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Abstract—This paper presents a unified approach for inverse and
direct dynamics of constrained multibody systems that can serve as
a basis for analysis, simulation, and control. The main advantage of
the dynamics formulation is that it does not require the constraint
equations to be linearly independent. Thus, a simulation may
proceed even in the presence of redundant constraints or singular
configurations, and a controller does not need to change its
structure whenever the mechanical system changes its topology
or number of degrees of freedom. A motion-control scheme is
proposed based on a projected inverse-dynamics scheme which
proves to be stable and minimizes the weighted Euclidean norm of
the actuation force. The projection-based control scheme is further
developed for constrained systems, e.g., parallel manipulators,
which have some joints with no actuators (passive joints). This is
complemented by the development of constraint force control. A
condition on the inertia matrix resulting in a decoupled mechanical
system is analytically derived that simplifies the implementation
of the force control. Finally, numerical and experimental results
obtained from dynamic simulation and control of constrained
mechanical systems, based on the proposed inverse and direct
dynamics formulations, are documented.

Index Terms—Constrained multibody systems, constraint mo-
tion control, hybrid force/motion control.

I. INTRODUCTION

MANY robotic systems are formulated as multibody sys-
tems with closed-loop topologies, such as manipulators

with end-effector constraints [1]–[5], cooperative manipulators
[6], [7], robotic hands for grasping objects [8], [9], parallel
manipulators [10], [11], humanoid robot and walking robots
[12], [13], and VR/Haptic applications [14]. Simulation and
control of such systems call for corresponding direct dynamics
and inverse-dynamics models, respectively. Mathematically,
constrained mechanical systems are modeled by a set of dif-
ferential equations coupled with a set of algebraic equations,
i.e., differential algebraic equations (DAE). Although com-
puting the dynamics model is of interest for both simulation and
control, the research done in these two areas is rather divided.
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Surveys of the existing techniques for solving DAE may be
found in [14]–[19], while model-based control of constrained
manipulators can be found in [1]–[3] and [20]–[24].

The classical method to deal with DAE is to express the
constraint condition at the acceleration level. This allows
replacement of the original DAE system with an ordinary
differential equation (ODE) system by augmenting the inertia
matrix with the second derivative of the constraint equation.
However, this method performs poorly in the vicinity of sin-
gularities [25]–[27], because the augmented inertia matrix is
invertible only with a full-rank Jacobian matrix.

Other methods are based on coordinate partitioning [28]–[30]
by using the fact that the coordinates are not independent be-
cause of the constraint equations. The motion of the system
can be described by the independent coordinates which can be
separated using an annihilator operator. Although this method
may significantly reduce the number of equations, finding the
annihilator operator is a complex task [14]. Moreover, the sets of
independent and dependent coordinates should be determined
first. But a fixed set of independent coordinates occasionally
leads to ill-conditioned matrices [15], [31] when the system
changes its topology or the number of degrees of freedom
(DOFs). The concept of coordinate separation is used in [5] for
controlling manipulator robots with constrained end-effectors.
The augmented Lagrangian formulation proposed in [32]–[34]
can handle redundant constraints and singular situations. How-
ever, this formulation solves the equations of motion through
an iterative process. Nakamura et al. [35] developed a general
algorithm that provides a way to partition the coordinates into
independent and dependent ones even around the singular
configuration, which is suitable for simulation of mechanical
systems with structure-varying kinematic chains. This is a spe-
cial case of the projection method proposed herein that allows
generic constraints which cannot be handled by coordinate
partitioning.

There are also efficient algorithms for solving direct dy-
namics of constrained systems that are suitable for parallel
processing. Featherstone’s work in [36] and [37] presents
a recursive algorithm, which is called Divide-and-Conquer
(DAC), for calculating the forward dynamics of a general
rigid-body system on a parallel computer. The central formula
for this DAC algorithm takes the equations of motions of two
independent subassembly (rigid body) and also a description
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of how they are to be connected, and the output is the equation
of motion of the assembly, i.e., those of two articulated body.
Since the equation of acceleration of the assembly is written
in terms of two independent equations of motions, the formu-
lation is suitable for parallel processing, and one can apply the
formula recursively to construct the articulated-body equations
of motions of an entire rigid-body assembly from those of its
constituent parts. The author claims that the DAC algorithm is
computationally effective if a large number of processors, more
than 100, is available.

Another group of researchers [27], [33], [38]–[40] focused
on other techniques to deal with the problem of accurately
maintaining the constraint condition. Blajer [39], [40] proposed
an elegant geometric interpretation of constrained mechanical
systems. Then the analysis was extended and modified in [41]
for control application. The augmented Lagrangian formula-
tion proposed in [32]–[34] can handle redundant constraints
and singular situations. However, this formulation solves the
equations of motion through an iterative process.

In the realm of control of constrained multibody systems, the
vast majority of the literature is devoted to control of manipu-
lators with constrained end-effectors. The hybrid position/force
control concept was originally introduced in [2], and then the
manipulator dynamic model was explicitly included in the con-
trol law in [1]. The constrained task formulation with inverse-
dynamics controller is developed in [3] and [4] by assuming that
the Cartesian constraints are linearly independent. Hybrid mo-
tion/force control proposed in [42]–[44] achieves a complete de-
coupling between channels of acceleration and force. In these
approaches, all joints are assumed to have an actuator, and no
redundancy was considered in the kinematic constraint.

