
Gavin S Page

gsp8334@cs.rit.edu

OpenCV Tutorial

Part IV
A Brief Guide to Memory Management
(and other Miscellaneous Functions)

02 December 2005

Gavin S Page

gsp8334@cs.rit.edu

2

Introduction

•Video, 30 frames per second

•Each frame is an image

•Images are arrays of pixels

•A 640x480 image is 307,200 pixels

•These must be represented in memory

•How much memory does your machine have?

Why is Managing OpenCV Objects Important?

IplImage: Structure from Intel Image Processing Library

In addition to representing the image data IplImage holds

utilizes a subset of IPL data useful in IP/CV:

•nSize : Size of Image

•nChannels : Number of Image Channels (1-4)

•width, height

•ROI : Region of Interest (used in Tutorial II)

• and others (see documentation)…

How Does OpenCV Represent Images?

CvArr* is a function parameter for

several OpenCV functions which accept

arrays of more than one type. These are

often IplImage*, CvMat*, or CvSeq*.

A Top-Level OpenCV Type

Gavin S Page

gsp8334@cs.rit.edu

3

Handling IplImage

•cvCreateImage(CvSize size, int depth, int channels);

•header = cvCreateImageHeader(size,depth,channels);

cvCreateData(header);

•cvCloneImage(const IplImage* image);

•cvLoadImage(const char* filename, int iscolor=1);

Creating an IplImage

•The first two functions are useful for creating a blank

image of the specified parameters. A possible use is in

functions that require a pointer to a result.

•The clone function performs an exact copy of the

IplImage* parameter.

•The load function loads an image from a file.

•cvReleaseImage(IplImage** image);

•cvReleaseData(*image);

cvReleaseImageHeader(image);

Destroying an IplImage

• cvReleaseImage will work for the 3 single

step creation functions

•The

cvReleaseData/cvReleaseImageHeader

combination is used when there is separate

data and header information

An image header is initialized using

cvInitImageHeader.

When allocating IplImage

in a loop be sure to

deallocate in the loop as

well

Gavin S Page

gsp8334@cs.rit.edu

4

Utilizing IplImage

•cvSetImageROI(IplImage* image, CvRect

rect);

•cvResetImageROI(IplImage* image);

•cvGetImageROI(const IplImage* image);

Setting the Region of Interest (ROI)

Setting the ROI of the image allows the user

to select a rectangular region of the image to

work with. This is useful after localizing

objects for extraction and further processing.

While the region is set the rest of the image

will be ignored. Meaning any operation

directed on the image will act on only the

region (including cvShowImage).

The IplImage structure makes it possible to target

specific regions of an object for processing. This

reduces overhead caused by working on the whole

image. The selection can occur at both the channel and

the region.

•cvSetImageCOI(IplImage* image, int coi);

•cvGetImageCOI(const IplImage* image);

Setting the Channel of Interest (COI)

Setting the channel of the image allows the

user to work with a particular layer of the

image. i.e. The ‘R’ layer of an RGB image or

the ‘V’ layer in the HSV format.

NOTE: Not all OpenCV functions support

this.

The CvRect function is used to specify the

region in cvSetImageROI.

cvRect(int x, int y, int width, int height);

Gavin S Page

gsp8334@cs.rit.edu

5

Other Static Array Types

•cvCreateMat(int rows, int cols, int type);

•mat = cvCreateMatHeader(rows, cols, type);

cvCreateData(mat);

•cvCloneMat(const CvMat* mat);

•cvReleaseMat(CvMat** mat);

CvMat

OpenCV uses the CvMat* as its general purpose matrix

structure. It is managed in an equivalent style to

IplImage*

OpenCV also has built in

functions for mult-dimensional

arrays (CvMatND) and sparse

arrays (CvSparseMat).

Specifying the type of a CvMat is done using the

syntax

CV_<bit_depth>(S|U|F)C<number_of_channels>

i.e. CV_8UC1 for an 8-bit single channel unsigned

Gavin S Page

gsp8334@cs.rit.edu

6

Getting Matrix Information From an
IplImage

In order for a matrix to be useful it must be populated

with data. OpenCV makes it possible to fill a matrix with

data from an IplImage.

CvRect rect = cvRect(0, 0, 500, 600);

CvMat* mt = cvCreateMat(500,600, CV_8UC1);

CvMat* sRect = cvGetSubRect(grayImage,mt,rect);

Extracting Matrix Region

The actual parameters of the cvGetSubRect function are

(const CvArr* arr, CvMat* submat, CvRect rect) .

This snippet illustrates how to copy matrix header

information from the IplImage. The function does make

use of ROI so this will be useful in specifying a target

region.

Gavin S Page

gsp8334@cs.rit.edu

7

Dynamic Arrays

•cvCreateSeq(int seq_flags, int header_size, int

elem_size, CvMemStorage* storage);

CvSeq

OpenCV uses the CvSeq* to as its own representation

for growable 1-d arrays. It is similar to IplImage* with

regard to the fact that it is a structure with multiple fields

which are representative of the data content. This

includes a pointer to CvMemStorage which actually

holds the sequence.

• cvCreateMemStorage(int block_size=0);

•cvClearMemStorage(CvMemStorage* storage)

CvMemStorage

CvMemStorage is a

low-level structure used

to store dynamic data

objects.

The sequence is released

by clearing the associated

CvMemStorage structure.

Gavin S Page

gsp8334@cs.rit.edu

8

Final Message

As with any C++ program it is

important to destroy all memory

that has been allocated.

