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Abstract

This paper addresses the dynamics and control of di�

rect drive robots with positive joint torque feedback�

We analytically derive the system dynamics in closed

form� Even though it is coupled and nonlinear in gen�

eral� it is substantially simpler than the robot link dy�

namics� We also derive conditions on the robot con�g�

uration which result in linear dynamics� Motion con�

trol laws for both cases are proposed�

� Introduction

Direct drive motors simplify greatly the mechan�
ical complexity of actuated joints by eliminating the
transmission systems required with traditional electric
actuators� In addition they permit accurate torque
control at each joint� through eliminating backlash�
compliance� and much of the friction incurred with
gear transmissions ��� ��� These properties are lead�
ing to an increasing popularity of direct drive motors
in robots and manufacturing systems� In an e	ort to
improve upon the torque�to�mass ratio and torque ac�
curacy of previous designs� a new direct drive ��phase
synchronous motor� the McGill
MIT Direct Drive Mo�
tor� has been designed and constructed ���� Our work
on motor control with positive joint torque feedback
is based on this actuator�

The production of accurate torque� however� is
complicated by the nonlinearity of the motor itself�
The control problem of how to translate a desired
torque command faithfully into a motor torque and
the underlying motor model have been studied by sev�
eral researchers ���� �
� �� �� ���� In ���� we proposed an
indirect adaptive control strategy for the McGill
MIT
Direct Drive Motor� Once accurate torque produc�
tion is achieved� accurate and high bandwidth control

of direct drive robots still requires the compensation
of the nonlinear link dynamics� Linearization meth�
ods can be applied� like nonlinear decoupling control
�
�� resolved acceleration control ����� or the computed
torque method ��� ���� These approaches depend on
the precise knowledge of the robot parameters and of
the possibly varying load� and perform poorly when
the model is not accurate ��� ����

We focus on the case where the actuator can pro�
vide precise driving torque without the need for torque
sensor feedback� Now joint torque measurements can
be used for positive feedback to compensate the ef�
fects of the manipulator dynamics� For this purpose
we have designed and built a new torque sensor which
has been optimized via �nite elements for high sti	�
ness� low torsional sensitivity� and low sensitivity to
non�torsional forces� The system dynamics are deter�
mined completely by the motion of the motor rotors
in the Cartesian space which is not detectable by the
torque sensors� Kosuge ���� demonstrated experimen�
tally the e	ectiveness of using joint torque measure�
ments to compensate the nonlinear link dynamics of
a SCARA�type direct drive robot� However� he no�
ticed a torque disturbance on the rotors caused by
the movement of the proximal joints� which is not de�
tectable by the torque sensors� Hashimoto ��� applied
this technique to a harmonic drive actuator where the
deformation of the ��ex�spline� is used to measure
joint torque� He claimed that the dynamic coupling
terms in the robot dynamics are small due to the high
angular velocity of the rotors in comparison to that of
the links� and therefore can be treated as disturbances�

In this paper we present the general derivation
of the Lagrangian for direct drive robots with joint
torque feedback in closed form� The only parameters
needed are the polar inertias of the rotors and the twist
angles between adjacent joint axes� The next section
is devoted to designing the outer loop control law de�
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pending on the robot�s kinematic con�guration� First�
we derive the condition on the robot con�guration re�
sulting in a linear multi�input system which facilitates
the control problem� For the nonlinear case� feedback
linearization or equivalently inverse dynamics should
be employed to linearize the system� The detail de�
sign of the whole control law is presented for a general
three DOF robot�

� Robot Dynamics with Positive Joint

Torque Feedback

We investigate robots which are open kinematic
chains with revolute joints where each joint is instru�
mented with a torque sensor� Fig� � depicts the ith
joint of a such robot where the torque sensor is located
between motor shaft and the next link� To apply the
Lagrangian methodology� we cut the motor shaft right
at the location of the torque sensor� By this means
we add a virtual joint at each robot joint� Suppose
�� � � IRn are the link and drive angle vector respec�
tively� while � � �� if the torque sensor compliance is
neglected�
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Figure �� ith robot joint�

Let zij be a unit vector in the direction of the jth
joint axis expressed in the frame attached to the ith
joint� consistent with Craig�s notation ���� Then
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j
��� � Ri

j
����k�

where �k � ��� �� ��T and Ri
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rotation transformation ����
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Here sin �q and cos �q are represented by s�q and c�q
for brevity� With these de�nitions we can express
the absolute linear and angular velocities in various
frames�
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where �i
i and �

i
i are the corresponding rotor and link

angular velocities� rj�ci is a vector from any point on
the jth axis to the centroid of ith rotor and vci is
the linear velocity of this rotor� all expressed in the
frame of the ith joint� In practice� rotors are statically
balanced� and the principal axes of all rotor inertias lie
on the joint axes� Thus ri�ci is collinear with �k� and
consequently the last term in ��� is zero� The total
kinetic energy of the robot is distributed in its links�
associated with link inertia ML� and its rotors� Now�
given the inertia matrix of the ith rotor as�
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and its mass mi� the kinetic energy of the rotors is
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Substituting for vci� �i and �i from ��� and ��� and
expanding the relevant terms yields the kinetic energy
as a quadratic function of �� and ��� The �� dependent
terms are caused byML� angular velocity from ��� say
M ��

and linear velocity from ��� say Mv� Hence we

have

T �
�

�
��
T
MT ��� �� �

�

�
��
T
Jp ��� ��

T
D���Jp �� ���

where

MT ��� �ML��� �Mv��� �M ��
���

is that part of the robot kinetic energy which de�
pends only on ��� Since the robot kinetic energy is
equal to the �rst term in ��� when �� � �� MT ���
can be interpreted as inertia of a robot when the
ith rotor is �locked� to the �i � ��th link� Jp is
a diagonal matrix whose diagonal elements contain
the z�axis components of the rotor inertias which are
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shown hereafter with Ji for convenience of notation�
Jp � diag�J�� J�� ���� Jn�� The �con�guration matrix�
D��� is a strictly upper triangle matrix

D���
def
�

�
��������

� �z�� �z����� �z	���� � � � �zn� ���
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� � � �z	� � � � �zn� ���
���

���
���

���
���
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���
The �zij elements present the projection of jth joint axis
on the ith one which turns out to be the ��� �� element
of the rotation matrix Ri

j����

�zij � zij �
�k � �Ri

j����������

The gravitational potential energy Vg��� is only a
function of the joint angles � because the mass centre
of each rotor lies on its joint axis� Now the Euler�
Lagrange equation can be derived as

L � T � V �
�

�
��
T
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�

�
��
T
Jp �� ���

� ��
T
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From �
� the equations of motion are
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The �rst equation yields the system equation of mo�
tion in terms of robot link parameters� whereas the
second relies on that of the rotors� The right hand side
shows the net torques acting on the joints� consisting
of the driving torques u� the external torques mea�
sured via � s� and the viscous friction torques� Since
� s is available in real time� after de�ning a new com�
pensated input�

�u � u� � s� �
�

and substituting � with �� assuming rigid torque sen�
sor� the rotor dynamics are

Jp � �B �� �
d

dt



JpD
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�
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Since �zij � �zij��i��� �i��� � � � � �j�� we have�
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Suppose C��� ��� � D
DtD

T ���� then the matrix ele�
ments can be carried out as

c�j� i� �

�

�

d
dt �z

i
j if j � i� �

� otherwise�
���

Finally� the system dynamics can be represented in
the standard form as

Jp



I�DT ���

�
 � � JpC��� ��� �� �B �� � �u� ���

where I is identity matrix� Unlike the manipulator dy�
namics in the case without joint torque feedback� the
inertia matrix in ��� is not symmetric� Moreover� the
vector C��� ��� �� includes only coriolis accelerations�
without centrifugal terms� C��� ��� is also not skew
symmetric�

It is important to note that� due to the use of joint
torque compensation in the control input� the relevant
dynamics remaining to be computed are vastly simpli�
�ed� when compared with the full robot link dynamics
in the computed torque method without positive torque
feedback ��� ��� In addition� the computation ��� re�
quires only knowledge of the polar rotor inertias and
joint friction� eliminating the need to know all the link
parameters as well� Nevertheless� in general� ��� is
nonlinear in � due to D��� which changes the inertia
of the system and introduces coriolis terms caused by
the rotors� movement in Cartesian space�

� Control

��� Linear Rotor Dynamics

We will show now that for a large class of practi�
cal direct�drive robots� the system dynamics ��� are
actually linear�

Proposition �� A two DOF revolute robot with per�
pendicular axes is the only kinematic con�guration
with decoupled and linear rotor dynamics�

Proof� Given that both Jp andB in ��� are constant
diagonal matrices� and D in ��� is upper triangular�
for the system of equations to be decoupled requiresD
to be a zero matrix� For the �rst diagonal to be zero
requires that all successive joint axes be perpendicular�
�i � �	
� for all twist angles i � �� � � � � n� �� Now�
the �rst element of the second diagonal is�

�z����� � �c��s��s�� � c��c�� � �c���

which cannot be set to zero� Therefore a contradiction
arises for n � ��
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It is clear from ��� that single and double link
robots always have invariant D matrices� Now� the
natural question is which kinematic con�gurations
have invariant D matrices resulting in linear rotor dy�
namics�

Theorem �� For an n�DOF revolute joint robot
�n���� the con�guration matrix D��� in ��� is inde�
pendent of joint angles � i	 there exist at least n��
adjacent parallel joint axes� In this case the D matrix
is

D �

�
������

� c�� c��c�� � � �
Qn��

j�� c�j

� � c�� � � �
Qn��

j�� c�j
���

���
���

���
���

� � � � � � c�n��
� � � � � � �

�
������
� ����

Proof� We will prove the theorem by induction�
Step �� For n � � the nonzero terms in D����� are

�z�� � c��! �z�� � c��

�z����� � �c��s��s�� � c��c��

Either �� � � or �� � �� or both! this annihilates
the �rst term in �z�� above� Hence theorem � holds for
n � ��
Step �� Assume the statement is true for an m�DOF
robot� Then for an �m� ���DOF robot

�zm��
k � �Rm��

m Rm
k ������ ����

� �s�m�Rm
k ��������� � c�m�Rm

k �������

Them�DOF robot can have onlym�� orm�� par�
allel axes according to theorem �� In the �rst case
the m�DOF robot must be planar and �Rm

k ��������� �
� �k � f�� ����mg �note that the last column in the
transformation matrix is ��� �� ��T for a planar robot��
In the second case� �m must be zero to eliminate the
��dependent term in ���� Therefore� in any case� at
least one more parallel joint axis� i�e� m � �� for the
�m� ���DOF robot is required for an invariant D�

�zm��
k � c�m

m��Y
j�k

c�j �

mY
j�k

c�j � ����

The steps ��� and ��� complete the proof�

�

The linear rigid body rotor dynamics ��� for an in�
variant D matrix are

Jp�I�D
T � � �B �� � �u� ����

The result of the forgoing argument is a very useful
and comprehensive tool to design robot controllers�
since it permits recourse to a vast literature on the
control of linear MIMO plants� Even a simple PD
controller

�u � �Kp�� � �d��Kv� �� � ��d�

su"ces to stabilize the manipulator� Kp and Kv are
positive de�nite position and velocity gain matrices
which are not symmetric or diagonal in general� due
to the coupled dynamics of the plant� �d and ��d are
the desired vectors of joint position and velocity� Crit�
ically damped responses can be achieved independent
of the arm con�guration�

For practical relevance it is important to point out
the conditions of Theorem � are not very restrictive�
since typically only the �rst three or four robot joints
are directly actuated� Indeed� most industrial direct
drive robots� including SCARA arms and anthropo�
morphic robots ���� ��� fall into this category�

��� General Three DOF Robots

Di	erential equation ���� which is mainly based on
rotor dynamics� describes the motion of the robot with
internal joint torque feedback� This dynamical sys�
tem� in general� is a multi�input nonlinear system for
robots that have more than two DOF� We showed that
linear robot dynamics is also possible for multi�DOF
robots under a fairly mild conditions� yet nonlinear ro�
tor dynamics is substantially less complex than robot
link dynamics� In this section we derive the rotor
equation of motion for a general three DOF robot�
where the viscous friction is eliminated for simplicity�
Choosing three DOF is relevant from a practical point
of view� because direct drive actuation is usually used
for positioning the end e	ector in task space which
can be accomplished by three joints�

It is desirable to change the parameters of the sys�
tem as� a� � c�� and a� � c��� After substituting

a� � a�a� ����

a	 � s��s�� � �� � �a��a
�
� � a�� � a���

���

a
 � a�a� � a	�

in ��� and then in ���� one can derive the equations of
motion of the robot�

 �� � J��� �u� ����
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Figure �� Architecture of the control system with positive joint torque feedback�

 �� � �a�J
��
� �u� � J��� �u�

 �� � �a
 � a	 c���J
��
� �u� � a�J

��
� �u� � J��� �u�

�a	 ��� ���s���

A comparison of a these dynamical equations with
those of a three DOF robot without joint torque feed�
back shows an essential simpli�cation� The number
of independent parameters which are relevant to the
above equation is only �ve� including the polar iner�
tias of the rotors and the cosine of the twist angles�
Since D��� is a triangular matrix� one can conclude
that the proximal joint of a higher DOF robot has the
same equation as ���� The reason is that the move�
ment of proximal joints a	ects the motion of distal
joints while� conversely� all dynamical e	ects of dis�
tal joints on the proximal ones are totally compen�
sated by the torque sensor signals� As is the case for
link dynamics� the rotor dynamics ���� can be lin�
earized by feedback linearization ���� or equivalently
inverse dynamics� The nonlinear input transforma�
tion v � ���� ����u � ���� ��� by feedback linearization
can linearize and also decouple the nonlinear system�
One can inspect that by taking the right hand side of
���� as the new inputs vi� the control problem reduces
trivially to control three double integrator systems�

 �i � vi i � �� �� ��

A linear control law with respect to the new inputs
vi can be easily designed for trajectory tracking or set�
point regulation� The link between the old and new
inputs is provided by �u � ������ ����v � ���� �����

�u� � J�v� ����

�u� � a�J�v� � J�v�

�u� � �a� � a	c���J�v� � a�J�v� � J�v�

�J�a	 ��� ���s���

Fig� � illustrates the structure of the overall con�
troller which consists of three feedback loops� The
innermost loop is joint torque feedback which totally

compensates the link dynamics and the interaction of
the robot with its environment� The second feedback
linearizes the rotor dynamics� Obviously� this loop is
not needed if the rotor dynamics are already linear�
Finally� the outer loop provides position and velocity
feedback for the linearized system�

� Design Considerations

Link i-1

Bearing
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Figure �� Integrated sensor and rotor can compensate
joint friction�

Stiction� dry friction and the torque caused by the
supply wires which pass from one joint to the next are
a source of joint torque nonlinearity in practice� Spe�
cial care in the design stage should be given such that
all these torques are observable by the sensors� other�
wise they enter as disturbances to the control system
which degrades the performance� In this regard bear�
ing con�guration and the sensor location play the key
roles� As an example� the rotor can be mounted by
some sprocket� on which strain gauges are cemented�
to its shaft� Fig� �� Such a arrangement can potentially
compensate joint friction as well as link dynamics� and
leaves neatly the pure inertial dynamics of the rotors
as the plant dynamics�
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� Conclusion

The equations of motion of direct drive robots with
positive joint torque feedback have been derived� The
conditions on the kinematic structure of the robot to
possess linear dynamics have been presented� The re�
sulting rotor dynamics are determined solely by the
polar inertia of motor rotors and joint twist angles�
which can be identi�ed precisely in practice� For the
linear dynamics� a centralised PD controller can be de�
signed for accurate and high bandwidth control� while
in the nonlinear case feedback linearization is appli�
cable� We showed that the number of terms in the
equations of motion is signi�cantly less than of the
links� The system parameters are only the polar in�
ertias of the rotors and the twist angles� To this end�
it worth pointing out that� although the positive joint
torque feedback begun in the �eld of robot motion con�
trol� it can be envisaged in other robotic applications
such as force and impedance control� In particular�
in teleoperation the link dynamics can be e	ectively
compensated by this method to achieve high �delity
force re�ection�
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