable 

motions, without requiring any modification of the servo internals. In order to validate these principles, 

the control schemes proposed are tested in a number of experiments using the same setup as described 

before. All control algorithms are implemented in discrete time at 20 ms sampling interval.

4.2.2 Incremental algorithm

In the case of interest, the system to control is formed by a single joint axis driven by an actuator with 

pulse-width control. To guide the selection of the control structure, it is also important to note that an 

effective rejection of the steady-state errors is ensured by the presence of an integral action so as to cancel 

the effect of the gravitational component on the output. These requisites suggest that the control problem 

can be solved by an incremental algorithm in which the output of the controller represents the increments 

of  the control  signal.  Hence, the block diagram in  Fig.  14 illustrates,  in  the z-domain,  the proposed 

control scheme whose control law is described by the following equation:
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Fig. 14 - Implementation of the incremental algorithm



Several experiments were carried out in order to make a comparison between variations of the control 

scheme. The first experiment is aimed at verify the effectiveness of the integral action. It is required to 

move the joint angle from an initial value 45ºiq = −  to a final value 45ºfq =  in a given time 2ft s= , for 

a  load  of  924 g.  Once  again,  the  determination of  the  specific  trajectory is  given  by  position steps 

successively updated.

The results are presented in Figure 16 in terms of the desired and the measured angular positions. It can 

be observed significant differences occurring in the performance of the open-loop and the closed-loop 

system: the steady state error is eliminated and the delay time is reduced when applying this compensator. 

The  additional  curve  (controller  output)  represents  the  real  pulse-width  control  signal  necessary  to 

guarantee the effective conformity between input signal and output shaft position. 

In the second experiment the proportional action is introduced in order to obtain a PI-controller that leads 

to improved speed response and damping. In this case, it is chosen a more demanding specification for 

the desired slope. Each new step position is update at the maximum rate of 50 Hz (corresponds to the 

PWM period) with an amplitude of 5 degrees. Let the desired initial and final angular positions of the 

joint to be -90 and +50 degrees, respectively, with time duration of 1.12 seconds. 

Fig. 15 demonstrates the effect of increasing KI for a fixed proportional term (KP = 0.04). As expected, 

increasing  KI reduces the steady-state error due to the gravitational disturbances, but at the expense of 

overshoot.  Although  the  PI  control  eliminates  the  steady-state  error,  it  can  be  recognized  that  path 

tracking  accuracy  is  poor  during  execution.  Fig.  15 shows the  time lag  of  the  response  behind  the 

command input, thereby producing a large tracking error. 

Fig. 15 - Response to a slope input for integral control with KI = 0.2 (left) and for proportional plus 
integral control (right)

4.2.3 Trajectory planning

Improvement of the position tracking accuracy might be achieved by increasing the position gain constant 

KP; however, this would give rise to larger overshoot and establishment times. Therefore, a better tracking 

performance is not expected in view of lack of a derivative term.

To this purpose, a third experiment is conducted such that the control algorithm is rewritten aimed to 

include the proportional, integral and derivative terms. However, a planning algorithm is used to generate 

smooth trajectories that not violate the saturation limits and do not excite resonant modes of the system. 

In general,  it  is  required  that  the  time  sequence  of  joint  variables  satisfy  some constraints,  such  as 

continuity of joint positions and velocities. A common method is to generate a time sequence of values 



attained  by  a  polynomial  function  interpolating  the  desired  trajectory.  The  choice  of  a  third-order 

polynomial  function  to  generate  the  joint  trajectory  represents  a  valid  solution.  The  velocity  has  a 

parabolic profile, while the acceleration has a linear profile with initial and final discontinuities.

Fig. 16 - Response to a slope input for PID control (KP = 1.46, KI = 0.39, KD = 0.15)

Fig. 16 illustrates the time evolution obtained with the following data: qi  = -45º, qf = +45º, tf  = 1.12 s. 