In this paper, we propose a new formulation for the direct
and the inverse dynamics of constrained mechanical systems
based on the notion of a projection operator [45]. First, con-
straint reaction forces are eliminated by projecting the initial
dynamic equations into the tangent space with respect to the
constraint manifold. Subsequently, the direct dynamics, or the
equations of motion, is derived in a compact form that re-
lates explicitly the generalized force to the acceleration by
introducing a constraint inertia matrix, which turns out to
be always invertible. The constraint reactions can then be re-
trieved from the dynamics projection in the normal space.
Unlike in the other formulations, the projection matrix is a
square matrix of order equal to the number of dependent co-
ordinates. Since the formulation of the projector operators is
based on pseudoinverting the constraint Jacobian (the process
not conditioned upon the maximal rank of the Jacobian), the
present approach is valid also for mechanical systems with
redundant constraints and/or singular configurations, which is
unattainable with many other classical methods. A projected
inverse-dynamics control (PIDC) scheme is developed based
on the dynamics formulation. The motion control proves to
be stable while minimizing the weighted Euclidean norm of
actuation force. The notion of the projected inverse dynamics
is further developed for control of constrained mechanical sys-
tems which have passive joints, i.e., joints with no actuator.
This result is particularly important for control of parallel
manipulators. Finally, a hybrid force/motion control scheme

based on the proposed formulation is presented. Also, some
useful insights are gained from the dynamics formulation. For
instance, the condition on the inertia matrix for achieving a
complete decoupling between force and motion equations is
rigorously derived.

This paper is organized as follows. We begin with the notion
of linear operator equations in Section II by reviewing some
basic definitions and elementary concepts which will be used in
the rest of the paper. Using the projection operator, we derive
models of inverse and direct dynamics in Sections IV and V,
which are used as a basis for developing strategies for simulation
and control of constrained mechanical systems in Sections VI
and VII. Section VII-B presents change of coordinate if there is
inhomogeneity in the spaces of the force and velocity. In Sec-
tion VII-D, the IDC scheme is extended for constrained systems
which have some joints with no actuator (passive joints). Finally,
Sections VIII and IX report some simulation and experimental
results.

II. LINEAR OPERATOR EQUATIONS

For any linear operator transformation , range
space and null space are defined as

and , respectively.
The linear transformation maps vector space into vector space

. Assume that the Euclidean inner product is defined in , that
is, elements of vectors, such as and , of have homoge-
neous units. Then, by definition, the vectors are orthogonal iff
their inner product is zero, i.e.,

(1)

where the superscript denotes transpose. It follows that the
orthogonal complement of any set , denoted by , is the set
of vectors each of which is orthogonal to every vector in .

Theorem 1: [46], [47]: The fundamental relationships be-
tween the range space and the null space associated with a linear
operator and its transpose are

(2)

(3)

See Appendix I for a proof.
As will be seen in the following sections, it is desirable to

be able to project any vector in to the null space of by a
projector operator. Let be the orthogonal projection
onto the null space, i.e., . Note that every or-
thogonal projection operator has these properties: and

[47].
The projection operator can be calculated by the singular

value decomposition (SVD) method [47]–[49]. Assuming

rank

then there exist unitary matrices and
(i.e., and ) so that

where diag , and are the
singular values. The proof of this statement is straightforward
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and can be found, for example, in [47] and [48]. Since
span [47], [48], the projection operator can be calculated by

(4)

A. Orthogonal Decomposition and Norm

From the definition, one can show that projector operator
projects onto the null space orthogonal . Let

us assume that the elements of a vector have homoge-
neous measure units, then the vector has a unique orthogonal
decomposition

where and . The components of the
decomposition can be obtained uniquely by using the projection
operator as

and (5)

The Euclidean norm is defined as

(6)

Remark 1: From orthogonality of the subspaces, i.e.,
, we can say

(7)

Equation (7) forms the basis for finding an optimal solution.
1) Metric Tensor: The Euclidean inner product, and hence,

the Euclidean norm defined in (6), are noninvariant quantities if
there is inhomogeneity in the units of the elements of vector .
With the same token, the projection matrix (5) and the decompo-
sition are not invariant, and hence, the minimum-norm solution
may depend on the measure units chosen. This is because com-
ponents with different units are added together in (5).

To circumvent the quandary of the measure units, we consider
the following transformation:

(8)

and assume that the vector has components with the same
physical units. Then, a physically consistent Euclidean inner
product and Euclidean norm exists on the new space [43], i.e.,

(9)

The symmetric, positive definite (p.d.) matrix is called a
metric tensor of the -space. Note that the Euclidean norm of
the new coordinate is tantamount to the weighted-norm, that is

, where

(10)

Furthermore, denoting , one can say
. Let be the projection operator onto the

null space of . Then, mapping is dimensionless and
invariant.

III. DECOMPOSITION OF THE ACCELERATION

The kinematics of a constrained mechanical system
can be represented by a set of nonlinear equations

, where is the
vector of the generalized coordinate, and . Without
loss of generality, we consider time-invariant (scleronomic)
constraint conditions, but the methodology can be readily
extended to a time-varying case (rheonomic). By differentiating
the constraint equation with respect to time, we have

(11)

where is the Jacobian of the constraint equation
with respect to the generalized coordinate. For brevity of nota-
tion, in the following, we assume that the elements of the force
and velocity vectors have homogeneous units. This assumption
will be relaxed in Section VII-B by changing of the coordinates
similar to (8).

Equation (11) is expressed in form of the linear operation
equation. This matrix equation specifies that any admissible ve-
locity must belong to the null space of the Jacobian matrix, that
is, . Thus, the constraint equation (11) can be ex-
pressed by the notion of the projection operator, i.e.,

(12)

Time differentiation of the above equation yields

(13)

where which, in turn, can be obtained from (4)
by

where (14)

It is apparent from (13) and (12) that, unlike the case of
velocity, the null-space orthogonal component of the acceler-
ation is not always zero—a physical interpretation of (13) is
given in Section V-D. Equation (13) expresses the component
of acceleration produced exclusively by the constraint and not
by dynamics. As will be seen in Section V, this equation can
complement the dynamics equation in order to provide suf-
ficient independent equations for solving the acceleration.

