

IURS 2006 – 6th International UJI Robotics School Summer School on Humanoid Robots

Benicassim, Spain, September 18, 2006

Bioinspired Tactile Perception

Cecilia Laschi Scuola Superiore Sant'Anna, Pisa

Objective of the talk

- To analyse the human tactile system as a model for designing robot tactile sensors
- To describe the main technologies for developing tactile sensors for robots
- To analyse a case-study of biomechatronic design of tactile sensors

Outline of the talk

- Human sense of touch:
 - □ Human tactile receptors and their characterization
 - □ The fingertip as a tactile organ
- Main technologies of developing artificial tactile sensors:
 - □ Working principles
 - □ Mathematical relations
 - Examples of tactile sensors developed with each technology
- Case study of biomechatronic tactile sensor

Outline of the talk

- Human sense of touch:
 - □ Human tactile receptors and their characterization
 - □ The fingertip as a tactile organ
- Main technologies of developing artificial tactile sensors:
 - □ Working principles
 - □ Mathematical relations
 - Examples of tactile sensors developed with each technology
- Case study of biomechatronic tactile sensor

The human somato-sensory system

Tactile receptors of the glabrous skin

Corneous layer

- Robust cells, pulled out by the tissue rigenerative process
- Its mechanical characteristics determine the distribution of forces on the underlying sensitive areas

Extroflections

- Constituted by thicker tissue, with irregular shape
- Corresponding to the fingerprints
- By their nature and morphology, the move together with the epidermis grooves
- Transmit amplified the strain due to tangential stress on the corneous layer

Meissner's corpuscles

- 43% of hand tactile units
- dimensions: 80 x 30 µm
- main axis normal to the skin surface
- threshold: 10.2 mN/mm²

Meissner's corpuscles

100 µm

Merkel's disks

- 25% of hand tactile units
- disk-like shape
- 10-15 µm diameter
- arranged parallel to the skin surface
- threshold: 22.8 mN/mm²

Corneous layer Epidermis Meissner's corpuscles Merkel's disks Neural fibers Dermis **Blood vessels** Ruffini's corpuscles Ipodermis Pacinian corpuscles

Ruffini's corpuscles

19% of hand tactile units
threshold: 131.6 mN/mm²

Pacinian corpuscles

- 13% of hand tactile units
- Iength: 1-4 mm
- diameter: 0.5-1 mm
- horizontal main axis
- threshold: 9.5 mN/mm²

Pacinian corpuscles

Receptive fields

- Receptive field of a receptor: cutaneous area from which the receptor receives stimuli
- Receptive field of an afferent neuron: cutaneous area from which its receptors receive stimuli

If the skin is stimulated in two points belonging to the same receptive field, the spatial difference is not perceived

⇒ The dimension of the receptive field determines the spatial resolution of perception

The overlapping between receptive fields increases the spatial resolution, up to 2 mm on the fingertip

The dimension of the receptive field of a receptor increases with the depth in the epidermis

Mechanism of adaptation to the stimulus

Classification of tactile receptors

Johansson, J Physiol (Lond), 1978: Johansson & Vallbo, J Physiol (Lond), 1979

Human grasp strategy in a prototypic pick-and-lift task

Response of tactile receptors in a prototypical pick-and-lift task

- Time of contact
- Position of contact on the fingertip
- Force vector on the fingertip
- Start and end of contact between the picked object and other objects

End of contact between the object and the fingertip

'Tactile control events' for task accomplishment

The fingertip as a tactile organ

Populations of tactile afferents encode:

- Force on the fingertip:
 - □ intensity
 - direction
 - spatial distribution
- Contact local shape (curvature of the object surface)
- Tactile control events:
 - slippages
 - contact start and end
 - start and end of contact between the picked object and other objects

Synthesis of human touch characteristics

TACTILE AFFERENT	CLASS	DIMENSION	RECEPTIVE FIELD (diameter)	RESPONSE THRESHOLD* (pressure)	FREQUENCY	FUNCTION	ROLE IN GRASP CONTROL (FINGERTIP)
MEISSNER	FA-I	80x30 µm	9,4 mm² (3.4 mm)	0.58 mN (10.2 mN/mm²)	8-64 Hz	THIN SHARP EDGES, VELOCITY CHANGES AND PRESSURE CHANGES	CONTACT, LOCAL SHAPES, FORCES ON THE FINGERTIP
MERKEL	SA-I	10-15 μm (diameter)	11 mm² (3.7 mm)	1.3 mN (22.8 mN/mm²)	2-32 Hz	THIN SHARP EDGES, PRESSURE INTENSITY	CONTACT, FORCES ON THE FINGERTIP
RUFFINI	SA-II		58.9 mm² (8.7 mm)	7.5 mN (131.6 mN/mm²)	< 8 Hz	THICK SMOOTH EDGES, PRESSURE INTENSITY	SKIN LATERAL STRETCH, FORCE ON THE FINGERTIP
PACINI	FA-II	1-4 mm x 0.5-1 mm	101.3 mm ² (11.4 mm)	0.54 mN (9.5 mN/mm²)	64-400 Hz	THICK SMOOTH EDGES, VIBRATIONS	MECHANICAL TRANSIENTS
FINGERTIP						 FORCE ON THE FINGERTIP: INTENSITY AND DIRECTION CONTACT LOCAL SHAPE (CURVATURE OF OBJECT SURFACE) TACTILE CONTROL EVENTS: SLIPPAGE, CONTACT START AND END, START AND END OF CONTACT OF THE OBJECT WITH THE ENVIRONMENT 	

