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n this article we give a simple and comprehensive review of I anti-windup, bumpless and conditioned transfer techniques in 
the framework of the PID controller. We will show that the most 
suitable anti-windup strategy for usual applications is the condi- 
tioning technique, using the notion of the realizable reference. 
The exception is the case in which the input limitations are too 
restrictive. In this case, we propose the anti-windup method with 
a free parameter tuned to obtain a compromise between the 
incremental algorithm and the conditioning technique. We also 
introduce the new notion of conditioned transfer, and we will 
show it to be a more suitable solution than bumpless transfer. All 
the discussions are supported by simulations. 

All industrial processes are submitted to constraints. For 
instance, a controller works in a limited range of 0-10 V or 0-20 
mA, a valve cannot be opened more than 100% and less than 096, 
a motor driven actuator has a limited speed, etc. Such constraints 
are usually referred to as plant input limitations. On the other 
hand, a commonly encountered control scheme i s  to switch from 
manual to automatic mode or between different controllers. Such 
mode switches are usually referred to as plant input substitutions. 

As a result of limitations and substitutions, the real plant input 
is temporarily different from the controller output. When this 
happens, if the controller is initially designed to operate in a 
linear range, the closed-loop performance will significantly de- 
teriorate with respect to the expected linear performance. This 
performance deterioration is referred to as windup. Besides 
windup, in the case of substitution, the difference between the 
outputs of different controllers results in a big jump in the plant 
input and a poor tracking performance. This mode switching, 
which results in such phenomena, is referred to as bump transfer. 

A rational way to handle the problem of windup is to take into 
account, at the stage of control design, the input limitations. 
However, this approach is very involved and the resulting control 
law is very complicated. The nonlinearities of the actuator are 
not always known apriori. A more common approach in practice 
is to add an extra feedback compensation at the stage of control 
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implementation. As this compensation aims to diminish the 
effect of windup, it is referred to as anti-windup (AW). 

In the case of mode switching, the method that aims to 
minimize the jump at the plant input i s  referred to as the bumpless 
transfer (BT). Yet to minimize the jump is not always preferable, 
since this may cause a relatively poor tracking performance. Thus 
we refer to the method that will not only reduce the jump at the 
plant input but also keep a good tracking performance as condi- 
tioned transfer (CT). This new notion will be shown to be very 
useful later in this article. An anti-windup strategy is usually 
implemented as a bumpless transfer technique. Indeed, an anti- 
windup method will usually diminish the jump at the plant input 
during mode switching. However, it should be pointed out that 
anti-windup does not necessarily imply bumpless transfer. 

The topic of anti-windup and bumpless transfer has been 
studied over a long period of time by many authors, and the most 
popular techniques are described in [2,4,7,10,11,16]. However, 
although the concept of anti-windup and bumpless transfer is 
introduced in almost every basic control textbook, it is not clearly 
illustrated and is sometimes misinterpreted. For instance, many 
authors think that anti-windup i s  aimed at reducing the output 
overshoot in its step response, or that anti-windup is a synonym 
for bumpless transfer, or that the best transfer transition is to 
eliminate the jump at the plant input. These thoughts need to be 
corrected. Recently, Kothare et al. [ lo] have presented a general 
framework for anti-windup design that is a very useful guide for 
theoretical researchers. Yet a practical control engineer may still 
look for a simpler tutorial. 

Therefore, the objectives of the present article are as follows. 
First, we would like to illustrate through simulations the phe- 
nomenon of windup and bump transfer. We will limit ourselves 
to the framework of the PID controller, since it is the most 
common industrial controller and it frequently experiences 
windup and bump transfer problems. Then we will review the 
majority of existing anti-windup methods, illustrate the im- 
proved results, and compare those methods by using the notion 
of the realizable reference. Subsequently, we will investigate the 
case of mode switching and introduce the new notion of condi- 
tioned transfer. It will be shown that conditioned transfer is a 
more suitable solution than bumpless transfer. Finally, we will 
include some discussions of practical issues. 

Background Materials 
As mentioned above, the process input is often limited in 

practice. The most common types of limitations are magnitude 
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Fig. 1. Limited closed-loop system. 
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Fig. 3. Bump transfer from manual to automatic mode. 
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Fig. 4. Process output ( y )  

August 1996 

and rate limitations. A magnitude limitation and a rate limitation 
can respectively be described by the following two equations: 

where u and ur are also referred to as the controller output and 
the real process input, respectively. 

