OpenCV Tutorial

Part II Loading Images and Using Histograms

29 November 2005

Tasks

The first step after establishing a working environment is to begin manipulating images. This tutorial will give an introduction to the usage of some basic functions.

Steps Performed

Load an Image

Calculate Histogram Values

Calculate Basic Statistics Using Histogram Information

For explanations on any functions used here see the OpenCV documentat.

29 November 2005

Loading the Image

OpenCV makes it relatively easy to load images. There are several syntax variations that simply take in the path/file name. One is presented here.

Load the File

Specify a File to be Loaded

Use the *cvLoadImage* function to assign the image to an *IpIImage* pointer

//the name of the image being loaded char* imageName = "Critters_00005.JPG"; //Load the image and make sure that it loads correctly lpllmage* im = cvLoadImage(imageName, -1); if(im == 0) { //Drop out if the image isn't found std::cerr << "Failed to load: " << imageName << std::endl; return 1:

OpenCV uses an *IplImage* to represent image internally.

Specifying a Working Region

In order to work with a histogram the image will have to converted to a single plane.

Create the Grayscale Image

Create an Image of a Single Plane

Convert the Image to Gray

Specify a Rectangular Region of Interest (ROI) and apply it to the image //convert the original image to gray cvCvtColor(im, grayImage, CV_BGR2GRAY); //create a rectangular area to evaluate CvRect rect = cvRect(0, 0, 500, 600); //apply the rectangle to the image and establish a region of interest cvSetImageROI(grayImage, rect);

The *cvCvtColor* function can be used to convert images to one of several color spaces.

To restore the region of interest to the whole image the function *cvResetImageROI* is used

Perform Initial Histogram Calculations

OpenCV provides built-in functions to work with histograms.

Create the Histogram Data

Create a Histogram Image and a Histogram

Calculate the Histogram

Grab Min/Max Values

Set Up Factors For Visualization

//create an image to hold the histogram lpllmage* histImage = cvCreateImage(cvSize(320,200), 8, 1); //create a histogram to store the information from the image CvHistogram* hist =

cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1); //calculate the histogram and apply to hist cvCalcHist(&grayImage, hist, 0, NULL);

//grab the min and max values and their indeces

cvGetMinMaxHistValue(hist, &min_value, &max_value, &min_idx, &max_idx); //scale the bin values so that they will fit in the image representation cvScale(hist->bins, hist->bins, ((double)histImage->height)/max_value, 0);

//set all histogram values to 255
cvSet(histImage, cvScalarAll(255), 0);
//create a factor for scaling along the width
bin_w = cvRound((double)histImage->width/hist_size);

29 November 2005

Prepare Visualization/Perform Calculations

Here we will iterate across the histogram bins and apply the values to the image while calculating the statistics.

Draw Values on Image

Use cvRectangle to draw.

Get Values/Perform Calculations

Display Results

This segment displays the visual and textural results.

Display

Output Statistics

Show Images

cvNamedWindow creates a container. The first parameter is the name and the second declares if the container is to expand to fit the contents.

Hold For Input. Passing the parameter "0" waits for a keypress. std::cout << "Histogram Mean: " << mean << std::endl; std::cout << "Variance: " << variance << std::endl; std::cout << "Standard Deviation: " << sqrt(variance) << std::endl;</pre>

//display the 3 images
cvNamedWindow("Original", 0);
cvShowImage("Original", im);

cvNamedWindow("Gray", 0); cvShowImage("Gray", grayImage);

cvNamedWindow("Histogram", 0); cvShowImage("Histogram", histImage);

//hold the images until a key is pressed cvWaitKey(0);

Cleaning Up

It is very important to perform clean-up functions. It is easy for memory utilization to go out of control when multiple images are involved.

29 November 2005

Results

29 November 2005

Other Histogram Functions

OpenCV has several other functions for working with histograms. These include: • cvNormalizeHist • cvThreshHist • cvCompareHist For more information about usage of these functions see the OpenCV documentation

Revision History

Initial Creation: 28 November 2005