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Abstract--This paper presents the design and implementation 

of a complete control system for the swing-up and stabilizing 
control of an inverted pendulum. In particular, this work outlines 
the effectiveness of a particular swing-up method, based on 
feedback linearization and energy considerations. The power of 
modern state-space techniques for the analysis and control of 
Multiple Input Multiple Output (MIMO) systems is also 
investigated and a state-feedback controller is employed for 
stabilizing the pendulum. Cascade control is then utilized to 
reduce the complexity of the complete controller by splitting it 
into two separate control loops operating at well distinct 
bandwidths. 
 

Index Terms-- Cascade control, Feedback linearization 
Inverted pendulum, State-feedback control.  

I. INTRODUCTION 

EING an under-actuated mechanical system and 
inherently open loop unstable with highly non-linear 

dynamics, the inverted pendulum system is a perfect test-bed 
for the design of a wide range of classical and contemporary 
control techniques. Its applications range widely from 
robotics to space rocket guidance systems. Originally, these 
systems were used to illustrate ideas in linear control theory 
such as the control of linear unstable systems. Their inherent 
non-linear nature helped them to maintain their usefulness 
along the years and they are now used to illustrate several 
ideas emerging in the field of modern non-linear control. 

A Single rod Inverted Pendulum (SIP) consists of a freely 
pivoted rod, mounted on a motor driven cart. With the rod 
exactly centred above the motionless cart, there are no 
sidelong resultant forces on the rod and it remains balanced 
as shown in Figure 1.1a. In principle it can stay this way 
indefinitely, but in practice it never does. Any disturbance 
that shifts the rod away from equilibrium, gives rise to forces 
that push the rod farther from this equilibrium point, 
implying that the upright equilibrium point is inherently 
unstable as shown in Figure 1.1b. Under no external forces, 
the rod would always come to rest in the downward 
equilibrium point, hanging down as shown in Figure 1.1c. 
This is called the pendant position. This equilibrium point is 
stable as opposed to the upright equilibrium point. 

 

The control task is to swing up the pendulum from its 
natural pendant position and to stabilize it in the inverted 
position, once it reaches the upright equilibrium point. The 
cart must also be homed to a reference position on the rail. 
All this is achieved only by moving the cart back and forth 
within the limited cart travel along the rail.  

The inverted pendulum system belongs to the class of 
under-actuated mechanical systems having fewer control 
inputs than degrees of freedom. This renders the control task 
more challenging making the inverted pendulum system a 
classical benchmark for testing different control techniques. 

 

 
Fig. 1.1. Equilibrium Points 

 
There are a number of different versions of the inverted 

pendulum system offering a variety of interesting control 
challenges. The most common types are: the single rod on a 
cart inverted pendulum considered in [1]-[3], the Double 
Inverted Pendulum (DIP) on a cart setup [4], the rotational 
single-arm pendulum [5], [6] and the rotational two-link 
pendulum [7]. The control techniques involved are also 
numerous, ranging from simple conventional controllers to 
advanced control techniques based on modern non-linear 
control theory.  

As a result of their nature, most of these papers deal with 
the problem in a purely theoretical manner without going into 
the practical considerations necessary in the design and 
implementation of a practical inverted pendulum rig. This 
paper aims at presenting a complete solution unifying the 
theoretical and practical aspects of the problem, along with a 
set of experimental results demonstrating the effectiveness of 
the complete implemented system.  
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The paper is organized as follows: Section 2 presents a 
brief overview of the complete system. Section 3 deals with 
the mathematical dynamic model of the system used both for 
the computer simulations (MATLAB) and for the 
mathematical design of the controllers. Section 4 goes 
through the main steps in the design of the control algorithms 
their digital implementation and other practical issues. 
Section 5 presents some simulation and practical results, 
outlining any discrepancies between the two and finally 
several conclusions are drawn in Section 6. 

II. SYSTEM OVERVIEW 
This project consists in the design and implementation of 

both the physical system making up the inverted pendulum 
rig, and the control algorithms employed to attain the control 
task described in Section 1. The physical part of the system is 
made up of the mechanical setup composed of the motor 
driven cart and pendulum assembly, together with sensors 
and electronic circuitry. The control algorithms are 
implemented on a Digital Signal Processor (DSP) based 
system.  