A. Calculating Based on Pseudoinversion

Many mature algorithms and numerical techniques are avail-
able for computing the pseudoinverse [47], [48], [50]. There are
also computer programs that can solve SVD and pseudoinverse
in real time and non-real time, for instance, the DSP Blockset
of Matlab [51]. Therefore, it may be useful to calculate the ma-
trices and based on pseudoinversion.

Let denote the pseudoinverse of . Then, the projection
operator can be calculated by

(15)

Also, one can obtain matrix through the pseudoinversion as
follows. Differentiation of (11) with respect to time leads to
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The theory of linear systems of equations [47], [50], [52] es-
tablishes that the particular solution, i.e., the component
of the acceleration, can be obtained from the above equation as

. Hence

(16)

Assuming the elements of generalized coordinate have iden-
tical units, then matrices and have homogeneous units, i.e.,

is dimensionless and the dimension of is . Therefore,
and are invariant under unit changes.
Note that the inconsistency problem which may arise in com-

puting the pseudoinverse because of the existence of the com-
ponents of different units can be solved by including the metric
of the -space in computing the pseudoinverse [39], [53].

IV. PROJECTED INVERSE DYNAMICS

Consider a constrained mechanical system with Lagrangian
, where and are the ki-

netic and the potential energy functions, and is the
inertia matrix. The fundamental equation of differential varia-
tional principles of a mechanical system containing a constraint
can be written as [16]

(17)

where
is the vector of generalized input force, and

is the generalized constraint force, which is related to
the Lagrange multipliers by

(18)

Then, the equations describing the system dynamics can be ob-
tained as

(19)

(20)

where vector contains the Coriolis, centrifugal,
and gravitational terms. In solving the DAE (19)–(20), it is typ-
ically assumed that: 1) the inertia matrix is p.d., and hence, in-
vertible; and 2) the constraint equations are independent, i.e., the
Jacobian matrix is not rank-deficient [14]–[19]. In this paper, we
solve the equations without relying on the second assumption.

From (18) and by virtue of Theorem 1, one can immediately
conclude that . In other words, the projection op-
erator is an annihilator for the constraint force, i.e., .
Therefore, the constraint force can be readily eliminated from
(19) if the equation is projected on , i.e.,

(21)

Equation (21) is called the projected inverse dynamics of a
constrained multibody system that is expressed in the so-called
descriptive form. This is because matrix is singular, and
hence, the acceleration cannot be computed from the equation
through matrix inversion.

V. DIRECT DYNAMICS

As mentioned earlier, the acceleration cannot be determined
uniquely from (21), because there are fewer independent equa-
tions than unknowns. Nevertheless, (13) and (21) are in orthog-
onal spaces and thus cannot cancel out each other. Therefore,
a unique solution can be obtained by solving these two equa-
tions together. To this end, we simply multiply (13) by and
then add both sides of the equation to those of (21). After fac-
torization, the resultant equation can be written concisely in the
following form:

(22)

where , and is called the constraint in-
ertia matrix, which is related to the unconstrained inertia matrix

, assuming a symmetric inertia matrix, by

(23)

(24)

Equation (22) constitutes the so-called direct dynamics of a con-
strained multibody system from which the acceleration can be
solved. It is worth mentioning that if commutes with , then

, and hence, . To compute the acceleration from
(22) requires that the constraint inertia matrix be invertible.

Theorem 2: If the unconstrained inertia matrix is p.d.,
then the constraint inertia matrix is p.d., too.

Proof: It is evident from (24) that is a skew-symmetric
matrix, i.e., . Consequently, adding to the inertia
matrix in (23) preserves the p.d. property of the inertia matrix.
This is because, for any vector , we can say

Therefore, one can conclude that , or

is p.d. is p.d.

Theorem 2 is pivotal in showing the usefulness of the dy-
namics equation (22); it signifies that the constraint inertia
matrix is always invertible, regardless of the constraint condi-
tion. Therefore, the acceleration can be always obtained from
(22).

Remark 2: Equation (22) signifies that only the null-space
component of the generalized input force contributes to the
motion of a constrained mechanical system, as the projector in
the right-hand-side (RHS) of the equation filters out all forces
lying in the null-space orthogonal. This fact is exploited in
Section VII-A for an optimal control scheme.

It can be envisaged from Remark 2 that it is useful to
decompose the generalized input force into two orthogonal
components

where and are called acting input force
(potent) and passive input force (impotent), respectively. The
decomposition of the generalized input force can be carried out
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by the projection operator according to (5). Now, the equation
of motion can be written as

(25)

where the nonlinear vector is decomposed in the same way as
the generalized force, i.e., . Equation (25) is
the so-called equation of motion of a constrained mechanical
system in a compact form. It is worth mentioning that only one
matrix inversion operation is required in (25), which is one less
than in the standard Lagrangian method (see Appendix II).

Remark 3: Since does not produce any kinetic energy,
the total kinetic energy associated with the constrained system
is .

A. Constraint Inertia Matrix

The constraint inertia matrix does not have a unique definition
because there are many ways that (21) and (13) can be combined
together. Although all dynamics formulations thus obtained are
equivalent, each one may have a certain computational advan-
tage over the others.

1) Symmetric Inertia Matrix: is a p.d. matrix but not a
symmetric one. In the following, we present an alternative dy-
namics formulation in which the inertia matrix appears both p.d.
and symmetric. Equation (13), together with the decomposition
of the acceleration, imply that , which can be sub-
stituted in (21) to give

(26)

Now premultiply (13) by , and then adding both sides
of the equation thus obtained with those of (26) yields

(27)

where

(28)

It is worth mentioning that represents a reflection
operator.

Proposition 1: If matrix is symmetric and p.d., then
is symmetric and p.d., too.