A PID controller can be described by the following equation: 

r 1 

I +s- 
N (3)  

where u is the controller output, y is the process output, w is the 
reference signal, e = w - y is the process tracking error, and the 
capital letters U,  E,  and Y denote the Laplace transforms of u, e, 
and y respectively.The controller parameters are the proportional 
gain K ,  the integral time constant Ti, and the derivative time 
constant Td. The high frequency gain N is usually set between 7 
and 15. 

Windup 
Consider a closed-loop system containing a PID controller 

and a magnitude limitation LIM (Fig. 1). (In this article, the block 
diagram LIM represents the magnitude and/or rate limitations.) 
Suppose the controller and process are in steady state. A positive 
step change in w causes a jump in u,  so the actuator saturates at 
high limit if K > 0. Thus u" becomes smaller than u, and y is 
slower than in the unlimited case. Due to the slower y ,  e decreases 
slowly. The integral term increases much more than the one in 
the unlimited case, and it becomes large. When y approaches w, 
u still remains saturated or close to saturation due to the large 
integral term; u decreases after the error has been negative for a 
sufficiently long time. This leads to a large overshoot and a large 
settling time of the process output. 

To illustrate the above phenomenon, we have made a simula- 
tion which is referred to as Sim. 1, with process 1, controller 1 
whose parameters are given in the appendix, and the input 
limitations umM. = 2, umln = 0, vmax = 2 sec and vmln = -2 sec . 
The closed-loop step responses for both limited and unlimited 
cases are shown in Fig. 2. 

In Fig. 2, we can see a large overshoot and a long process 
settling time in the limited case as compared to the unlimited 
case. This closed-loop performance deterioration with respect to 
the unlimited case is called windup. 

Bump Transfer 
Let us consider the control scheme with the capability of 

switching between manual and PID control mode (Fig. 3). 

1 
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Fig. 5. Process input (ur). 

Fig. 6. Limited closed-loop system with AW 

Assume that the switch goes from automatic to manual control. 
If um is such that for some time e > 0, then the integral term 
increases in an uncontrolled way to very high values and u 
becomes high and much greater than um. Now, assume that the 
switch goes back from manual to automatic control. At that 
moment, even if e = 0, a big jump occurs at ur, due to the high 
values of the integral term. Moreover, u decreases only if e < 0 
for a sufficiently long time. This leads to a long settling time of 
the process output. 

To illustrate the above phenomenon, we have made a simula- 
tion which is referred to as Sim. 2, with process 1, controller 1. 
whose parameters are given in the appendix, and the reference 
signal taken as 0. The process is manually controlled in the period 
from 0 to 22 sec. Then, its input is switched to the PID controller. 
The results of the simulation are shown in Figs. 4 and 5. 

From Figs. 4 and 5 it can be seen that, at the instant of 
switching, a big jump occurs at the process input, and this also 
causes a long settling time of the process. This mode switching 
with a jump at the plant input is called bump transfer. 

Review of Some Existing AW (BT, CT) Algorithms 

Anti-Windup 
In fact, windup appears due to the fact that the integral term 

increases too greatly during saturation. Thus, during saturation, 
the increase should be slowed down. This can be realized by an 
extra compensation that feeds back u - ur to the integral term, 
through a compensator with transfer function F(s)  (Fig. 6). As 

this compensation aims at reducing the effect of windup, it is 
called anti-windup. 

If the compensator is taken as F(s) = lIKu where Ku is a 
prescribed constant, the scheme described by Fig. 6 is referred 
to as the linear feedback AW algorithm. 

Realizable Reference 
The realizable reference w' is such that if it had been applied 

to the controller instead of the reference w, the control output u 
would have been equal to the real plant input ur obtained with 
the reference w. In this case, the limitation is not activated. 

If wr is used in the control scheme described by Fig. 6, by 
definition, the limiter is not activated (u' is always the same as 
u). so it can be put away as shown in Fig. 7. Moreover, ur and y 
described in Fig. 7 are equivalent to ur and y described in Fig. 6, 
respectively. We can see that the control scheme described by 
Fig. 7 does not include any implicit non-linearity. The non- 
linearity is hidden in the realizable reference wr. From Fig. 7, it 
can clearly he seen that y tracks w'instead of w, with the expected 
linear performance. 

From the definition of the realizable reference, we have 

this yields 

During the limitation, u' is the same for whatever F(s),  and 
so is y ,  if the initial conditions are the same. Hence, from (3, it 
can be seen that during limitation, w' is the same for whatever 
F(s).  For the linear feedback AW algorithm, we have: 

Subtracting (6) from (4), we can calculate w' as 

Fig. 7. Equivalent scheme of Fig. 6. 
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K + sK,T, feedback AW has an inherent observer property as pointed out wr=w+ (M' - u )  = w + Gw(S)(ur -uj KK,(I+s2;:) (7) by Walgama and Sternby [17]. 