Figure 2.1 depicts the complete closed loop system. The 
DSP block is the main controller, made up of the 
TMS320C6711 DSP board from Texas Instruments equipped 
with the AED-103, an Input/Output (I/O) daughter module 
from Signalware Corporation. The system states x  and θ , 
corresponding to the cart and pendulum displacements 
respectively, are obtained from incremental and absolute 
optical encoders mounted on the moving cart. These signals 
are fed to the DSP board which computes the other two states 
θ&  and x&  (using finite backward difference equations), and 
uses the control algorithm to issue an output signal 
corresponding to a torque reference. This torque command is 
then fed as a reference input to the analogue Proportional-
Integral (PI) controller, regulating the motor torque 
accordingly by taking into account the motor dynamics. This 
controller uses the motor current, sensed by a Hall-effect 
sensor, as the feedback signal. 
 

Fig. 2.1. Complete Closed Loop System 
 

III. MATHEMATICAL MODELLING 
The dynamic model of the whole system consists of two 

separate sub-models, namely: the non-linear model of the 
inverted pendulum, and a linear model of the Permanent 

Magnet (PM) DC motor powering the cart. This division was 
adopted in order to keep the non-linear dynamic equations of 
the inverted pendulum as simple as possible, which is 
imperative for the design of the non-linear swing-up 
controller. 

The non-linear inverted pendulum model considers the 
force on the cart as the input, and the angle of the pendulum 
and cart displacement as the outputs. The motor model 
considers the motor terminal voltage as its input and the shaft 
torque as its output. Both models are derived separately and 
the resulting dynamic equations are then used in the design 
stage to develop two different control systems operating 
simultaneously at well distinct bandwidths (cascade control). 

 

A. Non-Linear Dynamic Model   

Fig. 3.1. Rod and cart setup and its force diagram 
 

Referring to Figure 3.1 and applying Newton’s 2nd law at 
the centre of gravity of the pendulum along the horizontal & 
vertical components yields 
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Taking moments about the centre of gravity yields the 

torque equation 
 

.cossin θθθθ HLVLcI −=+ &&&                                            (3) 
 
Applying Newton’s 2nd law for the cart yields 
 

.xkxMHF &&& +=−                                                                  (4) 
 

Where m is the mass at the Centre Of Gravity (COG) of the 
pendulum; M is the mass of the cart; L is the distance from 
the COG of the pendulum to the pivot; x is the horizontal 
displacement of the cart; g is the gravitational acceleration; θ 
is the rod angular displacement; k is the cart viscous friction 
coefficient; c is the pendulum viscous friction coefficient; I is 
the moment of inertia of the pendulum about the COG; V & 
H are the vertical & horizontal reaction forces on the rod and 
F is the horizontal control force on the cart.  Combining (1) 
to (4), the non-linear mathematical model of the cart and 
pendulum system is obtained and is given by (5) and (6).  
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B. Linearized Model in State-Space Form 
Equations (5) and (6) were used to model the open-loop 

inverted pendulum (motor dynamics not included) during 
simulations. The same non-linear model was used for the 
design of the non-linear swing-up controller. However, for 
the design of the linear state-feedback controller, used for 
stabilization, a linearized version of these equations was used. 
The inverted position of the pendulum corresponds to the 
unstable equilibrium point ( )θθ &,  = (0,0). This corresponds to 
the origin of the state space. In the neighbourhood of this 
equilibrium point, both θ  and θ&  are very small (in rad & 
rad/sec respectively). In general, for small angles of θ  andθ& : 

θθ ≈)sin( , 1)cos( ≈θ  and 0)( 2 ≈θθ& . Using these 
approximations in (5) and (6), the mathematical model 
linearized around the unstable equilibrium point of the 
inverted pendulum is obtained, and given by (7) and (8). 
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To get these two equations into valid state space linear 

form both x&&  and θ&&  must be functions of lower order terms 
only. Hence, x&&  must be substituted for in (7) using (8), and 
similarly θ&&  substituted for in (8) using (7). Writing the 
resulting equations in matrix form, the linearized state-space 
model is obtained and is given by the matrix linear equations 
(9) and (10).  
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Where state vector   s =[ x  x&  θ  θ& ] T,                               (11) 
output vector   [ ]θxy =

T,                                                 (12) 
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C. Permanent Magnet DC Motor Dynamics 
The mathematical model of the DC PM motor was required 

for the design of the motor torque PI controller. The 
mathematical model for the motor, considering the motor 
terminal voltage as input and the shaft torque as output, is 
given by the transfer function in (15). 
 

)]/()/([])/[()(/)( 22 LJKsLRssLKsVsT ttT ++=                    (15) 
 
Where L is the terminal inductance of the motor; R is the 

terminal resistance; Kt is the torque constant; J is the rotor 
inertia; VT is the terminal voltage and T is the developed 
torque. 