The gains of the outer control loop have been tuned to limit the tracking errors. Significant improvements 

in  the  system’s performance can be observed:  zero steady-state  error  with no overshoot  and limited 

tracking errors. The main drawback of the PID controller is that the load seen by the actuator can vary 

rapidly  and  substantially.  As  the  control  task  becomes  more  demanding,  involving  high-speed 

movements or large loads, the performance of the PID controller begins to deteriorate. 

4.3. Humanoid robot control

It is now desirable to extend the previous results from the single-axis system to the complete humanoid 

robot. Although the next development phase was facilitated by the reduction of performance demands and 

also smaller joint excursions, the interpretation of the last results deserves attention given the influence of 

the driving system. On the one hand, the single-axis system was actuated with direct  drive for  high 

demands and, therefore, the weight of nonlinearities becomes relevant. Instead, the humanoid system is 

actuated by servomotors with reduction gears of low ratios for typically reduced joint velocities. The 

presence of gears tends to decouple the joints in view of the reduction of nonlinearity effects. The price to 

pay is the occurrence of joint friction, elasticity and backlash that may limit the system’s performance.

At the lower level in the control system hierarchy lay the local controllers connected by a CAN bus to a 

master controller. These slave control units generate PWM waves to control three motors grouped by 

vicinity criteria (entire foot up to knee and hip joints) and monitor the joint angular positions by reading 

the servo own potentiometer. In order to verify the effectiveness of the control scheme, a large number of 

experimental trials were carried out with the humanoid platform. The primary step is to demonstrate the 

behavior  of  a  single-leg  when  performing  some  basic  movements.  More  concretely,  the  desired 

movements to be performed consist of:  (1) a vertical motion from an upright posture; and (2) a lateral 

motion in which the leg leans sideways (±27 degrees). In both cases, an additional load of 2.1 kg is 

attached to the upper part of the leg to emulate the mass of other segments. 



There are two servo loops for each joint control: the inner loop consists of the servo’s internal controller 

as sold by the vendor; and the outer loop which provides position error information and is updated by the 

microprocessor every 20 ms.  We now compare the robotic system’s behavior when only the inner loop is 

present (hereinafter “open-loop control”) and when the extra feedback loop is added (hereinafter “closed-

loop control”). In the later case, the outer servo loop gains are constant and tuned to perform a well-

damped behavior at a predefined velocity.  Further,  the joint trajectories along the path are generated 

according to a third-order interpolating polynomial with null initial and final velocities.

The experimental results in Fig. 17 show the significant differences occurring in performance of the two 

control schemes (open-loop, and the cascading close-loop controller). The first observation is the usually 

poor performance of the open-loop control, particularly for steady-state conditions, which restricts the 

scope of its application. As a consequence of the imposed vertical motion, the limitations of the open-

loop scheme are more evident when observing the temporal evolution of the ankle (foot) joint. On the 

other hand, an improved performance is successfully achieved with the proposed outer control loop, both 

in terms of steady-state behavior and enhanced trajectory tracking. 
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Fig. 17 - Response to slope inputs for a PI controller. Top and left-bottom charts: behaviours of the 3 
involved joints during up-down motion of legs. Bottom-right: behaviours of foot joint in lateral motion.

Finally, the closed-loop control scheme was successfully extended to demonstrate that the robot could 

perform the same basic tasks while synchronizing and coordinating both legs. In order to simplify the 

experimental arrangement, the upper structure was disconnected and replaced by the 2.1 kg load. Fig. 18 

shows the  snapshots  of  the  humanoid  robot  performing  the  desired  vertical  and  lateral  movements. 

Bearing this in mind, it can be asserted that the proposed control structure represents a contribution to 



achieve an enhanced position-velocity control, which can in turn challenge and open new directions of 

research towards more advanced control algorithms.