Proof: It is apparent from (28) that is a symmetric
matrix. Moreover, the positive-definiteness of matrix can
be shown by an argument similar to the previous case. Again,
for any vector and from definition (28), we
can say , where and

, and and . Both decom-
posed components of the nonzero vector cannot be zero, i.e.,

and vice versa. Therefore, only one of the
quadratic functions can be zero, and that implies their summa-
tion is nonzero and positive. Thus is a p.d. matrix.

2) Parameterized Inertia Matrix: Alternatively, the con-
straint inertia matrix can be parameterized in terms of an
arbitrary scalar. To this end, let us first premultiply (13) by a
scalar , and then add both sides of the resultant equation to

those of (21). That gives the standard dynamics formulation
similar to (27) with the following parameters:

(29)

Proposition 2: If is an invertible matrix, then is al-
ways invertible, too.

Proof: In a proof by contradiction, we show that
should be a full-rank matrix. If matrix is not of full rank,
then there must exist at least one nonzero vector lying in
the matrix null space, that is , or

(30)

The two terms of the above equation are in two orthogonal sub-
spaces and cannot cancel out each other. Hence, in order to
satisfy the equation, both terms must be identically zero, i.e.,

and . The former and the latter equa-
tions imply that and , respectively.
Therefore, one can conclude that is perpendicular to vector ,
i.e., , or that

(31)

which is a contradiction because is a p.d. matrix. Therefore,
the null set of is empty and the matrix is always invertible,
and this completes the proof.

Since is dimensionless, the scalar has the dimensions of
mass. Therefore, the value of should be comparable to that of

to avoid any numerical pitfall in the matrix inversion—a log-
ical choice is ; yet, certain may lead to the minimum
condition number of , which is desired for matrix inversion.

3) A Comparison of Different Constraint Inertia Ma-
trices: Theoretically, all the inverse-dynamics formulations
presented here are equivalent, and they should yield the same
result. However, from a numerical point of view, each has a
certain advantage over the others that can lead to simplification
of simulation or control. In summary:

• is a p.d. matrix but not a symmetric one. If com-
mutes with , then ;

• is a symmetric and p.d. matrix; hence, it physically
exhibits the characteristic of an inertia matrix. However,
computing involves three additional matrix multipli-
cation operations, compared with ;

• is an invertible matrix, but it is neither p.d. nor
symmetric. Nevertheless, computing of requires less
computation effort, compared with the others.

B. Constraint Force and Lagrange Multipliers

Equation (25) expresses the generalized acceleration of a con-
strained multibody system in a compact form without any need
for computing the Lagrange multipliers. Yet, in the following,
we will retrieve the constraint force by projecting (19) onto

. That gives
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Fig. 1. Input/output realization of a constrained mechanical system based on
decomposition of the generalized input force.

Now, substituting the acceleration from (25) into the above
equation gives

(32)

where , and is the ratio of the two
inertia matrices.

Equation (32) implies that the constraint force can always be
obtained uniquely, but this may not be true for the Lagrange
multipliers. Having calculated the constraint force from (32),
one may obtain the Lagrange multipliers from (18) through
pseudoinversion, i.e., where
is the homogeneous solution. By virtue of Theorem 1, we can
also say that . This, in turn, implies that is a
nonzero vector only if the Jacobian matrix is rank-deficient,
i.e., —recall that rank .

Remark 4: The vector of Lagrange multipliers can be de-
termined uniquely iff the Jacobian matrix is full rank. In that
case, there is a one-to-one correspondence between and .
Otherwise, the component of the Lagrange multiplies
is indeterminate.

C. Decoupling

Fig. 1 illustrates the input/output realization of a constrained
mechanical system based on (25) and (32). The input channels

and are the potent and the impotent components of the
generalized input force, while the output channels are the ac-
celeration and the constraint force, and , respectively. It is
apparent from the figure that the acceleration is only affected
by , and not by whatsoever. However, the constraint force
output, in general, can be affected by two inputs: by directly,
and by through the cross-coupling channel . The cross-cou-
pling channel is disabled if the inertia matrix satisfies a certain
condition, which is stated in Proposition 3.

Proposition 3: The equations of the constraint force and the
acceleration are completely decoupled, i.e., the cross-coupling

vanishes if the null space of the constraint Jacobian is invariant
under . That is, the inertia matrix should have this property:

.
The proof is given in Appendix IV.
Mechanical systems satisfying the condition in Proposition

3 are called decoupled constrained mechanical systems. The
equation of constraint force of such a system is reduced to

Fig. 2. Illustrative example.

In that case, the constraint force is determined exclusively by the
passive input force that leads to a simple force-control scheme,
as will be seen in Section VII-C.

D. Illustrative Example and Geometrical Interpretation

A particle of mass moves on a circle of radius ; see Fig. 2.
Assume to be the generalized coordinate. The
constraint equation is

which yields the Jacobian and its time-derivative as
and , and the pseu-

doinverse is . Then, from (15), we have

(33)

Let unit vectors and
represent the tangential and normal directions, as shown in
Fig. 2. Then, from (33), we have

The above equations represent the geometrical interpretation of
the projection operators. Note that the normal component of the
acceleration, , which can be interpreted as the cen-
tripetal acceleration, is given by

(34)

(35)

Let denote the external force applied on the particle. Observe
that the decomposition of the force is aligned with the tangen-
tial and the normal directions to the circular trajectory shown
in Fig. 2. Finally, we arrive at the following set of dynamics
equations:
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VI. SIMULATION OF CONSTRAINED MULTIBODY SYSTEMS

To simulate the dynamics of a constrained multibody system,
one can make use of the acceleration model in (25). Having
computed the generalized acceleration from the equation, one
may proceed to a simulation by integrating the acceleration to
obtain the generalized coordinates. However, the integration in-
evitably leads to drift that eventually results in a large constraint
error. Baumgarte’s stabilization term [19] is introduced to en-
sure exponential convergence of the constraint error to zero.
However, this creates a very fast dynamics which tends to slow
down the simulation. In this section, we use the pseudoinverse
for correcting the generalized coordinate in order to maintain
the constraint condition precisely. It should be noted that using
the pseudoinverse here does not impose any extra computation
burden, because the pseudoinverse has to be obtained to com-
pute the acceleration anyway.