IV. SYSTEM DESIGN 
The inverted pendulum control was split in two main 

phases: the swing-up phase and the stabilizing phase. The 
former uses a non-linear controller to swing-up the 
pendulum, keeping the cart within a limited travel range on 
the rail. The latter uses a linear state-feedback controller to 
stabilize the pendulum in the inverted position once it 
approaches the upper unstable equilibrium point. It is also 
required to home the cart to a reference point on the rail, once 
the pendulum is stabilized. A transition algorithm switches 
smoothly from one control phase to the other. 

 

A. Swing-Up Control 
The method proposed in [1] and adopted for the swing-up 

control phase in this project is briefly discussed in this 
section. Reference [1] contains a thorough explanation of this 
method. This technique aims at swinging up the pendulum, 
while keeping the cart within a limited horizontal travel on 
the rail. This is achieved by satisfying a particular 
mathematical condition, derived from the mechanical energy 
equations of the pendulum, while constructing a linear servo 
system, using a sinusoidal reference input generated from the 
pendulum trajectory. The total mechanical energy of the 
pendulum V, and its derivative V& , are given by (16) and (17). 

 

)cos1(
2
1 22 θθ −+= mgLmLV &                                             (16) 

( )xmLV &&&& θθ cos=                                                                 (17) 
 
From (16) and (17), it is clear that V can be increased or 

decreased by changing the sign (sgn) of x&&  in accordance with 
that of θθ cos& . If sgn( x&& ) = sgn( θθ cos& )  then V& > 0, similarly 
if sgn( x&& ) = -sgn ( θθ cos& )  then V& < 0. Hence, energy can be 
pumped into the pendulum by generating x&&  (an acceleration 
on the cart) satisfying the sign conditions listed above. 
However, one cannot concentrate on swinging-up the 
pendulum only, without considering the finite cart travel 
(limited range for x). Therefore, x&&  has to be controlled whilst 
keeping the constraint on x in mind. Basically, the design 
method proposed in [1] suggests; constructing a control law 
such that the resulting closed loop system is linear (through 
feedback linearization) and of the form of a second order 
servo system for x, having a sinusoidal reference input to 
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ensure the desired bounded nature of x. This reference input 
is derived from ( θθ &, ), and generates x&&  satisfying the sign 
condition given above. This is done in order to control V to 
the prescribed value corresponding to the energy of the 
pendulum at the upright equilibrium point. Since the pair of 
( θθ &, ) that makes V equals to the desired value is not unique, 
the upright equilibrium point cannot be stabilized using only 
this control method. For this reason a different control law is 
utilized when the pendulum approaches the upright 
equilibrium point. This is referred to as stabilizing control.  

 

B. Stabilizing Control 
This control method is based on state-space pole-

placement design techniques using the linearized model of 
the inverted pendulum. This implies that the stabilizing 
control by itself will only ensure local stability, in the vicinity 
of the upright equilibrium point, the point about which the 
equations were linearized. The pole-placement technique 
permits the design of a linear controller that achieves 
arbitrary desired closed loop poles. The desired poles should 
be chosen wisely such that some desired closed loop 
characteristics are achieved. The final control law, from this 
design, is the result of a matrix multiplication between the 
state vector s  and a gain matrix of compatible dimensions 

TK , such that sKF T−= .              In this particular design, a 
small settling time and a high damping ratio were required. 
To meet these specifications, the closed loop poles were 
placed at is µ=  (i =1,2,3,4), where 962.105.41 j+−=µ , 

962.105.42 j−−=µ , 103 −=µ  and 104 −=µ .  Basically, µ1 

and µ2 are a pair of dominant closed-loop poles with damping 
factor ξ = 0.9 and natural frequency ωn =4.5rad/sec, resulting 
in a settling time of approximately 1 second. The other two 
poles are located far to the left of the dominant pair of closed 
loop poles and therefore, their effect over the overall 
response is minimal.  

 

C. Transition Algorithm 
An intermediate algorithm was designed to switch from the 

swing-up controller to the stabilizing controller and vice-
versa, depending on the state variables θ  and θ& . Actually, 
this algorithm performs a smooth transition from one control 
law to the other by averaging the outputs of the two 
controllers in the transition region. This avoids what is 
known as hard switching, which may upset the system due to 
parameter uncertainties and un-modelled dynamics. 
Basically, if θ  and θ&  are both close to zero, only the 
stabilizing controller is used. Similarly if they are much 
higher than zero, only the swing-up algorithm is used. In 
between these two extremes a region was created, the 
transition region, in which both algorithms are processed and 
weighted accordingly, leading to soft switching. 