    

     
Fig. 18 - Legs performing vertical motion lifting (upper sequence) and lateral motion supporting (lower 

sequence) a 2.1 kg load in complete leg synchronization

5. Example of local control approach

The general desire of providing the robotic system with enhanced capabilities motivated the appearance 

of different lines of thought. One of the most promising directions of research points out to the emergence 

of proper locomotion skills from the physical interaction between the machine and the environment itself 

(Fujimoto, Y., et al., 1998; Park, J., 2001). It should be no surprise that robots with force, touch, distance 

and visual feedback are expected to autonomously operate in deterministic, but unknown terrains. This 

section shows an example that is being developed to demonstrate the possibility of achieving the motion 

of the upper body using a local control approach after considering the reaction forces on the ground. The 

main goal is to exploit and evaluate basic principles and control strategies based on the interaction forces 

between the robot and the environment. The realization of a force control scheme can be entrusted to the 

closure of an outer force control loop generating or modifying the reference input to the motion control 

scheme the robot is usually endowed with.

The open challenge is to allow local controllers to perform actuator control based on sensor feedback and 

possibly a general directive. For instance, supposing that the global order is to keep balance in an upright 

position, although all actuators can intervene, the ankle and knee joints have a relevant role to keep an 

adequate force balance on each foot. Here, we emphasize the role of a local controller, grouping the entire 

foot and knee joints, aiming to conciliate two imperatives: mobility and stability. The next subsections 

describe the control strategies applied to a simplified model in a dynamic simulation environment. 

5.1. System and task description

The control algorithms presented in this paper are applied to a simulated 3-D robot model with 5-DOF 

and 4-links (foot, shank, thigh and trunk). The ODE simulation library (Russell, 2004) is used along with 

an interactive graphical user interface. The contact of the foot with the constraint surface is modeled 



through linear  spring-damper systems in the horizontal  and vertical  directions.  Fig.  19 illustrates the 

articulated system, while the detailed parameters of this model are summarized in Table I. 

Link Mass 
(kg)

Dimensions (m) Spring-damper model

lxi lyi lzi Kz (N/m) Bz (Ns/m)

Trunk 4.0 0.06 0.15 0.30 50.0×10
3

1000.0

Thigh 0.5 0.04 0.04 0.15 Friction model

Shank 0.5 0.03 0.03 0.15 µK µf

Foot 0.1 0.12 0.08 0.02 1.20 2.50

Table I - Robot and environment parameters

Fig. 19 - Three-dimensional 4-link model

The tasks to be performed include a variety of motion goals specified in the intuitive Cartesian space, as 

well as in the joint space.  More specifically, the desired tasks to be performed consist of: (1) movement 

of crouch from standing and then thrust the body upwards to assume again an upright static posture; and 

(2) voluntary trunk movements such as side bending. A useful means to assess balance skill and gain 

insight into postural control is by applying external perturbations and recording reactions. One typical 

disturbance experienced by a service robot is  a perturbation due to external forces applied while the 

system is moving (Huang, Q., et al., 2005). 

5.2. The control algorithm

Our  hypothesis  is  that  the  ground  reaction  forces  are  the  key  element  through  which  new  control 

strategies may be proposed to provide the required level of compliance, adaptation and dynamic stability 

(Popovic,  M.,  et  al.,  2005).  In  this  line  of  thought,  a  hierarchical  control  structure,  based  on  the 

interaction  forces  between  the  foot  and the  ground,  is  investigated.  A block  diagram of  the  general 

controller is sketched in  Fig. 20, revealing the parallel operation of a force control loop and a position 

control loop. This parallel composition of control actions has been applied to exploit the redundancy of 

the system: a given actuator can be utilized to meet more than one task requirement (Puga, J.,  et al., 

2006). In view of the local control approach, we restrict our attention to a simpler implementation, while 

maintaining the two control loops. More specifically, the actuators of the ankle and knee will contribute 

to  attain  the  motion  directives  (specified  in  the  Cartesian space)  based on a  force  control  loop;  the 

actuators of the hip will contribute to regulate the desired trunk orientation based on a position control 

loop.
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Fig. 20 - Blocks diagram of the hierarchical control scheme

As far as the force control is concerned, the tasks to be performed depend on motion goals defined in the 

