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Abstract

This paper addresses the dynamics and control of di-
rect drive robots with positive joint torque feedback.
We analytically derive the system dynamics in closed
form. Even though it is coupled and nonlinear in gen-
eral, it is substantially simpler than the robot link dy-
namics. We also derive conditions on the robot config-
uration which result in linear dynamics. Motion con-
trol laws for both cases are proposed.

1 Introduction

Direct drive motors simplify greatly the mechan-
ical complexity of actuated joints by eliminating the
transmission systems required with traditional electric
actuators. In addition they permit accurate torque
control at each joint, through eliminating backlash,
compliance, and much of the friction incurred with
gear transmissions [2, 3]. These properties are lead-
ing to an increasing popularity of direct drive motors
in robots and manufacturing systems. In an effort to
improve upon the torque-to-mass ratio and torque ac-
curacy of previous designs, a new direct drive 3-phase
synchronous motor, the McGill/MIT Direct Drive Mo-
tor, has been designed and constructed [9]. Our work
on motor control with positive joint torque feedback
is based on this actuator.

The production of accurate torque, however, is
complicated by the nonlinearity of the motor itself.
The control problem of how to translate a desired
torque command faithfully into a motor torque and
the underlying motor model have been studied by sev-
eral researchers [13, 17, 6, 4, 16]. In [1], we proposed an
indirect adaptive control strategy for the McGill/MIT
Direct Drive Motor. Once accurate torque produc-
tion is achieved, accurate and high bandwidth control
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of direct drive robots still requires the compensation
of the nonlinear link dynamics. Linearization meth-
ods can be applied, like nonlinear decoupling control
[7], resolved acceleration control [12], or the computed
torque method [2, 15]. These approaches depend on
the precise knowledge of the robot parameters and of
the possibly varying load, and perform poorly when
the model is not accurate [2, 18].

We focus on the case where the actuator can pro-
vide precise driving torque without the need for torque
sensor feedback. Now joint torque measurements can
be used for positive feedback to compensate the ef-
fects of the manipulator dynamics. For this purpose
we have designed and built a new torque sensor which
has been optimized via finite elements for high stiff-
ness, low torsional sensitivity, and low sensitivity to
non-torsional forces. The system dynamics are deter-
mined completely by the motion of the motor rotors
in the Cartesian space which is not detectable by the
torque sensors. Kosuge [11] demonstrated experimen-
tally the effectiveness of using joint torque measure-
ments to compensate the nonlinear link dynamics of
a SCARA-type direct drive robot. However, he no-
ticed a torque disturbance on the rotors caused by
the movement of the proximal joints, which is not de-
tectable by the torque sensors. Hashimoto [8] applied
this technique to a harmonic drive actuator where the
deformation of the “flex-spline” is used to measure
joint torque. He claimed that the dynamic coupling
terms in the robot dynamics are small due to the high
angular velocity of the rotors in comparison to that of
the links, and therefore can be treated as disturbances.

In this paper we present the general derivation
of the Lagrangian for direct drive robots with joint
torque feedback in closed form. The only parameters
needed are the polar inertias of the rotors and the twist
angles between adjacent joint axes. The next section
is devoted to designing the outer loop control law de-



pending on the robot’s kinematic configuration. First,
we derive the condition on the robot configuration re-
sulting in a linear multi-input system which facilitates
the control problem. For the nonlinear case, feedback
linearization or equivalently inverse dynamics should
be employed to linearize the system. The detail de-
sign of the whole control law is presented for a general
three DOF robot.

2 Robot Dynamics with Positive Joint
Torque Feedback

We investigate robots which are open kinematic
chains with revolute joints where each joint is instru-
mented with a torque sensor. Fig. 1 depicts the ith
joint of a such robot where the torque sensor is located
between motor shaft and the next link. To apply the
Lagrangian methodology, we cut the motor shaft right
at the location of the torque sensor. By this means
we add a virtual joint at each robot joint. Suppose
0,¢ € IR™ are the link and drive angle vector respec-
tively, while ¢ = 0, if the torque sensor compliance is
neglected.