90% of receptors of type SA-I and FA-I react to a stimulus of 5 mN*, or 87mN/mm² *force applied with a Von Frey hair, of diameter 0.27 mm

Outline of the talk

- Human sense of touch:
 - □ Human tactile receptors and their characterization
 - □ The fingertip as a tactile organ
- Main technologies of developing artificial tactile sensors:
 - □ Working principles
 - Mathematical relations
 - Examples of tactile sensors developed with each technology
- Case study of biomechatronic tactile sensor

Contact sensors and tactile sensors

- Contact sensors:
 - provide binary information on the **contact** on the sensor surface
- Tactile sensors:
 - provide information on the **force** applied on the sensor surface
 - □ magnitude only, along the normal direction
 - magnitude and direction (2 or 3 components of the force vector)
- Both types can be arranged into arrays to provide tactile images

Main technologies for tactile sensors

- Switches as tactile sensors
- Piezoresistive sensors
- Optical sensors
- Magnetic sensors
- Capacitive sensors
- FSR Force Sensing Resistors
- QTC Quantum Tunnelling Composites

Mechanical switches

- Simplest contact sensors
- Provide one binary datum:

contact / no contact

- Applications as tactile sensors:
 - impact sensors on mobile robots
 - whiskers
 - endstop sensors for manipulator joints

Arrays of switches

An array of switches with different contact threshold can measure the value of pressure applied.

The maximum depth that a metal sheet can reach inside a circular hole when pressed is given by:

> $\delta \propto \frac{pa}{E}$ with: $\delta = \max deflection$ p = applied pressure a = radius of hole $E = Young's \mod ule$

- 48 units
- unit area: 0.3 x 0.6 mm
- 15 electrodes for 16 levels of pressure
- by varying the hole shape we can obtain linear, logarithmic or exponential responses

Piezoresistive effect

Every material changes its electrical resistance with **strain**

Basics of mechanical behavior of materials

Stress applied to a material causes strain. The material has an elastic behavior until a stress threshold (elastic limit), beyond which the material deformation is plastic

Piezoresistive effect

Every material changes its electrical resistance with **strain**

V=RI

In a metal block: $R = \rho \frac{L}{WH}$ with ρ = resistivity of the material, L, W, H = dimensions of the block $\frac{\Delta R}{R} = \varepsilon + 2v\varepsilon + \frac{\Delta \rho}{\rho}$ v = Poisson's ratio of the material

Strain gauge

v = Poisson's ratio of the material

Three-axial force/torque sensors

- Mechanical structure with preferred strain directions, along 3 axes
- Strain gauges arranged accordingly

Three-axial force/torque sensors

- Forces and torques are measured from measures of the resistance variations of the strain gauges, multiplied by a coefficient array, typical for each sensor
- The coefficient array is built by a calibration procedure in which known forces are applied

$$\begin{bmatrix} f_x^s \\ f_y^s \\ f_z^s \\ \mu_x^s \\ \mu_y^s \\ \mu_z^s \end{bmatrix} = \begin{bmatrix} 0 & 0 & c_{13} & 0 & 0 & 0 & c_{17} & 0 \\ c_{21} & 0 & 0 & 0 & c_{25} & 0 & 0 & 0 \\ 0 & c_{32} & 0 & c_{34} & 0 & c_{36} & 0 & c_{38} \\ 0 & 0 & 0 & c_{44} & 0 & 0 & 0 & c_{48} \\ 0 & c_{52} & 0 & 0 & 0 & c_{56} & 0 & 0 \\ c_{61} & 0 & c_{63} & 0 & c_{65} & 0 & c_{67} & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \\ w_7 \\ w_8 \end{bmatrix}$$

Optical sensors

Rifractive index of a material:

n=c/v

with

c = velocity of light in a vacuum

v = velocity of light in the material

Total internal reflection:

when light strikes the surface of the interface between two materials at less than θ_c (measured from the Light interface normal)

Critical angle θ_c :

 $\sin \theta_c = n_2/n_1$ with $n_1 > n_2$

Light propagates along an optical guide provided it strikes the guide/air interface at an angle smaller than θ_c ,

The contact with an external object frustrates the total internal reflection and light emerges from the opposite side of the quide

Optical sensors

By varying the shape of the object in contact with the light guide it is possible to obtain a response proportional to the applied force and to tangential forces

Magnetic sensors

Hall-Effect sensors

In a conductor where a current i flows, immersed in a magnetic field of intensity B, a voltage V originates in the direction normal both to the current and to the magnetic field.

The value of the voltage is proportional to the intensity of the current i and to the intensity of the magnetic field B, while it is inversely proportional to the thickness of the material d:

V = R i B / d

where R = Hall costant or coefficient.