Having obtained the velocity through integrating the acceler-
ation, one may obtain the generalized coordinate by integration

(36)

where depicts the integration time step. However, the
constraint condition may be violated slightly because of inte-
gration drift. Let denote the coordinate after a few integration
steps and . Now, we seek a small compensation in
the generalized coordinate , such that the con-
straint condition is satisfied. That is, a set of nonlinear equations

must be solved in terms of . The Newton–Raphson
(NR) method solves a set of nonlinear equations iteratively
based on linearized equations.

The constraint equation can be written by the first-order
approximation as

Neglecting the term, one can obtain the solution of the
linear system using any generalized inverse of the Jacobian.
The pseudoinverse yields the minimum-norm solution, i.e.,

. Therefore, the following loop:

(37)

may be worked out iteratively until the error in the constraint
falls into an acceptable tolerance, e.g., .

The condition for local convergence of multidimensional NR
iteration can found, e.g., in [15], [54], and [55]. Although it is
known that the NR iteration will not always converge to a solu-
tion, the convergence is guaranteed if the initial approximation
is close enough to a solution [54], [55].

Theorem 3: [54]: Assume that is differentiable in an open
set , i.e., the Jacobian matrix exists, and that is
Lipschitz continuous. Also assume that a solution exists,
and that is nonsingular. Then under these assumptions,
if the initial start point is sufficiently close to the solution, the
convergence is quadratic, that is such that

One can expect that the drift, and hence, the inial constraint
error, can be reduced by decreasing the integration time step.

It should be pointed out that the iteration loop (37) corrects
the error in the constraint coordinate caused by the integration
process. Since the drifting error within a single integration time
step is quite small, the initial estimate given by (36) cannot
be far from the exact solution. Therefore, as shown by experi-
ments, a fast convergence is achieved, even though the iteration
loop (37) is called once every few time steps.

Finally, the simulation of a constrained mechanical system
based on the projection method can be done by the following
steps:

1) compute the acceleration from (25);
2) obtain the states as a result of numerical integra-

tion of the acceleration;
3) in the case constraint error exceeds the tolerance, carry

out iteration (37), upon convergence or counting the
maximum number of iterations, go to step 1).

VII. CONTROL OF CONSTRAINED MULTIBODY SYSTEMS

In this section, we discuss the position and/or force control of
constrained multibody systems based on the proposed dynamics
formulation. The input/output (I/O) realization of a constrained
mechanical system is depicted in Fig. 1, which will be used
subsequently as a basis for development of control algorithm.
In fact, the topology of a control system can be inferred from
the figure by considering the decomposed components of the
generalized input force, and , as the corresponding control
inputs for position and force feedback loops.

Due to the decoupled nature of the acceleration channel, an
independent position feedback loop can be applied. The input
channel is directly transmitted to the constraint force, , and
the velocity enters as a disturbance, and hence, must be com-
pensated for in a feedforward loop. Note that in the case of de-
coupled mechanical systems, where the cross-coupling channel
vanishes, exclusively determines the constraint force.

A. Motion Control Using PIDC

Due to presence of only independent constraints, the actual
number of DOFs of the system is reduced to . Thus,
in principle, there must be independent coordinates
from which the generalized coordinates can be derived, i.e.,

. Now, differentiation of the given function with respect to
time gives

(38)

(39)

where . Since
constitutes a set of independent functions, the Jacobian matrix

must be of full rank. (The proof is in Appendix V). It is also
important to note that any admissible function must satisfy
the constraint condition, i.e.,

Using the chain-rule, one can obtain the time-derivative of the
above equation

(40)
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Since is a full-rank matrix, the only possibility for (40) to
happen is that

(41)

Substituting the acceleration from (39) into the inverse-dy-
namics equation (21) gives the dynamics in terms of the re-
duced-dimensional coordinate

(42)

Let denote the desired trajectory of the new
coordinates. Now, we propose the PIDC law as follows:

(43)

where is an auxiliary control input as

(44)

is the position tracking error, and and
are the proportional derivative (PD) feedback gains. In

the following, superscript is used to denote control input.
Theorem 4: While demanding minimum-norm control input,

the PIDC law (43)–(44) stabilizes the position tracking error,
i.e., as .

Proof: First, we prove exponential stability of the position
error. From (42)–(44), one can conclude that the proposed con-
trol law leads to the following equation for the tracking error:

(45)

To show that the expression within the bracket is zero, we need
to show that the matrix is full rank. In the following,
we will show that the matrix cannot have any null space, and
hence, is full rank. If the matrix has a null space, then

. Let us define . Recall that is
a full-rank matrix and that —see (38). Hence,

and . On the other hand, implies
that , and hence, it is perpendicular to , i.e.,

. But, this is a contradiction, because is a p.d.
matrix. Consequently, , and it follows from (45)
that

Hence, the error dynamics can be stabilized by selecting ade-
quate gains, that is, as . Moreover, due to or-
thogonality of the decomposed generalized input force, we can
say

From the above norm relation, it is clear that is the minimum
norm solution, since any other solution must have a component
in , and this would increase the overall norm. Therefore, set-
ting results in minimum norm of generalized input force
subjected to producing the desired motion, i.e.,

(46)