As GW(x) is a dynamic transfer function with a pole and a zero, 
w' will not become the Same as at the instant when the 
controller leaves the limitation (u' = u),  unless G&) is reduced 
to a static gain. Indeed, when KcL = K,  (7) yields: 

Conditioning Technique 
This AW approach was first presented in [5] as an extension 

of the back calculation method proposed by Fertik and Ross [4]. 
If we apply the realizable reference wr to the controller instead 

of w, (10) yields 

Llr - u  

K 
wr=w+-. 

(9) 

At the instant the controller leaves the limitation (u' = u), w' 
becomes w. This choice thus gives thebest tracking performance. 

Observer Approach 

where xc is the new controller state when using w'. 
AS w' is not available a priori, we have to use w to update u 

as (lob). However, we can use W' (computed a posteriori) instead 
of w to update the controller state in order to make it consistent. 
Thus This AW approach was first presented in [2]. 

The PID controller described in (3) can also be described by 
-Y  3 (144  k, = WJ. 

the following state-space equations: 

K u = - X ,  + K( w - y )  - y d  , 
Ti 

u' = LZM(u) 

U' = LIM(u) , (loc) By subtracting (14b) from (13b), we have 

where x is the controller state and yd is the output of D-term 
described by 

The interpretation of the windup phenomenon is that the state 
of the controller does not correspond to the control signal being 
fed to the process [ 1,2,  131. To correctly estimate the state when 
ur # u, an observer is introduced. The correction of the state is 
proportional to the difference between u and U' through a static 
gain L: 

Substituting (15) for w' in (14), the controller can be written 

This is a special case of the linear feedback AW algorithm in 
which K, = K. As has been discussed in the sub-section on the 
realizable reference, this choice results in the best tracking 
performance. Some extensions of the conditioning technique are 
given in [8, 9, 161. 

Incremental Algorithm 
The incremental algorithm is very often used to prevent 

windup in practice [ 1,6]. It is also a relatively simple method to 
incorporate in a digital controller. Fig. 8 shows a typical discrete- 
time implementation. 

ur = LZM(u) , (12c) 

where xe is the estimated state.This is the same as the linear 
feedback AW algorithm by noting K, = 1/L. Indeed, the linear 

August 1996 51 



I 

Fig. 8. Incremental algorithm (discrete-time implementation with 
sampling time TS). 

Fig. IO.  Conditional integration method. 

Using the incremental algorithm, u(k)  is updated as 

u(k) = u'(k - 1) + Au(k)  . (17) 

If the sampling time is very small, Au(k)  and u(k)  d ( k )  are 
almost zero except at the instant of reference change. By block 
manipulation, the discrete-time iniplementation of the incre- 
mental algorithm can be expressed in another way, as in Fig. 9. 

The discrete-time implementation can be transformed into its 
continuous-time equivalent by decreasing sampling time Tx: 

Thus, the continuous-time implementation can be repre- 
sented as a special case of the linear feedback AW algorithm with 
Ka + 0. 

Conditional Integration 
Fig. 1 0 and ( 1  9) depict the conditional integration [ 1, 61 

e i = {  e;  u' = u  . 
0;  u r Z U  

The comparator C switches the input of the integral term 
according to u and u'. If the controller works in the linear region 
(ur = M ) ,  the input of the integral term ei is connected to e,  

Fig. 9. Discrete-time equivalent of the incremental algorithm. 

otherwise ( u ' f  u) ,  the comparator switches ei to 0 (the updating 
of the integral term stops).As the controller has a non-linear 
feedback function, the conditional integration is referred to as a 
non-linear feedback AW method. It can be expressed in a form 
similar to a linear feedback AW method by setting: 

Note that KO is, however, a time-varying term. It can be shown 
that 0 < KO < K for PI controller [14]. This is also true for the 
PID controller except that, for non-minimum phase process, it 
might happen that Ka > K. Hence, we can expect that the response 
of the conditional integration would lie between the responses 
of the incremental algorithm and the conditioning technique. If 
it happens that K, > K ,  then the AW capacity will be reduced, 
since the AW feedback gain is inversely proportional to Ka. 

Comparative Study 
To compare the mentioned AW algorithms, we make again 

the same simulation as Sim. 1, except that different AW strategies 
are used. 

Figs. 11 and 12 show the difference between the AW algo- 
rithms. It is clearly seen from Fig. 11 that the conditioning 
technique gives a wr that is the closest to w. Fig. 12 demonstrates 
that y tracks w' instead of w. It is also seen that the response of 
the conditional integration lies between the responses of the 
incremental algorithm and the conditioning technique. 