Link i-1

Figure 1: ith robot joint.

Let z} be a unit vector in the direction of the jth
joint axis expressed in the frame attached to the ith
joint, consistent with Craig’s notation [5]. Then

7(0) = Ri(0)k,

where k = [0,0,1]7 and R;-(B) is the homogeneous
rotation transformation [3],
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Here sinf, and cosf, are represented by sf, and cf,
for brevity. With these definitions we can express
the absolute linear and angular velocities in various
frames,
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where w! and Q! are the corresponding rotor and link
angular velocities, r; ¢; is a vector from any point on
the jth axis to the centroid of ith rotor and wv,; is
the linear velocity of this rotor, all expressed in the
frame of the ith joint. In practice, rotors are statically
balanced, and the principal axes of all rotor inertias lie
on the joint axes. Thus r;; is collinear with E, and
consequently the last term in (3) is zero. The total
kinetic energy of the robot is distributed in its links,
associated with link inertia My, and its rotors. Now,
given the inertia matrix of the ith rotor as,
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and its mass m;, the kinetic energy of the rotors is
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Substituting for v.;, w; and €; from (2) and (3) and
expanding the relevant terms yields the kinetic energy
as a quadratic function of @ and ¢. The 6 dependent
terms are caused by My, angular velocity from (2) say
M ; and linear velocity from (3) say M,. Hence we

have
T = %BTMT(G)O + %dedes +0 DO, (4)
where

Mr(0) = M (0) + My(6) + M (0)

is that part of the robot kinetic energy which de-
pends only on #. Since the robot kinetic energy is
equal to the first term in (4) when ¢ = 0, My(8)
can be interpreted as inertia of a robot when the
ith rotor is ”locked” to the (i — 1)th link. J, is
a diagonal matrix whose diagonal elements contain
the z-axis components of the rotor inertias which are



shown hereafter with J; for convenience of notation,
J, = diag[Ji, J2, ..., Jp]. The “configuration matrix”
D(0) is a strictly upper triangle matrix
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The 73; elements present the projection of jth joint axis
on the ith one which turns out to be the (3,3) element
of the rotation matrix R(6),

A‘; = Z; . k = [R;(g)](3’3)

The gravitational potential energy V(@) is only a
function of the joint angles @ because the mass centre
of each rotor lies on its joint axis. Now the Euler-
Lagrange equation can be derived as

L = T-V= %GTMT(G)B + %d)TJpé (6)
+0" D(0)T,6 — V,(0).

From (7) the equations of motion are
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The first equation yields the system equation of mo-
tion in terms of robot link parameters, whereas the
second relies on that of the rotors. The right hand side
shows the net torques acting on the joints, consisting
of the driving torques u, the external torques mea-
sured via T, and the viscous friction torques. Since
T is available in real time, after defining a new com-
pensated input,

a=u-—rTs, (7)

and substituting ¢ with @, assuming rigid torque sen-
sor, the rotor dynamics are

" . d oo B
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Since 2; = 2;(9”1,9”2, ---,8;), we have,
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Suppose C(0,0) = DQtDT(O), then the matrix ele-
ments can be carried out as
£z i j>i+1
c(j,i) = (8)
0 otherwise.

Finally, the system dynamics can be represented in
the standard form as

J, (1 + DT(e)) 0+3,C0,000+BO=1u, (9)

where I is identity matrix. Unlike the manipulator dy-
namics in the case without joint torque feedback, the
inertia matrix in (9) is not symmetric. Moreover, the
vector C(O,é)@ includes only coriolis accelerations,
without centrifugal terms. C(6,0) is also not skew
symmetric.

It is important to note that, due to the use of joint
torque compensation in the control input, the relevant
dynamics remaining to be computed are vastly simpli-
fied, when compared with the full robot link dynamics
in the computed torque method without positive torque
feedback [2, 5]. In addition, the computation (9) re-
quires only knowledge of the polar rotor inertias and
joint friction, eliminating the need to know all the link
parameters as well. Nevertheless, in general, (9) is
nonlinear in @ due to D(@) which changes the inertia
of the system and introduces coriolis terms caused by
the rotors’ movement in Cartesian space.