B. Elements of Generalized Coordinate With Inhomogeneous
Units

So far, we have assumed that the elements of the general-
ized velocity and the generalized input force have homogeneous

units. Otherwise, the minimum-norm solution of the general-
ized force, (46), makes no physical sense if the manipulator
has both revolute and prismatic joints. In this section, we as-
sume the vector of the generalized force to have a combination
of force and torque components, and the vector of the gener-
alized velocity with of rotational and translational components.
As mentioned in Section II-A.1, the minimization solution is not
invariant with respect to changes in measure units if there is in-
homogeneity of units in the spaces of the force and the velocity
[56], [57]. To go around the quandary of inhomogeneous units,
one can introduce a p.d. weight matrix by which the coordinates
of the force vector is changed to

Note that the corresponding change of coordinates for the ve-
locity is in order to preserve the force-velocity
product [by virtue of (17)]. Therefore, the metric tensors for the
force and velocity vectors are and , respectively. The
inertia matrix and the Jacobian with respect to the new coordi-
nates are and . Since

and and the corresponding projection matrix
, where , is always dimension-

less, and hence, invariant under the measure units chosen. The
new force and velocity vectors have homogeneous units if the
weight matrix is properly defined. Therefore, replacing the new
parameters, which are now dimensionally consistent, in the op-
timal control (43) minimizes , or equivalently, minimizes
the weighted Euclidean norm of the generalized input force, i.e.,

(47)

A quiet direct structure for is the diagonal one, i.e.,

(48)

where is a length, by which we divide the translational velocity
(or multiply the force). Using this length is tantamount to the
weighted norm as

where the added terms are homogeneous, and and are the
force and the torque components of . It is worth pointing out
that a characteristic length that arises naturally in the analysis
and leads to invariant results was proposed in [58] and [59].

Alternatively, the weight matrix can be selected according
to some engineering specifications. For instance, assume
that the maximum force and torque generated by the ac-
tuators are limited to and . Then, choosing

diag leads to the minimization of this
cost function

which, in a sense, takes the saturation of the actuators into
account.

C. Control of Constraint Force

The motion controller proposed in VII-A works well for me-
chanical systems with bilateral constraint. On the other hand,
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since the proposed controller does not guarantee that the sign of
the constraint force will not change, a unilateral constraint con-
dition may not be physically maintained under the control law.
In this case, controlling the constraint force is a necessity.

Suppose that represents the desired constraint force which
can be derived from the desired Lagrange multipliers using

Then, considering as a control input, we propose the fol-
lowing control law:

(49)

where is the auxiliary control input, which is traditionally
chosen as

(50)

in which is the force error, and and
are the proportional integral (PI) feedback gains. It

should be pointed out that the integral term is not necessary, but
it improves the steady-state error. From (32), (49), and (50), one
can obtain the error dynamics as

which will be stable provided that the gains are p.d., i.e.,
as . Define , and . Then

(51)

where is the minimum singular value of the Jacobian, i.e.,

Therefore, one can conclude tracking of the Lagrange multi-
pliers, i.e., as , if the Jacobian is full rank or

.
Remark 5: The constraint force is always controllable,

while the Lagrange multipliers are controllable only if the Ja-
cobian matrix is of full rank.

It is worth mentioning that unlike the traditional motion/force
control schemes, which lead to coupled dynamics of force error
and position error, our formulation yields two independent error
equations. This is an advantage, because the motion control can
be achieved regardless of the force control and vice versa. To this
end, a hybrid motion/force control law can be readily obtained
by combining (43) and (49)

(52)

D. Control of Constrained Mechanical Systems With Passive
Joints

Some constrained mechanical systems, e.g., parallel manip-
ulators, have joints without any actuators. The joints with and
without actuators are called active joints and passive joints, re-
spectively. In this section, we use the notion of the linear pro-
jection operator to generalize the IDC scheme for constrained
mechanical systems with passive joints. Assuming there are

active joints (and passive joints), the generalized input
force has to have this form

...

...

active joints

passive joints.

This implies that any admissible generalized force should
satisfy

and (53)

where is a identity matrix. Note that is a projection
onto the actuator space , i.e., and .

Now, we need to modify the motion control law (43) so that
the condition in (53) is fulfilled. If , then (53) is
automatically satisfied by choosing . Otherwise, we
need to add a component, say , to so that

. Since does not affect the system mo-
tion at all, the motion tracking performance is preserved by that
enhancement, albeit control of constraint force may no longer
be achievable. Let us assume

(54)

where . Then, we seek such that

(55)

where . Consider as the unknown
variable in (55). A solution exits if the RHS of (55) belongs to
the range of , i.e.,

(56)

Then, the particular solution can be found via pseudoinversion,
i.e.,

(57)

The above equation yields the minimum-norm solution, i.e.,
minimum , which eventually minimizes the actuation force.
Equations (54) and (57) give

(58)

where

(59)

Finally, we arrive at the following control law for constrained
mechanical systems with passive joints:

(60)

with derived from (43).
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1) Minimum-Norm Torque: A simple argument shows that
the torque-control law (60), assuming the existence of a solu-
tion, yields a minimum-norm torque. Knowing that

, we have

(61)

where both norms in the RHS of (61) are minimum.
2) Controllability: Because the existence of a solution is

tantamount to the controllability condition of constrained me-
chanical systems under the proposed control law, it is important
to find out when a solution to (55) exists, It can be inferred
from (56) that

controllability cond. (62)

In general, the proposed control method for systems with pas-
sive joints works only if there exists a sufficient number of ac-
tive joints. Since occurrence of the singularities gives rise to
the number of DOFs, the system under the control law may
no longer be controllable if there are not enough active joints.
For instance, mechanical systems without any constraints at all
cannot be controlled unless all joints are actuated. This is be-
cause no constraint means that or ; hence,
according to (62), a controllable system requires that

, which means there can be no passive joints.
Also, it is worth pointing out that choosing trivially

results in a controllable system.

VIII. A SLIDER-CRANK CASE STUDY

In this section, we describe the results obtained from applying
the proposed inverse and direct dynamics formulations for sim-
ulation and control of a slider-crank mechanism, Fig. 3(A). As-
sume that the dimension of the crank and the connecting rod are
the same. Then, constraint singularity occurs at

(63)

as seen in Fig. 3(B).