Bumpless Transfer and Conditioned Transfer 
Now, let us investigate the case of mode switching. During 

manual mode (u' = u'"), as the controller is not connected to um, 
its output is usually quite different from u". In this case, after 
switching, a jutnp will be produced at the plant input (bump 
transfer). To remove the jump, the controller output u should be 
made as close as possible to um during manual mode. Then the 
jump at the instant of switching will be minimized. This mode 
switching is called bumpless transfer. Yet there is no guarantee 
that the tracking performance will be good after mode switching. 

If the controller output u is adjusted so that after switching 
from manual to automatic control, the plant output y tracks the 
reference w with the same dynamics as the closed-loop step 
response, then this mode switching is called conditioned transfer. 
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In other words, after switching, good tracking performance will 
be assured when using conditioned transfer. Note that the jump 
is usually small but not minimized in this case. 

An anti-windup strategy is usually implemented as a bum- 
pless transfer technique as shown in Fig. 13. However, we will 
see that only the incremental algorithm is a solution for BT, while 
the conditioning technique is a solution for CT. 

Time [SI 
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0 

Fig. 14. Process output (y). 

Indeed, using the incremental algorithm (K, + 0), during 
manual mode, referring to (1 7), we can see that u is made nearly 
equal to ur. Thus, the incremental algorithm will not produce a 
jump at u' at the time of switching, and can be used as a E T  
method. 

The realizable reference wr for BT and CT methods can be 
defined in the same way as for AW scheme. Figs. 13 and 7 then 
represent the equivalent schemes from the process viewpoint. 
Note that the realizable reference is defined for all time. During 
manual mode (u' # u) ,  w" is different from w, and y tracks d. 
After switching to automatic mode (u' = u) ,  we want wr = w so 
that y will track w with the same dynamics as the closed-loop 
step response (CT). The only way to do this at the instant of 
switching is to use the conditioning technique (KO = K ) .  Usually, 
the conditioning technique will produce a jump at the input of 
the process, because wu will jump to w when the switching 
occurs. This is normal, as a jump always occurs when the 
reference has a step change. Yet if a jump is not tolerable, we can 
either switch from manual to automatic mode when u is close to 
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Fig. 19. Representation of the limited system. 

Fig. 17. Anti-windup and conditioned trnnsfec 

um (by driving y close to w before switching) or add a rate 
limitation at the process input [14]. 

To support the above arguments, we have made again the 
same simulation as Sim. 2, except that different AW strategies 
are used. The results are shown in Figs. 14 to 16. 

It can be seen that the incremental algorithm (BT) produces 
no jump at the process input (u‘) at the instant of switching from 
manual to automatic mode (Fig. 15), but the settling time of the 
closed-loop response is quite long (Fig. 14). On the other hand, 
the conditioning technique (CT) yields a short settling time at 
the cost of producing a small jump at the process input. It can 
also be seen that only the conditioning technique can make = 
w at the instant of switching from manual to automatic mode 
(Fig. 16). 

Discussion 

Generalization 
Fig. 17 shows the way to realize AW and BT or CT in the 

same time. In fact, the solution can be generalized for all con- 
trollers with relatively slow or unstable modes. As pointed out 
by Doyle et al. [3] ,  those controllers with relatively slow or 
unstable modes will experience windup problems if there are 
actuator constraints. In fact, in the case of mode switching, they 
will experience bump transfer problems too. 

Generating the Real Process Input 
Measuring the real process input ur requires additional con- 

troller input, cables, and filters that would be too expensive. In 

Fig. 20. Estimated process limitation inside controller: 

most controllers, this problem can be solved by estimating the 
process input limitations inside the controller. We can put an 
estimated limitation LIM’ in front of the real limitation LIM (Fig. 
18). If LIM’ is the same as LIM, then ur’ is already limited by 
LIM’ and will not be limited again by LIM. Thus, ur will become 
the same as u”. LIM’ can be even more “restrictive” than LIM, 
and u‘ would still remain equal to u‘. 

The limited controller and process can be represented as 
shown in Fig. 19. We can put an estimation of the process 
limitation (LIM’,) into the controlleras shown in Fig. 20. In this 
case, the controller output signal (u ‘ )  will become the same as 
u“ as long as LIM’, is adequate. 

Therefore, the controller output signal u‘ can be used for AW 
(BT, CT) algorithms instead of ur. If LIMP cannot be estimated 
accurately, we can use a more “restrictive” estimation. However, 
if a too “restrictive” estimation is used, the system may become 
oscillatory, as will be shown shortly. 