3 Control
3.1 Linear Rotor Dynamics

We will show now that for a large class of practi-
cal direct-drive robots, the system dynamics (9) are
actually linear.

Proposition 1: A two DOF revolute robot with per-
pendicular axes is the only kinematic configuration
with decoupled and linear rotor dynamics.

Proof: Given that both J, and B in (9) are constant
diagonal matrices, and D in (5) is upper triangular,
for the system of equations to be decoupled requires D
to be a zero matrix. For the first diagonal to be zero
requires that all successive joint axes be perpendicular,
a; = +m/2 for all twist angles i =1,...,n — 1. Now,
the first element of the second diagonal is,

2?(0) = —cb3saysas + cajcas = —cbs,

which cannot be set to zero. Therefore a contradiction
arises for n > 2.
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It is clear from (5) that single and double link
robots always have invariant D matrices. Now, the
natural question is which kinematic configurations
have invariant D matrices resulting in linear rotor dy-
namics.

Theorem 1: For an n-DOF revolute joint robot
(n>2), the configuration matrix D (@) in (5) is inde-
pendent of joint angles @ iff there exist at least n—2
adjacent parallel joint axes. In this case the D matrix
is

0 ca; cajcay - H;L:_ll co;
0 0 cay v H;L:_Z,l co;
D= : : : : (10)
0 O 0 CQp—1
0 O 0 - 0

Proof: We will prove the theorem by induction.
Step 1: For n = 3 the nonzero terms in D(33) are

22 =cay; 2 = cay

23(0) = —ch3sa1 505 + caycas

Either a; = 0 or as = 0, or both; this annihilates
the first term in 27 above. Hence theorem 1 holds for
n=3.

Step 2: Assume the statement is true for an m-DOF
robot. Then for an (m + 1)-DOF robot

2]76n+1 _ [RQHRZF](&:&) (11)
= —san R (0)](2,3) + cam[Ri](3,3)-

The m-DOF robot can have only m—1 or m—2 par-
allel axes according to theorem 1. In the first case
the m-DOF robot must be planar and [R}*(8)](2,3) =
0 VEke{l,..,m} (note that the last column in the
transformation matrix is [0,0, 1]7 for a planar robot).
In the second case, a,, must be zero to eliminate the
0—dependent term in (5). Therefore, in any case, at
least one more parallel joint axis, i.e. m — 1, for the
(m 4 1)-DOF robot is required for an invariant D,

m—1 m

- R ;

2T =cap, H coj = H cay. (12)
Jj=k Jj=k

The steps (1) and (2) complete the proof.

The linear rigid body rotor dynamics (9) for an in-
variant D matrix are

J,(I+D7)6 +BO =a. (13)

The result of the forgoing argument is a very useful

and comprehensive tool to design robot controllers,
since it permits recourse to a vast literature on the
control of linear MIMO plants. Even a simple PD
controller

0= -K,(0 - 0,) — K,(0—0,)

suffices to stabilize the manipulator. K, and K, are
positive definite position and velocity gain matrices
which are not symmetric or diagonal in general, due
to the coupled dynamics of the plant. 84 and 64 are
the desired vectors of joint position and velocity. Crit-
ically damped responses can be achieved independent
of the arm configuration.

For practical relevance it is important to point out
the conditions of Theorem 1 are not very restrictive,
since typically only the first three or four robot joints
are directly actuated. Indeed, most industrial direct
drive robots, including SCARA arms and anthropo-
morphic robots [14, 10] fall into this category.

3.2 General Three DOF Robots

Differential equation (9), which is mainly based on
rotor dynamics, describes the motion of the robot with
internal joint torque feedback. This dynamical sys-
tem, in general, is a multi-input nonlinear system for
robots that have more than two DOF. We showed that
linear robot dynamics is also possible for multi-DOF
robots under a fairly mild conditions, yet nonlinear ro-
tor dynamics is substantially less complex than robot
link dynamics. In this section we derive the rotor
equation of motion for a general three DOF robot,
where the viscous friction is eliminated for simplicity.
Choosing three DOF is relevant from a practical point
of view, because direct drive actuation is usually used
for positioning the end effector in task space which
can be accomplished by three joints.