A. Equations of Direct Dynamics

As shown in Fig. 3(C), the closed loop is cut in the right-hand
support, i.e., at joint C. Let vector denote the joint
angles. Then, the vertical position of the point C is

(64)

where is the link length. Below, are shorthand
for , and using the notation
in [60]. The vertical translational motion of point C is prohibited
by imposing the following scleronomic constraint equation:

(65)

Now, the derivation of the direct dynamics may proceed in
the following steps.

Fig. 3. Slider-crank mechanism.

Step 1) Obtain the dynamic parameters of the open chain
system Fig. 3(C) (similar to the two-link manipulator
case study in [60]) as

(66)

where represents the mass of the link.
Step 2) Compute the projection matrix corresponding to the

constraint (65). The Jacobian of the constraint is

(67)

The projection matrix can be computed numerically
(e.g., using the SVD block of the DSP Blockset in
Matlab/Simulink [51]). Nevertheless, we obtain in
a closed form for this particular illustration to have
some insight into how the SVD handles singularities.
Since , the Jacobian matrix (67) can be
simplified as whose singular value is
trivially . The SVD algorithm treats
all singular values less than (a small value) as zeros,
i.e., if . Hence

if

otherwise
(68)

which indicates the constraint is virtually removed
if the system is sufficiently close to the singular con-
figurations (63).

Step 3) Now, assuming , one can compute the con-
straint inertia matrix from (29) as

if (69)
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Fig. 4. Slider-crank mechanism: Trajectories of the state variables and constraint force reactions.

and at the singular positions—note that
. Finally, plugging

and from (68) and (69) into (22) yields the
direct dynamics of the slider-crank mechanism.

1) Numerical Simulation: Simulation results are shown in
Fig. 4 for an initial position Nm, and
system parameters m and kg. The standard ODE
solver based on the Runge–Kutta algorithm in Matlab/Simulink
with an integration step time s was used to perform
the simulation. The pseudoinverse is carried out using the DSP
blockset of the Matlab/Simulink. It is evident from Fig. 4(A) and
(B) that the motion goes smoothly through the singular config-
urations at , while abrupt changes in the value
of at the singular configuration can be observed in Fig. 4(D).
Note that the calculation of acceleration does not require the
value of Lagrange multipliers in our approach. Also, observe
the smooth trajectories of the constraint forces in Fig. 4(C).

It is worth pointing out that, for some systems, a bifurcation
of the system motion may happen if the system approaches a
singular configuration with a vanishing velocity [61]. However,
this does not happen in this particular example.

B. Control

1) Two Active Joints: Consider the slider-crank mechanism
as a constrained two-link manipulator and assume both joints A
and B are active. Let us take as the independent coordinate,

i.e., . From the geometry of the closed loop, we have
. Hence

(70)

The motion control law minimizing actuation torque can be
formed by plugging the parameters from (66), (68), and (70)
into (43). After simplification, we have

(71)

where .
Similarly, the force control law can be derived by substituting

the above parameters and (69) into (50), i.e.,

(72)

where . Combining
(71) and (72) together yields a hybrid motion/force controller.

Fig. 5 shows the simulation results for
, and the mechanism moves from the

initial position to the desired position .
Fig. 5 shows the simulated position, the Lagrange multipliers
(the contact force), and the joint torques for two cases: 1) Only
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Fig. 5. Simulated position and force responses; two actuated joints.

the motion controller is applied; and 2) the hybrid motion/force
controller where is applied.

2) One Active Joint: Now, we assume that joint A is active
and joint B is passive (has no actuator), i.e.,

(73)

Then, the control syntheses can proceed by replacing and
from (68) and (73) into (59); that yields

(74)

Note that at the instant of singularity, we have or
. Therefore, according to (62), the system at the singular con-

figuration with only one active joint is not controllable.
Now, assuming a controllable system, the motion control law

for the system with a passive joint can be synthesized from (71)
and (74) according to (60), i.e.,

(75)

Fig. 6 shows the trajectories of the position and the joint
torques. Observe that , i.e., only one actuated joint exits.
A comparison of the root mean square (RMS) norm1 of the
joint torque signals corresponding to different controllers is il-
lustrated in Table I.

1The RMS norm of a vector signal is defined by

kuk =
1

T
u(t) u(t)dt :

TABLE I
RMS NORM OF THE JOINT TORQUE VECTOR

IX. EXPERIMENT

In this section, we report comparative experimental results
obtained from the constraint mechanical system shown in Fig. 7.
The arm used for these experiments was a planar robot arm
developed at the Canadian Space Agency with three revolute
joints, which are driven by geared motors RH-8-6006, RH-11-
3001, and RH-14-6002 from Hi-T Drive. The robot joints are
equipped with optical encoders, and force sensor (gamma type
from ATI) is installed in the robot wrist. The robot endpoint is
connected to a slider by a hinge, which ensures that no con-
straint on the wrist rotation is imposed. The slider uses linear
bearings to minimize friction along axis motion, while the
motion along axis is constrained—see Fig. 7.

Let represent the vector of joint angles,
and represent the position and orientation of the robot
endpoint. Then, from the kinematics, the constraint equation
and the reduced-dimension coordinate can be specified by

, for m, and , re-
spectively. The constraint force, or equivalently, the Lagrange
multiplier, is measured by the ATI force sensor.
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Fig. 6. Simulated position and force responses; one actuated joint.

Fig. 7. Experimental setup.