Cartesian space (e.g., hip coordinates, Centre of Gravity - COG). On the other hand, the variables to be 

controlled  are  the  reaction forces  distributed along the  foot’s  corners.  In  order  to  ensure  the  proper 

behavior through the execution of an interaction task, the reference variables must be generated online in 

result of the demands imposed to the system. These are the variables that some force control law must 

follow.  For the present  purposes,  the reference  forces  are calculated through suitable actions  on the 

position errors in both horizontal and vertical directions. The resultant normal reaction force is calculated 

from the errors measured in the vertical coordinate (z-axis) using a linear control law:

( ) ( )fref ref f ref
n vPf BW K z z K z z = + − + − & & (2)

Here, ref
nf  is the reference normal force, BW is the total system’s weight, refz  and z  are the desired and 

real vertical coordinates, refz& and z&  are the corresponding velocities, and f
pK  and f

vK  are appropriated 

constant  feedback gains.  On the  other  hand,  the  desired location of  the centre  of  pressure (COP) is 

calculated from the errors measured in the horizontal coordinates (x and y axis), as follows:

= − + −& &( ) ( )ref COP ref COP ref
p vCOP K x x K x x (3)

where  refCOP  is  the reference centre of pressure,  refx  and  x  are  the desired and real  horizontal 

coordinates, refx&  and x&  are the corresponding velocities, COP
pK  and COP

vK  are the position and velocity 

feedback gains. 

Having defined the reference forces, there are many different ways to implement the compliance control. 

A relevant feature of the proposed method is the possibility of performing both indirect and direct force 

control. The former is obtained via motion control and without explicit closure of a force feedback loop 

(solid line). The later, instead, offers the possibility of controlling the contact force to a desired value, 

thanks to the closure of a force feedback loop (dashed line).  This paper contributes with one strategy that 

considers only the indirect force control. In spite of the enhanced disturbance rejection provided by an 

inner force control loop, a compliant behavior can be successfully achieved with the proposed solution. 

This paper adopts one strategy that involves two steps. In the first step, the reference COP is actively used 

to calculate the distribution of the total reaction force along the extremities of the support foot. In the 



second step, the signal forces obtained for each corner of the foot are transformed into joint torques by 

using the transpose of the Jacobian matrix:
4

1

T i
i n

i
J fτ

=

= ∑ (4)

where  iJ  is the Jacobian matrix which transforms the differential variation in the joint space into the 

differential variation of the end-effector’s frame i (each foot corner) with respect to the reference frame 

(located at the hip). The subscript T denotes the transpose of a matrix.  

In other words, the stance leg “feels” the forces while the controller distributes them as driving torques in 

order to regulate the desired high-level directive. Equation (4) requires lower computation than inverse 

kinematics or dynamics equations and it is well-behaved since, for a given force vector, a corresponding 

torque vector  can always be obtained even if  the robot is  in  a  singular  configuration.  Although this 

strategy  could  be generalized  to  all  degrees  of  freedom, only the  ankle  and knee  joints  torques  are 

considered. It is interesting to note that, after some analytical simplifications, a computationally simpler 

control law can be derived, as follows:
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( ) ( ) ( ) ( )
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1 2 2 1 2

cos
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= −
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ref ref
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ankle y n

ref ref ref
knee y z x n

COP f

COP f

COP l COP f

(5)

where 1θ  and 2θ  are the ankle angles pitch ν and roll ψ, respectively; the constant 2zl  is the length of the 

shank.

5.3. Simulation results

Motivated by applications in biped locomotion, this subsection presents two simulation analyses. The first 

analysis illustrates the properties of the hierarchical control scheme based on local actions, as well as the 

systems behavior  under  perturbation. The second analysis  illustrates  the influence of  voluntary trunk 

movements and how they are reflected in the ground reaction forces. 