 

D. Digital Implementation 
The swing-up and stabilizing controllers were 

implemented on the TMS320C6711 DSP. For this reason, the 
corresponding control laws had to be implemented in 
software. For linear control systems, the effects of sampling 
are usually taken into consideration by discretization; a 
conversion of the continuous time dynamic equations, taking 
into account the sampling process and the holding devices. 
However, non-linear physical systems that are continuous in 
nature are hard to meaningfully discretize [8], since well-
known discretization techniques, like the Z-transform, do not 
apply for non-linear systems. Therefore, non-linear digital 
control systems are usually treated as continuous time 
systems in analysis and design. This approach is only 
justified if high sampling rates, compared to the bandwidth of 
the plant under control, are used.  Another important factor in 
digital control systems is that the time period between the 
sensing of information and actuation should be much shorter 
than the sampling period itself. In this system a sampling 
frequency of 100Hz was chosen after mathematical analysis 
revealed that the highest bandwidth in the system is around 
1.8Hz. These requirements and the computational complexity 
of the non-linear control algorithm were the main reasons for 
using a floating point DSP to implement the digital 
controller.  
 

E. Physical Setup 
The rig consists of a two-meter L-shaped wooden bench 

equipped with a linear-guide rail on its horizontal face and a 
toothed rack mounted on the vertical face. The cart slides 
over the linear-guide rail using a compatible linear-guide 
carriage fitted at the bottom The cart is driven by a 250W, 
36V Rare-Earth (RE) PM DC motor, driven through a 4-
quadrant full-bridge converter using a bipolar voltage 
switching technique. An incremental encoder and an absolute 
encoder provided the two system states, x and θ  respectively. 
The motor and the incremental encoder are equipped with 
steel pinions to engage firmly in the toothed rack. An 
analogue electronic Proportional Integral (PI) torque 
controller was designed to improve the overall system 
performance by creating a fast inner torque control loop 
cascaded to the main control loop as shown in Figure 2.1. 
Finally, the DSP system interfaced to the rest of the system 
through a signal conditioning board, purposely designed to 
help in reducing the noise levels on the signals. 

V.  SIMULATION & PRACTICAL RESULTS 
The controllers discussed in Section 4, were simulated 

using the non-linear model of the pendulum. The inner loop 
dynamics were neglected in these simulations. This is valid 
since in practice the inner control loop was designed to have 
a much higher bandwidth than the pendulum dynamics.  
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Fig. 5.1. Simulation of Swing-Up & Stabilization 

 
Figure 5.1 shows the simulation plots for θ and x during 

swing-up and stabilization. Initially the pendulum is in the 
pendant position. It swings-up gradually, responding to the 
bounded oscillations of the cart. Up to 3.91 seconds the 
swing-up controller is in control. Then, the transition 
algorithm takes over till 3.99 seconds. The state-feedback 
controller takes over completely for the rest of the time, 
stabilizing the pendulum in the inverted position and homing 
the cart to the reference point on the rail. Note that the 
pendulum swings-up and stabilizes in less than 5 seconds. 

 

 
Fig. 5.2. Practical Swing-Up & Stabilization 

 
Figure 5.2 shows the actual experimental plots for θ and x 

acquired from a swing-up and stabilization test using the 
physical inverted pendulum system designed and 
implemented in this project. It is clear that the pendulum 
swung-up from its initial pendant position and stabilized in 
the inverted position, with the cart homing back to its initial 
reference point, in less than 5 seconds. The cart oscillations 
are also limited between 6.29cm and 28.6cm during swing-
up, showing the effectiveness of the servo cart dynamics 
imposed by feedback linearization as proposed in [1]. These 
results are almost a replica of the simulations, with the slight 
difference that in practice both the cart and the pendulum 
keep oscillating slightly about the reference after they are 
stabilized. These oscillations are less than 5cm for the cart 
and 1° for the pendulum and are accounted for by the 
continuous air disturbances on the rod, non-linear un-

modelled dynamics, such as Coulomb friction, pinion 
backlash, motor dead-zone and magnetic hysteresis, and other 
mechanical imperfections. 

VI. CONCLUSIONS 
The results presented in Section 5 verify that the system 

designed and implemented in this project was successful. The 
control task stated in Section 1 was completely fulfilled, i.e. 
the pendulum swung-up from its natural pendant position 
according to the algorithm developed in [1], and stabilized in 
the inverted open-loop unstable position using state-feedback 
pole-placement. The cart also homed back quickly to a 
reference position on the rail. The controlled inverted 
pendulum was proven to be highly robust for external rod 
disturbances and the controller exhibited stability for both x  
and θ given any initial conditions. Short video clips of the 
operating inverted pendulum can be found at [9], and further 
technical details about this project can be found at [10].  
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