A. Implementation

The controller has been developed using the Simulink di-
agram. From the Simulink model, Real-Time Workshop [62]
generates portable C code that can be executed on the QNX real-
time operating system. The kinematics and dynamics models
of the robot are developed using Symofros [63]. They are then
imported to the Simulink diagram as S-functions. Matrix manip-
ulation including the pseudoinverting of the constraint Jacobian
is carried out by using DSP Blockset of Matlab/Simulink [51].
This architecture allows us to achieve a 1000-Hz sampling rate
on a 300-MHz Pentium computer.

B. Results

In this experiment, the position feedback gains are
and , which correspond to 3.5-Hz bandwidth of the
closed-loop system. The force feedback gains are set to ,
and . The desired position trajectory is specified as

and , while
.

Three different control schemes are implemented: the PIDC,
the hybrid force/motion control described in Section VII, and
the standard IDC. All controllers demonstrated a good motion-
tracking performance as illustrated in Fig. 8(A) and (B). Dif-
ferences among the control schemes, however, is manifested in
their force responses. Trajectories of the contact force and those
of the Euclidean norm of the joint torque requested by the three

controllers are plotted in Fig. 8(C) and (D), respectively. It is
evident from Fig. 8(D) that the PIDC requires minimum joint
torque at every instance, albeit it does not yield zero constraint
force, as shown in Fig. 8(C). The constraint force is regulated to
the desired value zero when the force-feedback law (49)–(50) is
activated. However, this gives rise to the requested joint torque;
see Fig. 8(D). The spikes in the contact force are attributed to
joint friction, whose effects are entered as strong disturbances to
the control system, especially when the joint velocities change
direction. To complete the comparison, the traditional IDC is
implemented that produces large forces. This is because, unlike
PIDC which exhibits compliance in the constraint direction, the
IDC tends to be stiff in all directions, and this causes a large
force in case of position uncertainty in the constraint equation.
Finally, Table II summarizes the RMS and the peak norms2 of
the joint torques requested by each controller. A comparison of
the results shows that the use of the force feedback increases
both the RMS norm and the peak norm of the requested joint
torque by 75% and 21%, respectively.

X. CONCLUSION

A unified formulation applicable to both the direct dynamics
(simulation) and inverse-dynamics (control) of constrained me-
chanical systems has been presented. The approach is based on
projecting the Lagrangian dynamics equations into the tangent
space with respect to the constraint manifold. This automati-
cally eliminates the constraint forces from the equation, albeit
the constraint forces can then be retrieved separately from dy-
namics projection into the normal space.

The novelty of the formulation lies in the definition of the
projector operators which, unlike other formulations, are square
matrices of orders equal to the number of the generalized coor-
dinates. Therefore, the structure of the dynamics formulation
does not change if the system changes its DOF or its topology.
Moreover, since the process of computing projection operator is
not conditioned upon the maximal rank of the constraint Jaco-
bian, the direct and the inverse-dynamics formulation are valid
also for mechanical systems with redundant constraints and/or

2The peak or L norm of a vector signal is defined by

kuk = sup max ju (t)j:
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Fig. 8. Actual and desired trajectories of the position (A) and the orientation (B), trajectories of the contact force (Lagrange multipliers) (C), and those of the
Euclidean norm of joint torque (D).

TABLE II
RMS NORM AND PEAK NORM OF THE JOINT TORQUE VECTOR

SIGNAL OBTAINED FROM THE DIFFERENT CONTROLLERS

singular configurations, which is unattainable with many other
classical approaches.

A motion control system has been developed based on the
PIDC, which minimizes the actuation force, and also works for
systems with unactuated joints (passive joints). To this end, a
hybrid motion/force controller was developed.

In summary, particular features of the proposed formulation
associated with simulation and control of constrained mechan-
ical systems are listed below.

• A simulation may proceed even with presence of redun-
dant constraint equations and/or singular configurations.
With the same token, the projected inverse-dynamics
motion controller can cope with changes in the system
constraint, topology, or number of DOFs.

• The generalized formulation requires no knowledge of
the constraint topology, i.e., description of how sub-

assemblies are connected, and it works for rigid-body or
flexible systems alike.

• The IDC scheme leads to a minimum weighted Eu-
clidean norm of the control force input.

• The IDC scheme can be applied to constrained systems
which have some unactuated joints.

• If the inertia matrix possesses a certain property, the
system exhibits decoupling which leads to further sim-
plification of the force control.

• Both redundant and flexible manipulators can be dealt
with.

APPENDIX I

Note that . Then and
, we have

(76)

(77)

where the inference (77) is concluded because (76) implies that
vector must be orthogonal to every vector in , which is
possible only if vector is identically zero. Thus (2) is proved.
The proof of (3) can be shown by a similar argument.
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APPENDIX II

Assuming that the Lagrange multipliers are known, the accel-
eration can be carried out from (19)

(78)

Substituting the acceleration from (78) into the second time
derivative of the constraint equation

gives the Lagrange multipliers as

(79)

This methods works only if the Cartesian inertia matrix
is not singular. Finally, substituting (79) to (78)

yields the acceleration.

APPENDIX III

Lemma 1: The subspace is invariant under an invertible
transformation iff the subspace is invariant under .

Proof: By definition, is an invariant subspace under
iff . Moreover, the invertible mapping cannot

reduce the dimension of any subspace, that is,
; hence, . It follows that

which completes the proof.

APPENDIX IV

It is apparent from Fig. 1 that the decoupling is achieved iff

(80)

which implies that the null space must be invariant under .
Since is an invertible mapping, it can be inferred from Lemma
1 (see Appendix III) that the null space must be invariant under

too. This means that (80) is equivalent to
. Now, replacing from (23) into the latter equation and after

factorization, one can infer the following:

decoupling

which completes the proof.

APPENDIX V

Since comprises a set of indepen-
dent functions, the corresponding Jacobian matrix is full rank,
i.e., rank . Moreover, by using the chain rule,
we have , where is the identity
matrix. Now, by virtue of the property of the rank operator
rank rank rank , one can say that

rank

or that

rank
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