Hall-effect magnetic sensors

Hall-effect position sensor

A permanent magnet generates a magnetic field.

The contact with a ferromagnetic object modifies the magnetic field. The Hall effect allows to measure this variation as a voltage

1.9 mm distance

FSR – Force Sensing Resistors

- Polymeric-film device
- Decreasing resistance with increasing applied forces

QTC (Quantum Tunnelling Composites) Sensors

- QTCs have the unique capability of transformation from a virtually perfect insulator to metal like conductor when deformed.
- That deformation can result from the compression, twisting or stretching of the material
- QTC's response can be tuned appropriately to the spectrum of forces applied.
- The transition from insulator to conductor follows a smooth and repeatable curve, with the resistance dropping exponentially

log (Resistance) vs Force

QTC sensors

Dimensions

Width	3.6 mm
Length	3.6 mm
Thickness	1.0 mm

Mechanical properties

Weight	0.04g
Density	4.0 g/cm^{3}
Force range	0 - 100 N
Lifetime	>1,000,000 com
Electric properties	
Resistivity at rest	> 7 x 10 ¹² Ohm
-	

Typical range of resistance
Operative voltage
Max current

Resistance Ω

7 x 10¹² Ohm cm
10¹² Ohms to < 1 Ohm
0 to 40 V
10 A

Outline of the talk

- Human sense of touch:
 - □ Human tactile receptors and their characterization
 - □ The fingertip as a tactile organ
- Main technologies of developing artificial tactile sensors:
 - □ Working principles
 - □ Mathematical relations
 - Examples of tactile sensors developed with each technology
- Case study of biomechatronic tactile sensor

Tactile system for a robot hand

Tri-axial fingertip force sensor

SENSOR

Tri-axial fingertip force sensor

3D Force Sensor output

In

B.B. Edin, L. Beccai, L. Ascari, S. Roccella, J.J. Cabibihan, M.C. Carrozza, "A bio-inspired approach for the design and characterization of a tactile sensory system for a cybernetic prosthetic hand", ICRA 2006, Orlando, FL, May 15-17, 2006

Functionality of the tri-axial fingertip force sensor with respect to the human fingertip

- Forces applied on the fingertip:
 magnitude
 direction
- Contact local shape (curvature of the object surface)
- Tactile control event:
 - □slippage
 - contact start and end
 - □ lift and release

Curved

(r = 10 mm) (r = 5 mm)

Curved

Flat

Functionality of the tri-axial fingertip force sensor with respect to the human fingertip

- Forces applied on the fingertip:
 magnitude
 direction
- Contact local shape (curvature of the object surface)
- Tactile control event:
 - □slippage
 - contact start and end
 - □ lift and release

Curved

(r = 10 mm) (r = 5 mm)

Curved

Flat

Tri-axial micro force sensor

Section of the sensor 3D model

The sensor is based on piezoresistive transduction obtained by embedding piezoresistors in the arms of the flexible structure

 Cross shape, 4 normal arms, high sensitivity to tangential forces

 central cylinder to transfer the load to the arms – silicon block completely embedded with the rest of the structure

Sensor structure

Piezoresistors

in semiconductors 1+2v negligible

$\Delta R/R$ response of the 4 piezoresistors with a normal force

ΔR/R response of the 4 piezoresistors with a tangential force

Force measurement

$$F = K \frac{\Delta R}{R}$$

 F_n normal force $F_x \in F_y$ tangential components Calibration procedure: Increasing force 0.5 N to 2.5 N in the normal direction; Increasing force 0.1 N to 0.4 N in two tangential directions, normal to each other.

$$K = \begin{pmatrix} -1.71 & 15.65 & -8.57 & -16.70 \\ -16.75 & 2.83 & 11.75 & 14.97 \\ 3.18 & 5.86 & 20.78 & 33.81 \end{pmatrix} N$$

Final size

Possible integration on a flexible skin

Conclusions

- The human tactile system:
 - □ at the receptor level
 - detects pressure and pressure variations
 - high performance especially in terms of spatial resolution (2mm), sensitivity (87 mN/mm² activate 90% of receptors)
 - does not have a localized sensory organ, but the fingertip can be considered as such
 - measures the applied force (3 components)
 - plays an important role in the control of grasp, detecting the key events:
 - □ vibrations (related to slippage) (frequency 400Hz)
 - $\hfill\square$ contact with object
 - $\hfill\square$ contact lift and release
- Piezoresistive technologies allow to measure:
 - \Box at the sensor level:
 - force applied on a 2,3 x 2,3 mm area
 - \Box at the level of sensory organ (tactile fingertip):
 - force applied on the fingertip (3 components)
 - tactile control events
 - □ vibrations (related to slippage) (frequency 700Hz)
 - □ contact with object
 - $\hfill\square$ contact lift and release

Acknowledgments

- Maria Chiara Carrozza
- Stefano Roccella
- Lucia Beccai
- John-John Cabibihan
- Part of the work presented here was co funded by the European Commission in the framework of the IST FET NEUROBOTICS Integrated Project ("The Fusion of Neuroscience and Robotics"), contract #001917