It is desirable to change the parameters of the sys-
tem as, a; = cay and as = cas. After substituting

a3 = a1a (14)
as = saysas = (14 2a2a2 —a? —a2)'/?
as = Q103 — a4,

in (5) and then in (9), one can derive the equations of
motion of the robot,

b = J ' (15)
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Figure 2: Architecture of the control system with positive joint torque feedback.
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A comparison of a these dynamical equations with
those of a three DOF robot without joint torque feed-
back shows an essential simplification. The number
of independent parameters which are relevant to the
above equation is only five, including the polar iner-
tias of the rotors and the cosine of the twist angles.
Since D(0) is a triangular matrix, one can conclude
that the proximal joint of a higher DOF robot has the
same equation as (9). The reason is that the move-
ment of proximal joints affects the motion of distal
joints while, conversely, all dynamical effects of dis-
tal joints on the proximal ones are totally compen-
sated by the torque sensor signals. As is the case for
link dynamics, the rotor dynamics (15) can be lin-
earized by feedback linearization [15] or equivalently
inverse dynamics. The nonlinear input transforma-
tion v = 3(0,0)i + I'(8, 8) by feedback linearization
can linearize and also decouple the nonlinear system.
One can inspect that by taking the right hand side of
(15) as the new inputs v;, the control problem reduces
trivially to control three double integrator systems,

b; = v i=1,2,3.

A linear control law with respect to the new inputs
v; can be easily designed for trajectory tracking or set-
point regulation. The link between the old and new
inputs is provided by @ = 87(0,8)[v — T'(8,80)],

U = Jl’l)l (16)
Uy = aiJov + Jovs
s = (asz — asch3)J3v1 + asJsvs + J3vus

+J3a49192593.

Fig. 2 illustrates the structure of the overall con-
troller which consists of three feedback loops. The
innermost loop is joint torque feedback which totally

compensates the link dynamics and the interaction of
the robot with its environment. The second feedback
linearizes the rotor dynamics. Obviously, this loop is
not needed if the rotor dynamics are already linear.
Finally, the outer loop provides position and velocity
feedback for the linearized system.

4 Design Considerations

Link i-1

Rotor Strain gauge
Figure 3: Integrated sensor and rotor can compensate
joint friction.

Stiction, dry friction and the torque caused by the
supply wires which pass from one joint to the next are
a source of joint torque nonlinearity in practice. Spe-
cial care in the design stage should be given such that
all these torques are observable by the sensors, other-
wise they enter as disturbances to the control system
which degrades the performance. In this regard bear-
ing configuration and the sensor location play the key
roles. As an example, the rotor can be mounted by
some sprocket, on which strain gauges are cemented,
toits shaft, Fig. 3. Such a arrangement can potentially
compensate joint friction as well as link dynamics, and
leaves neatly the pure inertial dynamics of the rotors
as the plant dynamics.



5 Conclusion

The equations of motion of direct drive robots with
positive joint torque feedback have been derived. The
conditions on the kinematic structure of the robot to
possess linear dynamics have been presented. The re-
sulting rotor dynamics are determined solely by the
polar inertia of motor rotors and joint twist angles,
which can be identified precisely in practice. For the
linear dynamics, a centralised PD controller can be de-
signed for accurate and high bandwidth control, while
in the nonlinear case feedback linearization is appli-
cable. We showed that the number of terms in the
equations of motion is significantly less than of the
links. The system parameters are only the polar in-
ertias of the rotors and the twist angles. To this end,
it worth pointing out that, although the positive joint
torque feedback begun in the field of robot motion con-
trol, it can be envisaged in other robotic applications
such as force and impedance control. In particular,
in teleoperation the link dynamics can be effectively
compensated by this method to achieve high fidelity
force reflection.
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