5.3.1 Robustness to perturbations

The first analysis illustrates the properties of the proposed control scheme when the system is on the level 

ground subjected to unpredictable perturbations. The results displayed below are based on the following 

desired path: the system is standing, moves down and up again to the initial posture in 4.5 seconds, while 

the trunk maintains a vertical posture. The initial state is set to  0.29=hipz m  and the desired centre of 

gravity ( ),G Gx y  should be zero along the motion. The motion planning is accomplished by prescribing 

the desired trajectories using sinusoidal-based functions. The controller’s performance is evaluated by 

applying  two  unpredicted  perturbations.  These  perturbations  correspond  to  horizontal  forces  of 

10= ±xF N  applied to the hip section at pre-defined moments of time and sustained for 20 ms.



Fig. 21 - Movement sequence with the robot subject to unpredictable perturbations

The simulation results are shown in Fig. 21 up to Fig. 24. It is observed that the actual hip height profile 

was  well-achieved,  and  the  system  makes  the  necessary  postural  adjustments.  The  system  is  only 

displaced by a few millimeters and it has stabilized shortly after the push. The control method is able to 

minimize the sway by generating a shear force quickly at the ground to counteract the perturbation. It 

depends on the  latency at  which it  starts  to  resist  the  push and the  rate  at  which this  force  can be 

increased. The last graphs show the temporal evolution of the computed joint torques. Given the proposed 

task, it is required a knee torque value that is significantly greater than the ankle pitch torque, while the 

lateral joints require almost no torque.

Fig. 22 - Temporal evolution of the desired vertical hip motion (left) and phase plane for the ankle and 
knee joints (right)

Fig. 23 - Temporal evolution of the real vs. reference normal ground reaction forces in the heel (left) and 
on the toes (right)



Fig. 24 - Temporal evolution of the centre of pressure along the x-axis (left) and joint torques (right)

5.3.2 Voluntary trunk movements

A control algorithm very similar to the one in the previous subsection was constructed for this analysis. 

Here,  the  objective  is  to  prescribe  a  pre-defined  oscillatory  movement  to  the  trunk,  while  the  leg 

maintains a desired height in the sagital plane (the desired hip height is set to  0.29hipz m= ) and the 

desired  ( ),G Gx y  should  be  zero  along  the  motion.  It  is  assumed that  the  goal  is  to  slant  the  trunk 

sideways. 

Fig. 25 - Movement sequence for voluntary trunk movements

The simulation results are shown in  Fig.  25 and  Fig.  26.  The temporal  evolution resembles in large 

measure what could be expected from the human behavior. The first graph shows the change induced in 

the hip’s position that helps to counterbalance the trunk’s movement. The second graph shows that the 

system was closely able to achieve the desired projection of the COG. 

 

x coordinate 

y coordinate 

 

x coordinate 

y coordinate 

Fig. 26 - Simulation data for trunk movement. Left chart: hip’s horizontal position along the x and  y-axis. 
Right chart: location of the COP (solid line) and projected COG (dotted line) along the x- and y-axis.

6. Conclusion and perspectives

This paper described the development and integration of hardware and software components to build a 

humanoid robot based on off-the-shelf technologies. The design considerations that governed this project 



are based on modular and reusable principles. The main features are the distributed control architecture 

and the relevance given to the sensorial information in order to achieve a better adaptive behavior. The 

distributed set of microcontroller units is the key element towards a control system that compensates for 

large changes in reflected inertia and providing variable velocity control.

Particular attention was given to the low-level control of RC servomotors as a relevant and abundant 

component of the humanoid system. Results with a closed-loop controller implemented with software 

show that motors’ low-level velocity control has been made possible. The humanoid system reached a 

point where intermediate and high level control can now flourish. A simulation example has been given 

for a kind of intermediate level control implemented as a local controller based on force sensing.

Ongoing developments on the humanoid platform cover the remainder hardware components, namely the 

inclusion of vision and its processing, possibly with a system based on PC104 or similar. The future 

research, which has already started, will cover distributed control, alternative control laws and also deal 

with issues related to navigation of humanoids and, hopefully, cooperation. Force control techniques and 

more advanced algorithms such as adaptive and learning strategies will certainly be a key issue for the 

developments in periods to come in the near future.
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