Dealing with Too Restrictive Process Limitations 
As pointed out by Ronnback et al. [12] and Walgama et al. 

[ 161, when process input limitations are too restrictive, using the 
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Fig. 21. Process output (y). 

Time Is1 

-1 I 

25 i 
1 
I K* - 

process input 

0 10 20 30 40 50 60 

Time Is1 

Fig. 22. Method with changing K,, 

0 20 40 60 80 100 120 140 160 1x0 20C 

Time 161 

Fig. 23. Process output ( y )  using I controller: 

conditioning technique might produce multiple opposite limita- 
tions at the process input and thus lead to oscillations at the 
process output. If this happens, the controller parameters should 
be tuned so as to decrease the oscillations (more sluggish con- 
troller) 1141. 

Another solution to the above problem is to use an AW 
algorithm with K,, << K (e.g. the incremental algorithm). The 
drawback of such a method is the degradation of the tracking 
performance. This problem could be alleviated by first using the 
conditioning technique and reducing the constant K, during 
multiple opposite saturation. As a rule of thumb, K, could be 
reduced by a factor 2 ifthe limitation changes sign (from positive 
to negative or vice versa). To illustrate this idea, we make a 
simulation with the data used for Sim. 1, except that the input 
limits are more restrictive: umm = 2, ullzin = 0, vmnx = 0.2 sec-' and 
vmin = -0.2 se,-'. 

The results are presented in Figs. 2 I and 22. We can see that 
the tracking performance of the proposed method (with changing 
K,) is better than the results obtained with the incremental 
algorithm. 

Fig. 24. Process input (u') using I controller: 

AW for I Controller 
What kind of AW algorithm should be used if we have an I 

controller instead of a PI or a PID? 
For the conditioning technique, Ka is equal to K. As the propor- 

tional gain ( K )  in an I controller is equal to 0, the conditioning 
technique should be implemented by taking Ku + 0. This corre- 
sponds to the incremental algorithm. Thus, for an I controller, the 
conditioning technique can be realized by the incremental algo- 
rithm. Figs. 23 and 24 show an example where an I controller is 
used. We can see that the AW solution with K, + 0 works quite 
well. 

In this simulation, we have used process 1 and controller 2 
whose parameters are given in the appendix. The input limits are 
v,n~lx = 0.02 sec-l and vinia = -0.02 sec-'. 

Conclusions 
We have illustrated, through simulations for PID controllers, 

the phenomenon of windup and bump transfer, and the improved 
results obtained using the techniques of anti-windup, bumpless 
transfer, and conditioned transfer. The majority of existing anti- 

August l Y Y 6  55 



windup, bumpless, and conditioned transfer techniques have 
been reviewed in the framework of the PID controller. Using the 
so-called realizable reference, we have shown that the condition- 
ing technique is the most suitable anti-windup method for usual 
applications. The exception is the case in which the input limi- 
tations are so restrictive that the system output might become 
oscillatory. In such a case, the controller parameters could be 
changed in the design stage to damp the oscillations, or an 
anti-windup method with a tuning parameter Ka (tuned to obtain 
a compromise between the incremental algorithm and the con- 
ditioning technique) could be used. 

Two types of transfers in the case of mode switching are 
described. Although bumpless transfer is a well-known concept, 
its resulting tracking performance might be degraded. The new 
notion of conditioned transfer is thus introduced for the first time 
in this article. Conditioned transfer assures good tracking per- 
formance at the cost of a possible small jump at the plant input 
during mode switching. 

Utilizing many other simulations [14], we have tested the 
above conclusions and found them to be always valid if the 
closed-loop system demonstrates satisfactory performance in the 
unlimited case, no matter which process and controller are used. 
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Appendix 
The numerical values of the process and controllers used for 

Process I :  
simulations: 

G(s)  = 
1 

(1 + 8s)(l+ 4s) ’ 

where G(s) is the process transfer function. Using a pole-place- 
ment method [lS], we derived the following PID controller for 
process 1: 

Controller I :  
K = 20, Ti = 30 sec, T d  = 0.95 sec, N = 10 . 
By manual tuning [15], we also derived the following I 

Controller 2: 
controller for process 1 : 

where G&) is the I-controller transfer function. 
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Correction 
The figure accompanying Sanjoy K. Mitter's article in our last issue ("Filtering and Stochastic Control: A Historical Perspective," 
June 1996 CS, p. 67) contained several errors. The figure is reproduced correctly here. We regret the errors.-Ed. 
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